The Carbon Footprint of Bioinformatics

Abstract Bioinformatic research relies on large-scale computational infrastructures which have a nonzero carbon footprint but so far, no study has quantified the environmental costs of bioinformatic tools and commonly run analyses. In this work, we estimate the carbon footprint of bioinformatics (in...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology and evolution Vol. 39; no. 3
Main Authors: Grealey, Jason, Lannelongue, Loïc, Saw, Woei-Yuh, Marten, Jonathan, Méric, Guillaume, Ruiz-Carmona, Sergio, Inouye, Michael
Format: Journal Article
Language:English
Published: United States Oxford University Press 02.03.2022
Subjects:
ISSN:0737-4038, 1537-1719, 1537-1719
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Abstract Bioinformatic research relies on large-scale computational infrastructures which have a nonzero carbon footprint but so far, no study has quantified the environmental costs of bioinformatic tools and commonly run analyses. In this work, we estimate the carbon footprint of bioinformatics (in kilograms of CO2 equivalent units, kgCO2e) using the freely available Green Algorithms calculator (www.green-algorithms.org, last accessed 2022). We assessed 1) bioinformatic approaches in genome-wide association studies (GWAS), RNA sequencing, genome assembly, metagenomics, phylogenetics, and molecular simulations, as well as 2) computation strategies, such as parallelization, CPU (central processing unit) versus GPU (graphics processing unit), cloud versus local computing infrastructure, and geography. In particular, we found that biobank-scale GWAS emitted substantial kgCO2e and simple software upgrades could make it greener, for example, upgrading from BOLT-LMM v1 to v2.3 reduced carbon footprint by 73%. Moreover, switching from the average data center to a more efficient one can reduce carbon footprint by approximately 34%. Memory over-allocation can also be a substantial contributor to an algorithm’s greenhouse gas emissions. The use of faster processors or greater parallelization reduces running time but can lead to greater carbon footprint. Finally, we provide guidance on how researchers can reduce power consumption and minimize kgCO2e. Overall, this work elucidates the carbon footprint of common analyses in bioinformatics and provides solutions which empower a move toward greener research.
AbstractList Bioinformatic research relies on large-scale computational infrastructures which have a nonzero carbon footprint but so far, no study has quantified the environmental costs of bioinformatic tools and commonly run analyses. In this work, we estimate the carbon footprint of bioinformatics (in kilograms of CO2 equivalent units, kgCO2e) using the freely available Green Algorithms calculator (www.green-algorithms.org, last accessed 2022). We assessed 1) bioinformatic approaches in genome-wide association studies (GWAS), RNA sequencing, genome assembly, metagenomics, phylogenetics, and molecular simulations, as well as 2) computation strategies, such as parallelization, CPU (central processing unit) versus GPU (graphics processing unit), cloud versus local computing infrastructure, and geography. In particular, we found that biobank-scale GWAS emitted substantial kgCO2e and simple software upgrades could make it greener, for example, upgrading from BOLT-LMM v1 to v2.3 reduced carbon footprint by 73%. Moreover, switching from the average data center to a more efficient one can reduce carbon footprint by approximately 34%. Memory over-allocation can also be a substantial contributor to an algorithm’s greenhouse gas emissions. The use of faster processors or greater parallelization reduces running time but can lead to greater carbon footprint. Finally, we provide guidance on how researchers can reduce power consumption and minimize kgCO2e. Overall, this work elucidates the carbon footprint of common analyses in bioinformatics and provides solutions which empower a move toward greener research.
Abstract Bioinformatic research relies on large-scale computational infrastructures which have a nonzero carbon footprint but so far, no study has quantified the environmental costs of bioinformatic tools and commonly run analyses. In this work, we estimate the carbon footprint of bioinformatics (in kilograms of CO2 equivalent units, kgCO2e) using the freely available Green Algorithms calculator (www.green-algorithms.org, last accessed 2022). We assessed 1) bioinformatic approaches in genome-wide association studies (GWAS), RNA sequencing, genome assembly, metagenomics, phylogenetics, and molecular simulations, as well as 2) computation strategies, such as parallelization, CPU (central processing unit) versus GPU (graphics processing unit), cloud versus local computing infrastructure, and geography. In particular, we found that biobank-scale GWAS emitted substantial kgCO2e and simple software upgrades could make it greener, for example, upgrading from BOLT-LMM v1 to v2.3 reduced carbon footprint by 73%. Moreover, switching from the average data center to a more efficient one can reduce carbon footprint by approximately 34%. Memory over-allocation can also be a substantial contributor to an algorithm’s greenhouse gas emissions. The use of faster processors or greater parallelization reduces running time but can lead to greater carbon footprint. Finally, we provide guidance on how researchers can reduce power consumption and minimize kgCO2e. Overall, this work elucidates the carbon footprint of common analyses in bioinformatics and provides solutions which empower a move toward greener research.
