The Carbon Footprint of Bioinformatics
Abstract Bioinformatic research relies on large-scale computational infrastructures which have a nonzero carbon footprint but so far, no study has quantified the environmental costs of bioinformatic tools and commonly run analyses. In this work, we estimate the carbon footprint of bioinformatics (in...
Saved in:
| Published in: | Molecular biology and evolution Vol. 39; no. 3 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Oxford University Press
02.03.2022
|
| Subjects: | |
| ISSN: | 0737-4038, 1537-1719, 1537-1719 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Abstract
Bioinformatic research relies on large-scale computational infrastructures which have a nonzero carbon footprint but so far, no study has quantified the environmental costs of bioinformatic tools and commonly run analyses. In this work, we estimate the carbon footprint of bioinformatics (in kilograms of CO2 equivalent units, kgCO2e) using the freely available Green Algorithms calculator (www.green-algorithms.org, last accessed 2022). We assessed 1) bioinformatic approaches in genome-wide association studies (GWAS), RNA sequencing, genome assembly, metagenomics, phylogenetics, and molecular simulations, as well as 2) computation strategies, such as parallelization, CPU (central processing unit) versus GPU (graphics processing unit), cloud versus local computing infrastructure, and geography. In particular, we found that biobank-scale GWAS emitted substantial kgCO2e and simple software upgrades could make it greener, for example, upgrading from BOLT-LMM v1 to v2.3 reduced carbon footprint by 73%. Moreover, switching from the average data center to a more efficient one can reduce carbon footprint by approximately 34%. Memory over-allocation can also be a substantial contributor to an algorithm’s greenhouse gas emissions. The use of faster processors or greater parallelization reduces running time but can lead to greater carbon footprint. Finally, we provide guidance on how researchers can reduce power consumption and minimize kgCO2e. Overall, this work elucidates the carbon footprint of common analyses in bioinformatics and provides solutions which empower a move toward greener research. |
|---|---|
| AbstractList | Bioinformatic research relies on large-scale computational infrastructures which have a nonzero carbon footprint but so far, no study has quantified the environmental costs of bioinformatic tools and commonly run analyses. In this work, we estimate the carbon footprint of bioinformatics (in kilograms of CO2 equivalent units, kgCO2e) using the freely available Green Algorithms calculator (www.green-algorithms.org, last accessed 2022). We assessed 1) bioinformatic approaches in genome-wide association studies (GWAS), RNA sequencing, genome assembly, metagenomics, phylogenetics, and molecular simulations, as well as 2) computation strategies, such as parallelization, CPU (central processing unit) versus GPU (graphics processing unit), cloud versus local computing infrastructure, and geography. In particular, we found that biobank-scale GWAS emitted substantial kgCO2e and simple software upgrades could make it greener, for example, upgrading from BOLT-LMM v1 to v2.3 reduced carbon footprint by 73%. Moreover, switching from the average data center to a more efficient one can reduce carbon footprint by approximately 34%. Memory over-allocation can also be a substantial contributor to an algorithm’s greenhouse gas emissions. The use of faster processors or greater parallelization reduces running time but can lead to greater carbon footprint. Finally, we provide guidance on how researchers can reduce power consumption and minimize kgCO2e. Overall, this work elucidates the carbon footprint of common analyses in bioinformatics and provides solutions which empower a move toward greener research. Abstract Bioinformatic research relies on large-scale computational infrastructures which have a nonzero carbon footprint but so far, no study has quantified the environmental costs of bioinformatic tools and commonly run analyses. In this work, we estimate the carbon footprint of bioinformatics (in kilograms of CO2 equivalent units, kgCO2e) using the freely available Green Algorithms calculator (www.green-algorithms.org, last accessed 2022). We assessed 1) bioinformatic approaches in genome-wide association studies (GWAS), RNA sequencing, genome assembly, metagenomics, phylogenetics, and molecular simulations, as well as 2) computation strategies, such as parallelization, CPU (central processing unit) versus GPU (graphics processing unit), cloud versus local computing infrastructure, and geography. In particular, we found that biobank-scale GWAS emitted substantial kgCO2e and simple software upgrades could make it greener, for example, upgrading from BOLT-LMM v1 to v2.3 reduced carbon footprint by 73%. Moreover, switching from the average data center to a more efficient one can reduce carbon footprint by approximately 34%. Memory over-allocation can also be a substantial contributor to an algorithm’s greenhouse gas emissions. The use of faster processors or greater parallelization reduces running time but can lead to greater carbon footprint. Finally, we provide guidance on how researchers can reduce power consumption and minimize kgCO2e. Overall, this work elucidates the carbon footprint of common analyses in bioinformatics and provides solutions which empower a move toward greener research. Bioinformatic research relies on large-scale computational infrastructures which have a nonzero carbon footprint but so far, no study has quantified the environmental costs of bioinformatic tools and commonly run analyses. In this work, we estimate the carbon footprint of bioinformatics (in kilograms of CO2 equivalent units, kgCO2e) using the freely available Green Algorithms calculator (www.green-algorithms.org, last accessed 2022). We assessed 1) bioinformatic approaches in genome-wide association studies (GWAS), RNA sequencing, genome assembly, metagenomics, phylogenetics, and molecular simulations, as well as 