Bioinformatic research relies on large-scale computational infrastructures which have a nonzero carbon footprint but so far, no study has quantified the environmental costs of bioinformatic tools and commonly run analyses. In this work, we estimate the carbon footprint of bioinformatics (in kilograms of CO2 equivalent units, kgCO2e) using the freely available Green Algorithms calculator (www.green-algorithms.org, last accessed 2022). We assessed 1) bioinformatic approaches in genome-wide association studies (GWAS), RNA sequencing, genome assembly, metagenomics, phylogenetics, and molecular simulations, as well as 2) computation strategies, such as parallelization, CPU (central processing unit) versus GPU (graphics processing unit), cloud versus local computing infrastructure, and geography. In particular, we found that biobank-scale GWAS emitted substantial kgCO2e and simple software upgrades could make it greener, for example, upgrading from BOLT-LMM v1 to v2.3 reduced carbon footprint by 73%. Moreover, switching from the average data center to a more efficient one can reduce carbon footprint by approximately 34%. Memory over-allocation can also be a substantial contributor to an algorithm's greenhouse gas emissions. The use of faster processors or greater parallelization reduces running time but can lead to greater carbon footprint. Finally, we provide guidance on how researchers can reduce power consumption and minimize kgCO2e. Overall, this work elucidates the carbon footprint of common analyses in bioinformatics and provides solutions which empower a move toward greener research.Bioinformatic research relies on large-scale computational infrastructures which have a nonzero carbon footprint but so far, no study has quantified the environmental costs of bioinformatic tools and commonly run analyses. In this work, we estimate the carbon footprint of bioinformatics (in kilograms of CO2 equivalent units, kgCO2e) using the freely available Green Algorithms calculator (www.green-algorithms.org, last accessed 2022). We assessed 1) bioinformatic approaches in genome-wide association studies (GWAS), RNA sequencing, genome assembly, metagenomics, phylogenetics, and molecular simulations, as well as 2) computation strategies, such as parallelization, CPU (central processing unit) versus GPU (graphics processing unit), cloud versus local computing infrastructure, and geography. In particular, we found that biobank-scale GWAS emitted substantial kgCO2e and simple software upgrades could make it greener, for example, upgrading from BOLT-LMM v1 to v2.3 reduced carbon footprint by 73%. Moreover, switching from the average data center to a more efficient one can reduce carbon footprint by approximately 34%. Memory over-allocation can also be a substantial contributor to an algorithm's greenhouse gas emissions. The use of faster processors or greater parallelization reduces running time but can lead to greater carbon footprint. Finally, we provide guidance on how researchers can reduce power consumption and minimize kgCO2e. Overall, this work elucidates the carbon footprint of common analyses in bioinformatics and provides solutions which empower a move toward greener research.
Bioinformatic research relies on large-scale computational infrastructures which have a nonzero carbon footprint but so far, no study has quantified the environmental costs of bioinformatic tools and commonly run analyses. In this work, we estimate the carbon footprint of bioinformatics (in kilograms of C[O.sub.2] equivalent units, kgC[O.sub.2]e) using the freely available Green Algorithms calculator (www.green-algorithms.org, last accessed 2022). We assessed 1) bioinformatic approaches in genome-wide association studies (GWAS), RNA sequencing, genome assembly, metagenomics, phylogenetics, and molecular simulations, as well as 2) computation strategies, such as parallelization, CPU (central processing unit) versus GPU (graphics processing unit), cloud versus local computing infrastructure, and geography. In particular, we found that biobank-scale GWAS emitted substantial kgC[O.sub.2]e and simple software upgrades could make it greener, for example, upgrading from BOLT-LMM v1 to v2.3 reduced carbon footprint by 73%. Moreover, switching from the average data center to a more efficient one can reduce carbon footprint by approximately 34%. Memory over-allocation can also be a substantial contributor to an algorithm's greenhouse gas emissions. The use of faster processors or greater parallelization reduces running time but can lead to greater carbon footprint. Finally, we provide guidance on how researchers can reduce power consumption and minimize kgC[O.sub.2]e. Overall, this work elucidates the carbon footprint of common analyses in bioinformatics and provides solutions which empower a move toward greener research. Key words: carbon footprint, bioinformatics, genomics, green algorithms.