2) computation strategies, such as parallelization, CPU (central processing unit) versus GPU (graphics processing unit), cloud versus local computing infrastructure, and geography. In particular, we found that biobank-scale GWAS emitted substantial kgCO2e and simple software upgrades could make it greener, for example, upgrading from BOLT-LMM v1 to v2.3 reduced carbon footprint by 73%. Moreover, switching from the average data center to a more efficient one can reduce carbon footprint by approximately 34%. Memory over-allocation can also be a substantial contributor to an algorithm's greenhouse gas emissions. The use of faster processors or greater parallelization reduces running time but can lead to greater carbon footprint. Finally, we provide guidance on how researchers can reduce power consumption and minimize kgCO2e. Overall, this work elucidates the carbon footprint of common analyses in bioinformatics and provides solutions which empower a move toward greener research.Bioinformatic research relies on large-scale computational infrastructures which have a nonzero carbon footprint but so far, no study has quantified the environmental costs of bioinformatic tools and commonly run analyses. In this work, we estimate the carbon footprint of bioinformatics (in kilograms of CO2 equivalent units, kgCO2e) using the freely available Green Algorithms calculator (www.green-algorithms.org, last accessed 2022). We assessed 1) bioinformatic approaches in genome-wide association studies (GWAS), RNA sequencing, genome assembly, metagenomics, phylogenetics, and molecular simulations, as well as 2) computation strategies, such as parallelization, CPU (central processing unit) versus GPU (graphics processing unit), cloud versus local computing infrastructure, and geography. In particular, we found that biobank-scale GWAS emitted substantial kgCO2e and simple software upgrades could make it greener, for example, upgrading from BOLT-LMM v1 to v2.3 reduced carbon footprint by 73%. Moreover, switching from the average data center to a more efficient one can reduce carbon footprint by approximately 34%. Memory over-allocation can also be a substantial contributor to an algorithm's greenhouse gas emissions. The use of faster processors or greater parallelization reduces running time but can lead to greater carbon footprint. Finally, we provide guidance on how researchers can reduce power consumption and minimize kgCO2e. Overall, this work elucidates the carbon footprint of common analyses in bioinformatics and provides solutions which empower a move toward greener research. Bioinformatic research relies on large-scale computational infrastructures which have a nonzero carbon footprint but so far, no study has quantified the environmental costs of bioinformatic tools and commonly run analyses. In this work, we estimate the carbon footprint of bioinformatics (in kilograms of C[O.sub.2] equivalent units, kgC[O.sub.2]e) using the freely available Green Algorithms calculator (www.green-algorithms.org, last accessed 2022). We assessed 1) bioinformatic approaches in genome-wide association studies (GWAS), RNA sequencing, genome assembly, metagenomics, phylogenetics, and molecular simulations, as well as 2) computation strategies, such as parallelization, CPU (central processing unit) versus GPU (graphics processing unit), cloud versus local computing infrastructure, and geography. In particular, we found that biobank-scale GWAS emitted substantial kgC[O.sub.2]e and simple software upgrades could make it greener, for example, upgrading from BOLT-LMM v1 to v2.3 reduced carbon footprint by 73%. Moreover, switching from the average data center to a more efficient one can reduce carbon footprint by approximately 34%. Memory over-allocation can also be a substantial contributor to an algorithm's greenhouse gas emissions. The use of faster processors or greater parallelization reduces running time but can lead to greater carbon footprint. Finally, we provide guidance on how researchers can reduce power consumption and minimize kgC[O.sub.2]e. Overall, this work elucidates the carbon footprint of common analyses in bioinformatics and provides solutions which empower a move toward greener research. Key words: carbon footprint, bioinformatics, genomics, green algorithms. |
| Audience | Academic |
| Author | Saw, Woei-Yuh Lannelongue, Loïc Méric, Guillaume Inouye, Michael Marten, Jonathan Ruiz-Carmona, Sergio Grealey, Jason |
| AuthorAffiliation | 3 Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge , Cambridge, United Kingdom 4 British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge , Cambridge, United Kingdom 7 British Heart Foundation Centre of Research Excellence, University of Cambridge , Cambridge, United Kingdom 5 Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge , Cambridge, United Kingdom 1 Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute , Melbourne, VIC, Australia 6 Department of Infectious Diseases, Central Clinical School, Monash University , Melbourne, VIC, Australia 2 Department of Mathematics and Statistics, La Trobe University , Melbourne, VIC, Australia 8 The Alan Turing Institute , London, United Kingdom |
| AuthorAffiliation_xml | – name: 8 The Alan Turing Institute , London, United Kingdom – name: 4 British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge , Cambridge, United Kingdom – name: 2 Department of Mathematics and Statistics, La Trobe University , Melbourne, VIC, Australia – name: 5 Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge , Cambridge, United Kingdom – name: 3 Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge , Cambridge, United Kingdom – name: 1 Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute , Melbourne, VIC, Australia – name: 7 British Heart Foundation Centre of Research Excellence, University of Cambridge , Cambridge, United Kingdom – name: 6 Department of Infectious Diseases, Central Clinical School, Monash University , Melbourne, VIC, Australia |
| Author_xml | – sequence: 1 givenname: Jason surname: Grealey fullname: Grealey, Jason email: jason.grealey@baker.edu.au organization: Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia – sequence: 2 givenname: Loïc orcidid: 0000-0002-9135-1345 surname: Lannelongue fullname: Lannelongue, Loïc organization: Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom – sequence: 3 givenname: Woei-Yuh surname: Saw fullname: Saw, Woei-Yuh organization: Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia – sequence: 4 givenname: Jonathan surname: Marten fullname: Marten, Jonathan organization: British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom – sequence: 5 givenname: Guillaume surname: Méric fullname: Méric, Guillaume organization: Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia – sequence: 6 givenname: Sergio surname: Ruiz-Carmona fullname: Ruiz-Carmona, Sergio organization: Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia – sequence: 7 givenname: Michael surname: Inouye fullname: Inouye, Michael email: minouye@baker.edu.au organization: Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35143670$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUc1LHDEUD2LRVXv1KAuF0h5W85JMPi6CXbQtCF70HDKZRCMzyTaZEfzvm2W3aoVSckh4-X28934HaDem6BA6BnwKWNGzIfWtezobirGYsh00g4aKBQhQu2iGRX0zTOU-OijlEWNgjPM9tE8bYJQLPEOfbx_cfGlym-L8KqVxlUMc58nPv4UUok95MGOw5Qh98KYv7uP2PkR3V5e3yx-L65vvP5cX1wvLFIwLS4hiSna0A89bjz1QyhWz1stWSVJbbDmxtvGOuEaIpgXvKWEgjWo66DA9ROcb3dXUDq6zLo7Z9Lp2NZj8rJMJ-u-fGB70fXrSUqpqTarAl61ATr8mV0Y9hGJd35vo0lQ04URSDKKBCv30DvqYphzreJqCwFVRNLSiTjeoe9M7vV5J9bX1dG4ItobhQ61fCMEklwrzSjh5O8JL7392_qpocyolO_8CAazXoepNqHobaiWwdwQbxhpLWq8g9P-mfd3Q0rT6n8Vvd6S2Jw |
| CitedBy_id | crossref_primary_10_1038_s41582_024_01055_6 crossref_primary_10_1093_molbev_msac043 crossref_primary_10_1162_IMAG_a_36 crossref_primary_10_3389_fgene_2025_1566291 crossref_primary_10_1089_genbio_2023_29100_sra crossref_primary_10_1371_journal_pone_0260908 crossref_primary_10_1038_s41574_025_01098_9 crossref_primary_10_1186_s13059_023_02948_3 crossref_primary_10_1111_1755_0998_13964 crossref_primary_10_1038_s41559_024_02423_7 crossref_primary_10_1111_all_15836 crossref_primary_10_1007_s11948_024_00495_z crossref_primary_10_3390_network3010005 crossref_primary_10_1093_molbev_msaf120 crossref_primary_10_1093_gigascience_giaf049 crossref_primary_10_1038_s41576_025_00828_z crossref_primary_10_1162_imag_a_00043 crossref_primary_10_1093_oxfclm_kgad003 crossref_primary_10_1186_s12920_024_01795_w crossref_primary_10_1186_s12915_024_02077_8 crossref_primary_10_1097_RCT_0000000000001681 crossref_primary_10_1177_20552076221111297 crossref_primary_10_1017_pcm_2022_1 crossref_primary_10_1038_s41576_023_00620_x crossref_primary_10_1186_s12864_022_09030_5 crossref_primary_10_1002_ctd2_252 crossref_primary_10_1007_s10113_024_02246_z crossref_primary_10_1038_s43588_023_00461_y crossref_primary_10_1007_s10668_023_03508_2 crossref_primary_10_1093_g3journal_jkaf082 crossref_primary_10_1002_hbm_70003 crossref_primary_10_1016_j_cell_2024_07_045 crossref_primary_10_3389_fsci_2025_1514835 crossref_primary_10_1029_2022EF002964 crossref_primary_10_1093_molbev_msad195 crossref_primary_10_3389_fcomp_2025_1464122 crossref_primary_10_1016_j_ympev_2023_107776 crossref_primary_10_1093_molbev_msaf094 crossref_primary_10_62301_usmtd_1712846 crossref_primary_10_1002_epd2_20288 crossref_primary_10_3390_microorganisms10101965 |
| Cites_doi | 10.1038/d41586-018-06610-y 10.3390/challe6010117 10.1038/s41588-018-0144-6 10.1002/jcc.20289 10.1186/s13059-019-1891-0 10.1186/s12859-017-1911-6 10.1371/journal.pcbi.1003571 10.1038/nature24277 10.1186/gb-2014-15-3-r42 10.1186/s13059-019-1836-7 10.1093/bioinformatics/btv184 10.1101/gr.210641.116 10.1101/gr.074492.107 10.1016/j.atmosenv.2018.10.039 10.1038/s41586-020-1969-6 10.1093/bioinformatics/btv722 10.1038/s41550-020-1169-1 10.1097/01.inf.0000226912.88900.a3 10.1038/s41586-018-0579-z 10.1093/bioinformatics/bts635 10.1002/jcc.20290 10.1093/bioinformatics/btu033 10.7717/peerj-cs.104 10.1093/sysbio/syv118 10.1093/nar/gks666 10.1186/2047-217X-2-10 10.1126/science.1253451 10.1038/s41550-020-1202-4 10.1038/s41467-019-10934-2 10.1093/sysbio/syr100 10.7554/eLife.15928 10.1016/S0022-2836(05)80360-2 10.1038/s41550-020-1208-y 10.1101/gr.131383.111 10.1093/molbev/msx302 10.1016/S0140-6736(19)32596-6 10.1038/s41587-019-0201-4 10.1101/gr.107524.110 10.1371/journal.pone.0009490 10.1186/2047-217X-1-18 10.1038/nature22040 10.1186/s40168-019-0626-5 10.1093/sysbio/syq010 10.1093/molbev/mss075 10.1101/gr.214346.116 10.1038/nbt.2862 10.1038/nmeth.4106 10.1021/jm0608356 10.1002/jcc.21334 10.1101/gr.126953.111 10.1016/j.jaci.2006.12.669 10.1002/jcc.20291 10.1186/s13059-015-0702-5 10.1038/s41586-019-1913-9 10.1186/gb-2013-14-4-r36 10.1038/nbt.1621 10.1007/978-1-4939-9074-0_23 10.1093/bioinformatics/btq683 10.1002/advs.202100707 10.1080/10635150390235520 10.1371/journal.pone.0169662 10.1101/gr.135350.111 10.1186/1471-2105-12-323 10.1056/NEJMoa2020283 10.1093/molbev/msu300 10.1186/gb-2014-15-3-r46 10.1093/nar/gks678 10.1021/jm0306430 10.1016/j.ymeth.2016.02.020 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2022 The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. COPYRIGHT 2022 Oxford University Press The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2022 – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. – notice: COPYRIGHT 2022 Oxford University Press – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QP 7QR 7SN 7SS 7TK 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
| DOI | 10.1093/molbev/msac034 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Research Library Prep CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Geography |
| EISSN | 1537-1719 |
| ExternalDocumentID | PMC8892942 A774868906 35143670 10_1093_molbev_msac034 10.1093/molbev/msac034 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Australia United States United Kingdom |
| GeographicLocations_xml | – name: United Kingdom – name: Australia – name: United States |