Audience Academic
Author Saw, Woei-Yuh
Lannelongue, Loïc
Méric, Guillaume
Inouye, Michael
Marten, Jonathan
Ruiz-Carmona, Sergio
Grealey, Jason
AuthorAffiliation 3 Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge , Cambridge, United Kingdom
4 British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge , Cambridge, United Kingdom
7 British Heart Foundation Centre of Research Excellence, University of Cambridge , Cambridge, United Kingdom
5 Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge , Cambridge, United Kingdom
1 Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute , Melbourne, VIC, Australia
6 Department of Infectious Diseases, Central Clinical School, Monash University , Melbourne, VIC, Australia
2 Department of Mathematics and Statistics, La Trobe University , Melbourne, VIC, Australia
8 The Alan Turing Institute , London, United Kingdom
AuthorAffiliation_xml – name: 8 The Alan Turing Institute , London, United Kingdom
– name: 4 British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge , Cambridge, United Kingdom
– name: 2 Department of Mathematics and Statistics, La Trobe University , Melbourne, VIC, Australia
– name: 5 Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge , Cambridge, United Kingdom
– name: 3 Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge , Cambridge, United Kingdom
– name: 1 Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute , Melbourne, VIC, Australia
– name: 7 British Heart Foundation Centre of Research Excellence, University of Cambridge , Cambridge, United Kingdom
– name: 6 Department of Infectious Diseases, Central Clinical School, Monash University , Melbourne, VIC, Australia
Author_xml – sequence: 1
  givenname: Jason
  surname: Grealey
  fullname: Grealey, Jason
  email: jason.grealey@baker.edu.au
  organization: Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
– sequence: 2
  givenname: Loïc
  orcidid: 0000-0002-9135-1345
  surname: Lannelongue
  fullname: Lannelongue, Loïc
  organization: Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
– sequence: 3
  givenname: Woei-Yuh
  surname: Saw
  fullname: Saw, Woei-Yuh
  organization: Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
– sequence: 4
  givenname: Jonathan
  surname: Marten
  fullname: Marten, Jonathan
  organization: British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
– sequence: 5
  givenname: Guillaume
  surname: Méric
  fullname: Méric, Guillaume
  organization: Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
– sequence: 6
  givenname: Sergio
  surname: Ruiz-Carmona
  fullname: Ruiz-Carmona, Sergio
  organization: Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
– sequence: 7
  givenname: Michael
  surname: Inouye
  fullname: Inouye, Michael
  email: minouye@baker.edu.au
  organization: Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35143670$$D View this record in MEDLINE/PubMed
BookMark eNqFUc1LHDEUD2LRVXv1KAuF0h5W85JMPi6CXbQtCF70HDKZRCMzyTaZEfzvm2W3aoVSckh4-X28934HaDem6BA6BnwKWNGzIfWtezobirGYsh00g4aKBQhQu2iGRX0zTOU-OijlEWNgjPM9tE8bYJQLPEOfbx_cfGlym-L8KqVxlUMc58nPv4UUok95MGOw5Qh98KYv7uP2PkR3V5e3yx-L65vvP5cX1wvLFIwLS4hiSna0A89bjz1QyhWz1stWSVJbbDmxtvGOuEaIpgXvKWEgjWo66DA9ROcb3dXUDq6zLo7Z9Lp2NZj8rJMJ-u-fGB70fXrSUqpqTarAl61ATr8mV0Y9hGJd35vo0lQ04URSDKKBCv30DvqYphzreJqCwFVRNLSiTjeoe9M7vV5J9bX1dG4ItobhQ61fCMEklwrzSjh5O8JL7392_qpocyolO_8CAazXoepNqHobaiWwdwQbxhpLWq8g9P-mfd3Q0rT6n8Vvd6S2Jw
CitedBy_id crossref_primary_10_1038_s41582_024_01055_6
crossref_primary_10_1093_molbev_msac043
crossref_primary_10_1162_IMAG_a_36
crossref_primary_10_3389_fgene_2025_1566291
crossref_primary_10_1089_genbio_2023_29100_sra
crossref_primary_10_1371_journal_pone_0260908
crossref_primary_10_1038_s41574_025_01098_9
crossref_primary_10_1186_s13059_023_02948_3
crossref_primary_10_1111_1755_0998_13964
crossref_primary_10_1038_s41559_024_02423_7
crossref_primary_10_1111_all_15836
crossref_primary_10_1007_s11948_024_00495_z
crossref_primary_10_3390_network3010005
crossref_primary_10_1093_molbev_msaf120
crossref_primary_10_1093_gigascience_giaf049
crossref_primary_10_1038_s41576_025_00828_z
crossref_primary_10_1162_imag_a_00043
crossref_primary_10_1093_oxfclm_kgad003
crossref_primary_10_1186_s12920_024_01795_w
crossref_primary_10_1186_s12915_024_02077_8
crossref_primary_10_1097_RCT_0000000000001681
crossref_primary_10_1177_20552076221111297
crossref_primary_10_1017_pcm_2022_1
crossref_primary_10_1038_s41576_023_00620_x
crossref_primary_10_1186_s12864_022_09030_5
crossref_primary_10_1002_ctd2_252
crossref_primary_10_1007_s10113_024_02246_z
crossref_primary_10_1038_s43588_023_00461_y
crossref_primary_10_1007_s10668_023_03508_2
crossref_primary_10_1093_g3journal_jkaf082
crossref_primary_10_1002_hbm_70003
crossref_primary_10_1016_j_cell_2024_07_045
crossref_primary_10_3389_fsci_2025_1514835
crossref_primary_10_1029_2022EF002964
crossref_primary_10_1093_molbev_msad195
crossref_primary_10_3389_fcomp_2025_1464122
crossref_primary_10_1016_j_ympev_2023_107776
crossref_primary_10_1093_molbev_msaf094
crossref_primary_10_62301_usmtd_1712846
crossref_primary_10_1002_epd2_20288
crossref_primary_10_3390_microorganisms10101965
Cites_doi 10.1038/d41586-018-06610-y
10.3390/challe6010117
10.1038/s41588-018-0144-6
10.1002/jcc.20289
10.1186/s13059-019-1891-0
10.1186/s12859-017-1911-6
10.1371/journal.pcbi.1003571
10.1038/nature24277
10.1186/gb-2014-15-3-r42
10.1186/s13059-019-1836-7
10.1093/bioinformatics/btv184
10.1101/gr.210641.116
10.1101/gr.074492.107
10.1016/j.atmosenv.2018.10.039
10.1038/s41586-020-1969-6
10.1093/bioinformatics/btv722
10.1038/s41550-020-1169-1
10.1097/01.inf.0000226912.88900.a3
10.1038/s41586-018-0579-z
10.1093/bioinformatics/bts635
10.1002/jcc.20290
10.1093/bioinformatics/btu033
10.7717/peerj-cs.104
10.1093/sysbio/syv118
10.1093/nar/gks666
10.1186/2047-217X-2-10
10.1126/science.1253451
10.1038/s41550-020-1202-4
10.1038/s41467-019-10934-2
10.1093/sysbio/syr100
10.7554/eLife.15928
10.1016/S0022-2836(05)80360-2
10.1038/s41550-020-1208-y
10.1101/gr.131383.111
10.1093/molbev/msx302
10.1016/S0140-6736(19)32596-6
10.1038/s41587-019-0201-4
10.1101/gr.107524.110
10.1371/journal.pone.0009490
10.1186/2047-217X-1-18
10.1038/nature22040
10.1186/s40168-019-0626-5
10.1093/sysbio/syq010
10.1093/molbev/mss075
10.1101/gr.214346.116
10.1038/nbt.2862
10.1038/nmeth.4106
10.1021/jm0608356
10.1002/jcc.21334
10.1101/gr.126953.111
10.1016/j.jaci.2006.12.669
10.1002/jcc.20291
10.1186/s13059-015-0702-5
10.1038/s41586-019-1913-9
10.1186/gb-2013-14-4-r36
10.1038/nbt.1621
10.1007/978-1-4939-9074-0_23
10.1093/bioinformatics/btq683
10.1002/advs.202100707
10.1080/10635150390235520
10.1371/journal.pone.0169662
10.1101/gr.135350.111
10.1186/1471-2105-12-323
10.1056/NEJMoa2020283
10.1093/molbev/msu300
10.1186/gb-2014-15-3-r46
10.1093/nar/gks678
10.1021/jm0306430
10.1016/j.ymeth.2016.02.020
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2022
The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
COPYRIGHT 2022 Oxford University Press
The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2022