| GrantInformation_xml | – fundername: Department of Health grantid: BRC-1215-20014 – fundername: Chief Scientist Office – fundername: Wellcome Trust – fundername: Medical Research Council grantid: MR/S502443/1 – fundername: British Heart Foundation grantid: RG/13/13/30194 – fundername: Medical Research Council grantid: MR/L003120/1 – fundername: British Heart Foundation grantid: RG/18/13/33946 |
| GroupedDBID | --- -E4 -~X .2P .GJ .I3 .ZR 0R~ 18M 1TH 29M 2WC 4.4 48X 53G 5VS 5WA 70D 7X7 88E 8AO 8FI 8FJ 8G5 AAFWJ AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AAUQX AAVAP AAVLN ABEJV ABEUO ABGNP ABIXL ABKDP ABLJU ABNKS ABPTD ABQLI ABQTQ ABSMQ ABTAH ABUWG ABXVV ABZBJ ACGFO ACGFS ACIPB ACIWK ACNCT ACPRK ACUTO ACYTK ADBBV ADEYI ADEZT ADFTL ADGZP ADHKW ADHZD ADOCK ADRTK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEUYN AEWNT AFFNX AFIYH AFKRA AFOFC AFPKN AFRAH AGINJ AGKEF AGSYK AHMBA AHXPO AIAGR AIJHB AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASAOO ATDFG AXUDD AYOIW AZQEC AZVOD BAWUL BAYMD BBNVY BENPR BEYMZ BHONS BHPHI BQDIO BQUQU BSWAC BTQHN BTRTY BVRKM C1A CAG CCPQU CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 DWQXO D~K E3Z EBS EE~ EJD EMOBN F5P F9B FHSFR FLIZI FOTVD FYUFA GAUVT GJXCC GNUQQ GROUPED_DOAJ GUQSH GX1 H13 H5~ HAR HCIFZ HH5 HMCUK HW0 HZ~ IAO IGS IHR IOX ITC J21 KOP KQ8 KSI M-Z M1P M2O M49 M7P MBTAY ML0 MVM N9A NGC NLBLG NMDNZ NOYVH NTWIH NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD O~Y P2P PAFKI PEELM PQQKQ PSQYO Q1. Q5Y RD5 RNI ROL ROZ RPM RUSNO RW1 RXO RZO TEORI TJP TJX TLC TN5 TOX TR2 UKHRP W8F WOQ X7H XJT XSW YAYTL YHZ YKOAZ YXANX ZCA ZCG ZKX ZXP ZY4 ~02 ~91 AAYXX ABUFD AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 3V. 7QG 7QP 7QR 7SN 7SS 7TK 7TM 7TO 7U9 7XB 88A 8FD 8FE 8FH 8FK C1K FR3 H94 K9. LK8 M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c491t-c229498d3d1f6bf0f133694ccf8b982c03b62cc5fe2e5775b1ff32418a95d1d03 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 59 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000764264700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0737-4038 1537-1719 |
| IngestDate | Tue Nov 04 01:52:43 EST 2025 Fri Sep 05 07:57:43 EDT 2025 Mon Oct 06 17:26:42 EDT 2025 Tue Nov 04 18:33:15 EST 2025 Mon Jul 21 05:45:48 EDT 2025 Tue Nov 18 21:16:42 EST 2025 Sat Nov 29 05:53:09 EST 2025 Wed Apr 02 07:00:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | genomics green algorithms carbon footprint bioinformatics |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c491t-c229498d3d1f6bf0f133694ccf8b982c03b62cc5fe2e5775b1ff32418a95d1d03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Present address: Genomics PLC, King Charles House, Park End Street, Oxford, United Kingdom Jason Grealey, Loïc Lannelongue contributed equally to this work as first authors. |
| ORCID | 0000-0002-9135-1345 |
| OpenAccessLink | https://dx.doi.org/10.1093/molbev/msac034 |
| PMID | 35143670 |
| PQID | 3170889753 |
| PQPubID | 36253 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8892942 proquest_miscellaneous_2628301751 proquest_journals_3170889753 gale_infotracacademiconefile_A774868906 pubmed_primary_35143670 crossref_primary_10_1093_molbev_msac034 crossref_citationtrail_10_1093_molbev_msac034 oup_primary_10_1093_molbev_msac034 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-02 |
| PublicationDateYYYYMMDD | 2022-03-02 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Molecular biology and evolution |
| PublicationTitleAlternate | Mol Biol Evol |
| PublicationYear | 2022 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Stamatakis (2022030406034425600_msac034-B86) 2014; 30 Andy (2022030406034425600_msac034-B5) 2019 Jahnke (2022030406034425600_msac034-B42) 2020; 4 Carbonfootprint.Com – International Electricity Factors (2022030406034425600_msac034-B18) 2020 Friesner (2022030406034425600_msac034-B27) 2004; 47 ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium (2022030406034425600_msac034-B40) 2020; 578 AWS & Sustainability (2022030406034425600_msac034-B6) . Desrochers (2022030406034425600_msac034-B20) 2016 McKenna (2022030406034425600_msac034-B62) 2010; 20 Zhou (2022030406034425600_msac034-B98) 2018; 35 Kusel (2022030406034425600_msac034-B52) 2006; 25 NovoAlign | Novocraft (2022030406034425600_msac034-B69) . Patro (2022030406034425600_msac034-B73) 2014; 32 Karyakin (2022030406034425600_msac034-B47) 2017 Vollmers (2022030406034425600_msac034-B93) 2017; 12 Griebel (2022030406034425600_msac034-B33) 2012; 40 Namiki (2022030406034425600_msac034-B65) 2012; 40 Babraham Bioinformatics – Trim Galore! (2022030406034425600_msac034-B8) . Jones (2022030406034425600_msac034-B44) 2018; 561 Jarvis (2022030406034425600_msac034-B43) 2014; 346 Zerbino (2022030406034425600_msac034-B97) 2008; 18 Loh (2022030406034425600_msac034-B59) 2018; 50 Drummond (2022030406034425600_msac034-B23) 2012; 29 Greenhouse Gas Reporting: Conversion Factors 2019 (2022030406034425600_msac034-B32) 2019 Ongen (2022030406034425600_msac034-B72) 2016; 32 Kanitz (2022030406034425600_msac034-B46) 2015; 16 Andrae (2022030406034425600_msac034-B4) 2015; 6 Microsoft (2022030406034425600_msac034-B63) 2015 Watts (2022030406034425600_msac034-B94) 2019; 394 Li (2022030406034425600_msac034-B55) 2011; 12 Nguyen (2022030406034425600_msac034-B68) 2015; 32 NAMD Performance (2022030406034425600_msac034-B64) . Lu (2022030406034425600_msac034-B60) 2017; 3 Trapnell (2022030406034425600_msac034-B91) 2010; 28 Bender (2022030406034425600_msac034-B12) 2021 GTEx Consortium. Genetic Effects on Gene Expression across Human Tissues (2022030406034425600_msac034-B28) 2017; 550 Sutton (2022030406034425600_msac034-B89) 2019; 7 Boetzer (2022030406034425600_msac034-B13) 2011; 27 Case (2022030406034425600_msac034-B19) 2005; 26 BBMap Guide (2022030406034425600_msac034-B11) . Ruiz-Carmona (2022030406034425600_msac034-B80) 2014; 10 National Institutes of Health (NIH) (2022030406034425600_msac034-B67) . Strubell (2022030406034425600_msac034-B88) 2019 Baruzzo (2022030406034425600_msac034-B10) 2017; 14 Google Cloud Environment | Go Green (2022030406034425600_msac034-B31) . Phillips (2022030406034425600_msac034-B75) 2005; 26 Bradnam (2022030406034425600_msac034-B15) 2013; 2 Broadinstitute/Tensorqtl. 