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
– notice: COPYRIGHT 2022 Oxford University Press
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QP
7QR
7SN
7SS
7TK
7TM
7TO
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOI 10.1093/molbev/msac034
DatabaseName Open Access: Oxford University Press Open Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep


MEDLINE
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Open Access Journals
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Geography
EISSN 1537-1719
ExternalDocumentID PMC8892942
A774868906
35143670
10_1093_molbev_msac034
10.1093/molbev/msac034
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Australia
United States
United Kingdom
GeographicLocations_xml – name: United Kingdom
– name: Australia
– name: United States
GrantInformation_xml – fundername: Department of Health
  grantid: BRC-1215-20014
– fundername: Chief Scientist Office
– fundername: Wellcome Trust
– fundername: Medical Research Council
  grantid: MR/S502443/1
– fundername: British Heart Foundation
  grantid: RG/13/13/30194
– fundername: Medical Research Council
  grantid: MR/L003120/1
– fundername: British Heart Foundation
  grantid: RG/18/13/33946
GroupedDBID ---
-E4
-~X
.2P
.GJ
.I3
.ZR
0R~
18M
1TH
29M
2WC
4.4
48X
53G
5VS
5WA
70D
7X7
88E
8AO
8FI
8FJ
8G5
AAFWJ
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEJV
ABEUO
ABGNP
ABIXL
ABKDP
ABLJU
ABNKS
ABPTD
ABQLI
ABQTQ
ABSMQ
ABTAH
ABUWG
ABXVV
ABZBJ
ACGFO
ACGFS
ACIPB
ACIWK
ACNCT
ACPRK
ACUTO
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGZP
ADHKW
ADHZD
ADOCK
ADRTK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUYN
AEWNT
AFFNX
AFIYH
AFKRA
AFOFC
AFPKN
AFRAH
AGINJ
AGKEF
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASAOO
ATDFG
AXUDD
AYOIW
AZQEC
AZVOD
BAWUL
BAYMD
BBNVY
BENPR
BEYMZ
BHONS
BHPHI
BQDIO
BQUQU
BSWAC
BTQHN
BTRTY
BVRKM
C1A
CAG
CCPQU
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
DWQXO
D~K
E3Z
EBS
EE~
EJD
EMOBN
F5P
F9B
FHSFR
FLIZI
FOTVD
FYUFA
GAUVT
GJXCC
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
H13
H5~
HAR
HCIFZ
HH5
HMCUK
HW0
HZ~
IAO
IGS
IHR
IOX
ITC
J21
KOP
KQ8
KSI
M-Z
M1P
M2O
M49
M7P
MBTAY
ML0
MVM
N9A
NGC
NLBLG
NMDNZ
NOYVH
NTWIH
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
O~Y
P2P
PAFKI
PEELM
PQQKQ
PSQYO
Q1.
Q5Y
RD5
RNI
ROL
ROZ
RPM
RUSNO
RW1
RXO
RZO
TEORI
TJP
TJX
TLC
TN5
TOX
TR2
UKHRP
W8F
WOQ
X7H
XJT
XSW
YAYTL
YHZ
YKOAZ
YXANX
ZCA
ZCG
ZKX
ZXP
ZY4
~02
~91
AAYXX
ABUFD
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QP
7QR
7SN
7SS
7TK
7TM
7TO
7U9
7XB
88A
8FD
8FE
8FH
8FK
C1K
FR3
H94
K9.
LK8
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c491t-c229498d3d1f6bf0f133694ccf8b982c03b62cc5fe2e5775b1ff32418a95d1d03
IEDL.DBID M7P
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000764264700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0737-4038
1537-1719
IngestDate Tue Nov 04 01:52:43 EST 2025
Fri Sep 05 07:57:43 EDT 2025
Mon Oct 06 17:26:42 EDT 2025
Tue Nov 04 18:33:15 EST 2025
Mon Jul 21 05:45:48 EDT 2025
Tue Nov 18 21:16:42 EST 2025
Sat Nov 29 05:53:09 EST 2025
Wed Apr 02 07:00:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords genomics
green algorithms
carbon footprint
bioinformatics
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-c229498d3d1f6bf0f133694ccf8b982c03b62cc5fe2e5775b1ff32418a95d1d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Present address: Genomics PLC, King Charles House, Park End Street, Oxford, United Kingdom
Jason Grealey, Loïc Lannelongue contributed equally to this work as first authors.
ORCID 0000-0002-9135-1345
OpenAccessLink https://dx.doi.org/10.1093/molbev/msac034
PMID 35143670
PQID 3170889753
PQPubID 36253
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8892942
proquest_miscellaneous_2628301751
proquest_journals_3170889753
gale_infotracacademiconefile_A774868906
pubmed_primary_35143670
crossref_primary_10_1093_molbev_msac034
crossref_citationtrail_10_1093_molbev_msac034
oup_primary_10_1093_molbev_msac034
PublicationCentury 2000
PublicationDate 2022-03-02
PublicationDateYYYYMMDD 2022-03-02
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Molecular biology and evolution
PublicationTitleAlternate Mol Biol Evol
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Stamatakis (2022030406034425600_msac034-B86) 2014; 30
Andy (2022030406034425600_msac034-B5) 2019
Jahnke (2022030406034425600_msac034-B42) 2020; 4
Carbonfootprint.Com – International Electricity Factors (2022030406034425600_msac034-B18) 2020
Friesner (2022030406034425600_msac034-B27) 2004; 47
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium (2022030406034425600_msac034-B40) 2020; 578
AWS & Sustainability (2022030406034425600_msac034-B6) .
Desrochers (2022030406034425600_msac034-B20) 2016
McKenna (2022030406034425600_msac034-B62) 2010; 20
Zhou (2022030406034425600_msac034-B98) 2018; 35
Kusel (2022030406034425600_msac034-B52) 2006; 25
NovoAlign | Novocraft (2022030406034425600_msac034-B69) .
Patro (2022030406034425600_msac034-B73) 2014; 32
Karyakin (2022030406034425600_msac034-B47) 2017
Vollmers (2022030406034425600_msac034-B93) 2017; 12
Griebel (2022030406034425600_msac034-B33) 2012; 40
Namiki (2022030406034425600_msac034-B65) 2012; 40
Babraham Bioinformatics – Trim Galore! (2022030406034425600_msac034-B8) .
Jones (2022030406034425600_msac034-B44) 2018; 561
Jarvis (2022030406034425600_msac034-B43) 2014; 346
Zerbino (2022030406034425600_msac034-B97) 2008; 18
Loh (2022030406034425600_msac034-B59) 2018; 50
Drummond (2022030406034425600_msac034-B23) 2012; 29
Greenhouse Gas Reporting: Conversion Factors 2019 (2022030406034425600_msac034-B32) 2019
Ongen (2022030406034425600_msac034-B72) 2016; 32
Kanitz (2022030406034425600_msac034-B46) 2015; 16
Andrae (2022030406034425600_msac034-B4) 2015; 6
Microsoft (2022030406034425600_msac034-B63) 2015
Watts (2022030406034425600_msac034-B94) 2019; 394
Li (2022030406034425600_msac034-B55) 2011; 12
Nguyen (2022030406034425600_msac034-B68) 2015; 32
NAMD Performance (2022030406034425600_msac034-B64) .
Lu (2022030406034425600_msac034-B60) 2017; 3
Trapnell (2022030406034425600_msac034-B91) 2010; 28
Bender (2022030406034425600_msac034-B12) 2021
GTEx Consortium. Genetic Effects on Gene Expression across Human Tissues (2022030406034425600_msac034-B28) 2017; 550
Sutton (2022030406034425600_msac034-B89) 2019; 7
Boetzer (2022030406034425600_msac034-B13) 2011; 27
Case (2022030406034425600_msac034-B19) 2005; 26
BBMap Guide (2022030406034425600_msac034-B11) .
Ruiz-Carmona (2022030406034425600_msac034-B80) 2014; 10
National Institutes of Health (NIH) (2022030406034425600_msac034-B67) .
Strubell (2022030406034425600_msac034-B88) 2019
Baruzzo (2022030406034425600_msac034-B10) 2017; 14
Google Cloud Environment | Go Green (2022030406034425600_msac034-B31) .