2018 (2022030406034425600_msac034-B16) 2020 Goldman (2022030406034425600_msac034-B30) 1994; 11 Hunt (2022030406034425600_msac034-B39) 2014; 15 Kachuri (2022030406034425600_msac034-B45) 2020 Trott (2022030406034425600_msac034-B92) 2010; 31 Global Infrastructure | Microsoft Azure (2022030406034425600_msac034-B29) . Accelerating Detection of Disease – UK Research and Innovation (2022030406034425600_msac034-B1) . Altschul (2022030406034425600_msac034-B3) 1990; 215 Salzberg (2022030406034425600_msac034-B81) 2012; 22 Ayres (2022030406034425600_msac034-B7) 2012; 61 Portegies Zwart (2022030406034425600_msac034-B77) 2020; 4 Li (2022030406034425600_msac034-B56) 2016; 102 Kozlov (2022030406034425600_msac034-B51) 2015; 31 Luo (2022030406034425600_msac034-B61) 2012; 1 Helmers (2022030406034425600_msac034-B37) 2019; 198 Guindon (2022030406034425600_msac034-B35) 2003; 52 Harrow (2022030406034425600_msac034-B36) 2012; 22 Jackman (2022030406034425600_msac034-B41) 2017; 27 Lannelongue (2022030406034425600_msac034-B54) 2021; 8 Spoel (2022030406034425600_msac034-B85) 2005; 26 Guindon (2022030406034425600_msac034-B34) 2010; 59 Lippert (2022030406034425600_msac034-B57) 2014 Bycroft (2022030406034425600_msac034-B17) 2018; 562 Kim (2022030406034425600_msac034-B48) 2019; 37 Wood (2022030406034425600_msac034-B95) 2019; 20 Kusel (2022030406034425600_msac034-B53) 2007; 119 Wood (2022030406034425600_msac034-B96) 2014; 15 PCAWG Structural Variation Working Group, PCAWG Consortium (2022030406034425600_msac034-B74) 2020; 578 Nathans (2022030406034425600_msac034-B66) 2016; 5 Dudas (2022030406034425600_msac034-B24) 2017; 544 Simpson (2022030406034425600_msac034-B84) 2012; 22 Price (2022030406034425600_msac034-B78) 2010; 5 Taylor-Weiner (2022030406034425600_msac034-B90) 2019; 20 Ogilvie (2022030406034425600_msac034-B71) 2016; 65 Lischer (2022030406034425600_msac034-B58) 2017; 18 Shehabi (2022030406034425600_msac034-B83) 2016 Severe Covid-19 GWAS Group (2022030406034425600_msac034-B82) 2020; 383 Huang (2022030406034425600_msac034-B38) 2006; 49 Air Pollution (2022030406034425600_msac034-B2) 2016 Stevens (2022030406034425600_msac034-B87) 2020; 4 Nurk (2022030406034425600_msac034-B70) 2017 Pmemd.Cuda GPU Implementation (2022030406034425600_msac034-B76) . Baele (2022030406034425600_msac034-B9) 2019 Emissions – Global Energy & CO2 Status Report 2019 – Analysis (2022030406034425600_msac034-B26) Kim (2022030406034425600_msac034-B49) 2013; 14 Dilthey (2022030406034425600_msac034-B21) 2019; 10 Dobin (2022030406034425600_msac034-B22) 2013; 29 Efficiency – Data Centers – Google (2022030406034425600_msac034-B25) . Primary Energy Consumption by World Region (2022030406034425600_msac034-B79) 2021 Kim (2022030406034425600_msac034-B50) 2016; 26 BOLT-LMM v2.3.4 User Manual (2022030406034425600_msac034-B14) 2019 |
| References_xml | – volume: 561 start-page: 163 issue: 7722 year: 2018 ident: 2022030406034425600_msac034-B44 article-title: How to stop data centres from gobbling up the world’s electricity publication-title: Nature doi: 10.1038/d41586-018-06610-y – volume: 6 start-page: 117 issue: 1 year: 2015 ident: 2022030406034425600_msac034-B4 article-title: On global electricity usage of communication technology: trends to 2030 publication-title: Challenges doi: 10.3390/challe6010117 – year: 2014 ident: 2022030406034425600_msac034-B57 – year: . ident: 2022030406034425600_msac034-B69 – volume: 50 start-page: 906 issue: 7 year: 2018 ident: 2022030406034425600_msac034-B59 article-title: Mixed-model association for Biobank-scale datasets publication-title: Nat Genet doi: 10.1038/s41588-018-0144-6 – volume: 26 start-page: 1781 issue: 16 year: 2005 ident: 2022030406034425600_msac034-B75 article-title: Scalable molecular dynamics with NAMD publication-title: J Comput Chem doi: 10.1002/jcc.20289 – start-page: 1 year: 2020 ident: 2022030406034425600_msac034-B45 – volume: 20 start-page: 257 issue: 1 year: 2019 ident: 2022030406034425600_msac034-B95 article-title: Improved metagenomic analysis with Kraken 2 publication-title: Genome Biol doi: 10.1186/s13059-019-1891-0 – volume: 18 start-page: 474 issue: 1 year: 2017 ident: 2022030406034425600_msac034-B58 article-title: Reference-guided de novo assembly approach improves genome reconstruction for related species publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1911-6 – volume: 10 start-page: e1003571 issue: 4 year: 2014 ident: 2022030406034425600_msac034-B80 article-title: RDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003571 – volume: 550 start-page: 204 issue: 7675 year: 2017 ident: 2022030406034425600_msac034-B28 publication-title: Nature doi: 10.1038/nature24277 – volume: 15 start-page: R42 issue: 3 year: 2014 ident: 2022030406034425600_msac034-B39 article-title: A comprehensive evaluation of assembly scaffolding tools publication-title: Genome Biol doi: 10.1186/gb-2014-15-3-r42 – volume: 20 start-page: 228 issue: 1 year: 2019 ident: 2022030406034425600_msac034-B90 article-title: Scaling computational genomics to millions of individuals with GPUs publication-title: Genome Biol doi: 10.1186/s13059-019-1836-7 – volume: 31 start-page: 2577 issue: 15 year: 2015 ident: 2022030406034425600_msac034-B51 article-title: ExaML version 3: a tool for phylogenomic analyses on supercomputers publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv184 – volume: 26 start-page: 1721 issue: 12 year: 2016 ident: 2022030406034425600_msac034-B50 article-title: Centrifuge: rapid and sensitive classification of metagenomic sequences publication-title: Genome Res doi: 10.1101/gr.210641.116 – year: . ident: 2022030406034425600_msac034-B6 – volume: 18 start-page: 821 issue: 5 year: 2008 ident: 2022030406034425600_msac034-B97 article-title: Velvet: algorithms for de novo short read assembly using de Bruijn graphs publication-title: Genome Res doi: 10.1101/gr.074492.107 – start-page: 824 year: 2017 ident: 2022030406034425600_msac034-B70 – volume: 198 start-page: 122 year: 2019 ident: 2022030406034425600_msac034-B37 article-title: CO2-equivalent emissions from European passenger vehicles in the years 1995–2015 based on real-world use: assessing the climate benefit of the European ‘Diesel Boom’ publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2018.10.039 – volume: 578 start-page: 82 issue: 7793 year: 2020 ident: 2022030406034425600_msac034-B40 article-title: Pan-cancer analysis of whole genomes publication-title: Nature doi: 10.1038/s41586-020-1969-6 – volume: 32 start-page: 1479 issue: 10 year: 2016 ident: 2022030406034425600_msac034-B72 article-title: Fast and efficient QTL mapper for thousands of molecular phenotypes publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv722 – volume: 4 start-page: 843 issue: 9 year: 2020 ident: 2022030406034425600_msac034-B87 article-title: The imperative to reduce carbon emissions in astronomy publication-title: Nat Astron doi: 10.1038/s41550-020-1169-1 – volume: 25 start-page: 680 issue: 8 year: 2006 ident: 2022030406034425600_msac034-B52 article-title: Role of respiratory viruses in acute upper and lower respiratory tract illness in the first year of life: a birth cohort study publication-title: Pediatr Infect Dis J doi: 10.1097/01.inf.0000226912.88900.a3 – volume: 562 start-page: 203 issue: 7726 year: 2018 ident: 2022030406034425600_msac034-B17 article-title: The UK Biobank resource with deep phenotyping and genomic data publication-title: Nature doi: 10.1038/s41586-018-0579-z – volume: 29 start-page: 15 issue: 1 year: 2013 ident: 2022030406034425600_msac034-B22 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 26 start-page: 1668 issue: 16 year: 2005 ident: 2022030406034425600_msac034-B19 article-title: The AMBER biomolecular simulation programs publication-title: J Comput Chem doi: 10.1002/jcc.20290 – volume: 30 start-page: 1312 issue: 9 year: 2014 ident: 2022030406034425600_msac034-B86 article-title: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu033 – volume: 3 start-page: e104 year: 2017 ident: 2022030406034425600_msac034-B60 article-title: Bracken: estimating species abundance in metagenomics data publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.104 – year: . ident: 2022030406034425600_msac034-B67 – volume: 65 start-page: 381 issue: 3 year: 2016 ident: 2022030406034425600_msac034-B71 article-title: Computational performance and statistical accuracy of BEAST and comparisons with other methods publication-title: Syst Biol doi: 10.1093/sysbio/syv118 – volume: 40 start-page: 10073 issue: 20 year: 2012 ident: 2022030406034425600_msac034-B33 article-title: Modelling and simulating generic RNA-seq experiments with the flux simulator publication-title: Nucleic Acids Res doi: 10.1093/nar/gks666 – volume: 2 start-page: 10 issue: 1 year: 2013 ident: 2022030406034425600_msac034-B15 article-title: Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species publication-title: Gigascience doi: 10.1186/2047-217X-2-10 – start-page: 455 year: 2016 ident: 2022030406034425600_msac034-B20 – volume: 346 start-page: 1320 issue: 6215 year: 2014 ident: 2022030406034425600_msac034-B43 article-title: Whole-genome analyses resolve early branches in the tree of life of modern birds publication-title: Science doi: 10.1126/science.1253451 – year: . ident: 2022030406034425600_msac034-B11 – volume: 4 start-page: 812 issue: 9 year: 2020 ident: 2022030406034425600_msac034-B42 article-title: An astronomical institute’s perspective on meeting the challenges of the climate crisis publication-title: Nat Astron doi: 10.1038/s41550-020-1202-4 – volume: 10 start-page: 3066 issue: 1 year: 2019 ident: 2022030406034425600_msac034-B21 article-title: Strain-level metagenomic assignment and compositional estimation for long reads with MetaMaps publication-title: Nat Commun doi: 10.1038/s41467-019-10934-2 – volume: 61 start-page: 170 issue: 1 year: 2012 ident: 2022030406034425600_msac034-B7 article-title: BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics publication-title: Syst Biol doi: 10.1093/sysbio/syr100 – volume: 5 start-page: e15928 year: 2016 ident: 2022030406034425600_msac034-B66 article-title: How scientists can reduce their carbon footprint publication-title: ELife doi: 10.7554/eLife.15928 – year: 2016 ident: 2022030406034425600_msac034-B2 – volume: 215 start-page: 403 issue: 3 year: 1990 ident: 2022030406034425600_msac034-B3 article-title: Basic local alignment search tool publication-title: J Mol Biol doi: 10.1016/S0022-2836(05)80360-2 – volume: 4 start-page: 819 issue: 9 year: 2020 ident: 2022030406034425600_msac034-B77 article-title: The ecological impact of high-performance computing in astrophysics publication-title: Nat Astron doi: 10.1038/s41550-020-1208-y – volume: 22 start-page: 557 issue: 3 year: 2012 ident: 2022030406034425600_msac034-B81 article-title: GAGE: a critical evaluation of genome assemblies and assembly algorithms publication-title: Genome Res doi: 10.1101/gr.131383.111 – volume: 35 start-page: 486 issue: 2 year: 2018 ident: 2022030406034425600_msac034-B98 article-title: Evaluating fast maximum likelihood-based phylogenetic programs using empirical phylogenomic data sets publication-title: Mol Biol Evol doi: 10.1093/molbev/msx302 – volume: 394 start-page: 1836 issue: 10211 year: 2019 ident: 2022030406034425600_msac034-B94 article-title: The 2019 report of the lancet countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate publication-title: Lancet doi: 10.1016/S0140-6736(19)32596-6 – volume: 37 start-page: 907 issue: 8 year: 2019 ident: 2022030406034425600_msac034-B48 article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0201-4 – year: 2020 ident: 2022030406034425600_msac034-B18 – year: . ident: 2022030406034425600_msac034-B76 – volume: 20 start-page: 1297 issue: 9 year: 2010 ident: 2022030406034425600_msac034-B62 article-title: The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data publication-title: Genome Res doi: 10.1101/gr.107524.110 – volume: 5 start-page: e9490 issue: 3 year: 2010 ident: 2022030406034425600_msac034-B78 article-title: FastTree 2 – approximately maximum-likelihood trees for large alignments publication-title: PLoS One doi: 10.1371/journal.pone.0009490 – volume: 1 start-page: 18 issue: 1 year: 2012 ident: 2022030406034425600_msac034-B61 article-title: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler publication-title: GigaScience doi: 10.1186/2047-217X-1-18 – volume: 544 start-page: 309 issue: 7650 year: 2017 ident: 2022030406034425600_msac034-B24 article-title: Virus genomes reveal factors that spread and sustained the Ebola epidemic publication-title: Nature doi: 10.1038/nature22040 – year: . ident: 2022030406034425600_msac034-B25 – volume: 7 issue: 1 year: 2019 ident: 2022030406034425600_msac034-B89 article-title: Choice of assembly software has a critical impact on virome characterisation publication-title: Microbiome doi: 10.1186/s40168-019-0626-5 – year: 2019 ident: 2022030406034425600_msac034-B5 – volume: 59 start-page: 307 issue: 3 year: 2010 ident: 2022030406034425600_msac034-B34 article-title: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0 publication-title: Syst Biol doi: 10.1093/sysbio/syq010 – start-page: 1 volume-title: Proceedings of the 13th International Workshop on Data Management on New Hardware – DAMON ’17 year: 2017 ident: 2022030406034425600_msac034-B47 – start-page: 610 year: 2021 ident: 2022030406034425600_msac034-B12 – volume: 29 start-page: 1969 issue: 8 year: 2012 ident: 2022030406034425600_msac034-B23 article-title: Bayesian phylogenetics with BEAUti and the BEAST 1.7 publication-title: Mol Biol Evol doi: 10.1093/molbev/mss075 – ident: 2022030406034425600_msac034-B26 – volume: 27 start-page: 768 issue: 5 year: 2017 ident: 2022030406034425600_msac034-B41 article-title: ABySS 2.0: resource-efficient assembly of large genomes using a bloom filter publication-title: Genome Res doi: 10.1101/gr.214346.116 – volume: 32 start-page: 462 issue: 5 year: 2014 ident: 2022030406034425600_msac034-B73 article-title: Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms publication-title: Nat Biotechnol doi: 10.1038/nbt.2862 – volume: 14 start-page: 135 issue: 2 year: 2017 ident: 2022030406034425600_msac034-B10 article-title: Simulation-based comprehensive benchmarking of RNA-seq aligners publication-title: Nat Methods doi: 10.1038/nmeth.4106 – volume: 49 start-page: 6789 issue: 23 year: 2006 ident: 2022030406034425600_msac034-B38 article-title: Benchmarking sets for molecular docking publication-title: J Med Chem doi: 10.1021/jm0608356 – volume-title: Python year: 2020 ident: 2022030406034425600_msac034-B16 – volume: 31 start-page: 455 issue: 2 year: 2010 ident: 2022030406034425600_msac034-B92 article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading publication-title: J Comput Chem doi: 10.1002/jcc.21334 – volume: 22 start-page: 549 issue: 3 year: 2012 ident: 2022030406034425600_msac034-B84 article-title: Efficient de novo assembly of large genomes using compressed data structures publication-title: Genome Res doi: 10.1101/gr.126953.111 – year: . ident: 2022030406034425600_msac034-B8 – volume: 119 start-page: 1105 issue: 5 year: 2007 ident: 2022030406034425600_msac034-B53 article-title: Early-life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2006.12.669 – volume: 26 start-page: 1701 issue: 16 year: 2005 ident: 2022030406034425600_msac034-B85 article-title: GROMACS: fast, flexible, and free publication-title: J Comput Chem doi: 10.1002/jcc.20291 – volume: 16 start-page: 150 issue: 1 year: 2015 ident: 2022030406034425600_msac034-B46 article-title: Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data publication-title: Genome Biol doi: 10.1186/s13059-015-0702-5 – volume: 578 start-page: 112 issue: 7793 year: 2020 ident: 2022030406034425600_msac034-B74 article-title: Patterns of somatic structural variation in human cancer genomes publication-title: Nature doi: 10.1038/s41586-019-1913-9 – volume: 14 start-page: R36 issue: 4 year: 2013 ident: 2022030406034425600_msac034-B49 article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions publication-title: Genome Biol doi: 10.1186/gb-2013-14-4-r36 – year: 2019 ident: 2022030406034425600_msac034-B14 – year: 2016 ident: 2022030406034425600_msac034-B83 – volume: 28 start-page: 511 issue: 5 year: 2010 ident: 2022030406034425600_msac034-B91 article-title: Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation publication-title: Nat Biotechnol doi: 10.1038/nbt.1621 – year: . ident: 2022030406034425600_msac034-B1 – start-page: 691 volume-title: Evolutionary genomics: statistical and computational methods year: 2019 ident: 2022030406034425600_msac034-B9 doi: 10.1007/978-1-4939-9074-0_23 – volume: 27 start-page: 578 issue: 4 year: 2011 ident: 2022030406034425600_msac034-B13 article-title: Scaffolding pre-assembled contigs using SSPACE publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq683 – year: 2021 ident: 2022030406034425600_msac034-B79 – volume: 11 start-page: 725 issue: 5 year: 1994 ident: 2022030406034425600_msac034-B30 article-title: A codon-based model of nucleotide substitution for protein-coding DNA sequences publication-title: Mol Biol Evol – volume: 8 start-page: 2100707 issue: 12 year: 2021 ident: 2022030406034425600_msac034-B54 article-title: Green algorithms: quantifying the carbon footprint of computation publication-title: Adv Sci (Weinh) doi: 10.1002/advs.202100707 – volume: 52 start-page: 696 issue: 5 year: 2003 ident: 2022030406034425600_msac034-B35 article-title: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood publication-title: Syst Biol doi: 10.1080/10635150390235520 – volume: 12 start-page: e0169662 issue: 1 year: 2017 ident: 2022030406034425600_msac034-B93 article-title: Comparing and evaluating metagenome assembly tools from a microbiologist’s perspective – not only size matters! publication-title: PLoS One doi: 10.1371/journal.pone.0169662 – year: . ident: 2022030406034425600_msac034-B31 – volume: 22 start-page: 1760 issue: 9 year: 2012 ident: 2022030406034425600_msac034-B36 article-title: GENCODE: the reference human genome annotation for the ENCODE project publication-title: Genome Res doi: 10.1101/gr.135350.111 – volume: 12 start-page: 323 year: 2011 ident: 2022030406034425600_msac034-B55 article-title: RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-323 – year: 2019 ident: 2022030406034425600_msac034-B88 – volume: 383 start-page: 1522 issue: 16 year: 2020 ident: 2022030406034425600_msac034-B82 article-title: Genomewide association study of severe COVID-19 with respiratory failure publication-title: New Engl J Med doi: 10.1056/NEJMoa2020283 – volume: 32 start-page: 268 issue: 1 year: 2015 ident: 2022030406034425600_msac034-B68 article-title: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies publication-title: Mol Biol Evol doi: 10.1093/molbev/msu300 – volume: 15 start-page: R46 issue: 3 year: 2014 ident: 2022030406034425600_msac034-B96 article-title: Kraken: ultrafast metagenomic sequence classification using exact alignments publication-title: Genome Biol doi: 10.1186/gb-2014-15-3-r46 – volume: 40 start-page: e155 issue: 20 year: 2012 ident: 2022030406034425600_msac034-B65 article-title: MetaVelvet: an extension of velvet assembler to de novo metagenome assembly from short sequence reads publication-title: Nucleic Acids Res doi: 10.1093/nar/gks678 – volume-title: Microsoft’s cloud infrastructure, datacenters and network fact sheet year: 2015 ident: 2022030406034425600_msac034-B63 – year: . ident: 2022030406034425600_msac034-B64 – volume: 47 start-page: 1739 issue: 7 year: 2004 ident: 2022030406034425600_msac034-B27 article-title: Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy publication-title: J Med Chem doi: 10.1021/jm0306430 – year: 2019 ident: 2022030406034425600_msac034-B32 – year: . ident: 2022030406034425600_msac034-B29 – volume: 102 start-page: 3 year: 2016 ident: 2022030406034425600_msac034-B56 article-title: MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices publication-title: Methods doi: 10.1016/j.ymeth.2016.02.020 |
| SSID | ssj0014466 |
| Score | 2.5979776 |
| Snippet | Abstract
Bioinformatic research relies on large-scale computational infrastructures which have a nonzero carbon footprint but so far, no study has quantified... Bioinformatic research relies on large-scale computational infrastructures which have a nonzero carbon footprint but so far, no study has quantified the... |
| SourceID | pubmedcentral proquest gale pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| SubjectTerms | Air pollution Algorithms Australia Bioinformatics Carbon Carbon dioxide Carbon Footprint Central processing units Computational Biology Computer software industry CPUs Discoveries Ecological footprint Emissions Energy conservation Footprint analysis Gene sequencing Genome-wide association studies Genome-Wide Association Study Genomes Genomics Geography Graphics processing units Greenhouse gases Metagenomics Microprocessors Parallel processing Phylogeny Power consumption RNA RNA sequencing Software United Kingdom United States Upgrading |
| Title | The Carbon Footprint of Bioinformatics |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35143670 https://www.proquest.com/docview/3170889753 https://www.proquest.com/docview/2628301751 https://pubmed.ncbi.nlm.nih.gov/PMC8892942 |
| Volume | 39 |
| WOSCitedRecordID | wos000764264700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1537-1719 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014466 issn: 0737-4038 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1537-1719 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014466 issn: 0737-4038 databaseCode: TOX dateStart: 20020101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1537-1719 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014466 issn: 0737-4038 databaseCode: TOX dateStart: 19831201 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1537-1719 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014466 issn: 0737-4038 databaseCode: M7P dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1537-1719 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014466 issn: 0737-4038 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1537-1719 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014466 issn: 0737-4038 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1537-1719 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014466 issn: 0737-4038 databaseCode: M2O dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71AYJLC6VAoKwCQnCKNrGzsX2qStUVB9iuUJH2FsWOrVZqk7JJK_XfM5N4QxcJOHDxxZZf4xmPZ8bfALzXroyt1SKaSJNFKYq_qLAcGc8KniRKp4XuQFy_iNlMLhZq7g1ujQ-rXMnETlCXtSEb-RjvOYrIQe368PpHRFmjyLvqU2hswjahJLAudG8-eBFWvkrBBb6TuBxAG_n4qr7U9nZ81RQm5unapeRF89p_t3tq5-_Rk_euo-nu_y7kCex4RTQ86k_OU9iw1R487FNT3u3BI58d_fzuGXzAsxQeF0tdV-G0rluyBbZh7UJs7YFXCex5H75PT86OP0c-v0JkUpW0kWFMpUqWvExcpl3s8L2aqdQYJ7WSDDdGZ8xQOBqzEyEmOnEO9a9EFmpSJmXMn8NWVVf2JYSxVgXX-NoUCq-7jGuVaseYLbVBhaRgAUSrDc6NBx-nHBiXee8E53lPkNwTJICPQ_vrHnbjzy2JXjktF3s0hf9WgPMiZKv8CPVbmUkVZwG8Q5L-s7uDFdVyz81N_otkAbwdqpEPyblSVLa-aXKWEZQaKmNJAC_6AzIMRb8lCCgvALF2dIYGhPG9XlNdnHdY3zgsEom9-vu0XsNjRt8yKDaOHcBWu7yxb-CBuW0vmuUINsVCdKUcwfank9n826izPWD5lZ2OOqbB8ux08RNC4B1f |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAioXHqXQ0AIBAT1Fm9jZOD5UqCqsWnVZOBSpNxM7jlqpTdpNWrR_it_IzMYJXSTg1APnWLYTf55HZuYbgDe6yENrtQiGqUmCGMVfkFmOF88KHkVSx5mek7iOxWSSHh3JL0vwo6uFobTKTibOBXVeGfpHPkA9Rxk5aF2_P78IqGsURVe7FhotLA7s7Du6bPX2_gc837eMjT4e7u4FrqtAYGIZNYFhTMYyzXkeFYkuwgK9tETGxhSplikzIdcJM5SExexQiKGOigKtjijN5DCP8pDjvLfgdkyeEKUKss991KKLjQou0C_jaU8SyQdn1am2V4OzOsMF4gUl6FTBQn3dNTP392zNa-pv9OB_-3AP4b4ztP2d9mY8giVbrsLdtvXmbBVWXPf349ljeId3xd_Nproq_VFVNfSvs_GrwsfRjliWyKzX4OuNbPgJLJdVadfBD7XMuEZvWkhU5wnXMtYFYzbXBg2ujHkQdAeqjCNXpx4fp6oN8nPVAkA5AHiw1Y8_b2lF_jyS8KHodXFGk7myCdwXMXepHbTf0ySVYeLBa4TQP6fb7FCinLSq1S-IePCqf4xyhoJHWWmry1qxhKji0NiMPHjaArJfiqpBiAjQA7EA1X4AcZgvPilPjudc5rgsHhJ79vdtvYSVvcNPYzXenxxswD1GJSiUB8g2YbmZXtrncMdcNSf19MX8Qvrw7aaB_BOqJHOj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Carbon+Footprint+of+Bioinformatics&rft.jtitle=Molecular+biology+and+evolution&rft.au=Grealey%2C+Jason&rft.au=Lannelongue%2C+Loic&rft.au=Saw%2C+Woei-Yuh&rft.au=Marten%2C+Jonathan&rft.date=2022-03-02&rft.pub=Oxford+University+Press&rft.issn=0737-4038&rft.volume=39&rft.issue=3&rft_id=info:doi/10.1093%2Fmolbev%2Fmsac034&rft.externalDocID=A774868906 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0737-4038&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0737-4038&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0737-4038&client=summon |