Phillips (2022030406034425600_msac034-B75) 2005; 26
Bradnam (2022030406034425600_msac034-B15) 2013; 2
Broadinstitute/Tensorqtl. 2018 (2022030406034425600_msac034-B16) 2020
Goldman (2022030406034425600_msac034-B30) 1994; 11
Hunt (2022030406034425600_msac034-B39) 2014; 15
Kachuri (2022030406034425600_msac034-B45) 2020
Trott (2022030406034425600_msac034-B92) 2010; 31
Global Infrastructure | Microsoft Azure (2022030406034425600_msac034-B29) .
Accelerating Detection of Disease – UK Research and Innovation (2022030406034425600_msac034-B1) .
Altschul (2022030406034425600_msac034-B3) 1990; 215
Salzberg (2022030406034425600_msac034-B81) 2012; 22
Ayres (2022030406034425600_msac034-B7) 2012; 61
Portegies Zwart (2022030406034425600_msac034-B77) 2020; 4
Li (2022030406034425600_msac034-B56) 2016; 102
Kozlov (2022030406034425600_msac034-B51) 2015; 31
Luo (2022030406034425600_msac034-B61) 2012; 1
Helmers (2022030406034425600_msac034-B37) 2019; 198
Guindon (2022030406034425600_msac034-B35) 2003; 52
Harrow (2022030406034425600_msac034-B36) 2012; 22
Jackman (2022030406034425600_msac034-B41) 2017; 27
Lannelongue (2022030406034425600_msac034-B54) 2021; 8
Spoel (2022030406034425600_msac034-B85) 2005; 26
Guindon (2022030406034425600_msac034-B34) 2010; 59
Lippert (2022030406034425600_msac034-B57) 2014
Bycroft (2022030406034425600_msac034-B17) 2018; 562
Kim (2022030406034425600_msac034-B48) 2019; 37
Wood (2022030406034425600_msac034-B95) 2019; 20
Kusel (2022030406034425600_msac034-B53) 2007; 119
Wood (2022030406034425600_msac034-B96) 2014; 15
PCAWG Structural Variation Working Group, PCAWG Consortium (2022030406034425600_msac034-B74) 2020; 578
Nathans (2022030406034425600_msac034-B66) 2016; 5
Dudas (2022030406034425600_msac034-B24) 2017; 544
Simpson (2022030406034425600_msac034-B84) 2012; 22
Price (2022030406034425600_msac034-B78) 2010; 5
Taylor-Weiner (2022030406034425600_msac034-B90) 2019; 20
Ogilvie (2022030406034425600_msac034-B71) 2016; 65
Lischer (2022030406034425600_msac034-B58) 2017; 18
Shehabi (2022030406034425600_msac034-B83) 2016
Severe Covid-19 GWAS Group (2022030406034425600_msac034-B82) 2020; 383
Huang (2022030406034425600_msac034-B38) 2006; 49
Air Pollution (2022030406034425600_msac034-B2) 2016
Stevens (2022030406034425600_msac034-B87) 2020; 4
Nurk (2022030406034425600_msac034-B70) 2017
Pmemd.Cuda GPU Implementation (2022030406034425600_msac034-B76) .
Baele (2022030406034425600_msac034-B9) 2019
Emissions – Global Energy & CO2 Status Report 2019 – Analysis (2022030406034425600_msac034-B26)
Kim (2022030406034425600_msac034-B49) 2013; 14
Dilthey (2022030406034425600_msac034-B21) 2019; 10
Dobin (2022030406034425600_msac034-B22) 2013; 29
Efficiency – Data Centers – Google (2022030406034425600_msac034-B25) .
Primary Energy Consumption by World Region (2022030406034425600_msac034-B79) 2021
Kim (2022030406034425600_msac034-B50) 2016; 26
BOLT-LMM v2.3.4 User Manual (2022030406034425600_msac034-B14) 2019
References_xml – volume: 561
  start-page: 163
  issue: 7722
  year: 2018
  ident: 2022030406034425600_msac034-B44
  article-title: How to stop data centres from gobbling up the world’s electricity
  publication-title: Nature
  doi: 10.1038/d41586-018-06610-y
– volume: 6
  start-page: 117
  issue: 1
  year: 2015
  ident: 2022030406034425600_msac034-B4
  article-title: On global electricity usage of communication technology: trends to 2030
  publication-title: Challenges
  doi: 10.3390/challe6010117
– year: 2014
  ident: 2022030406034425600_msac034-B57
– year: .
  ident: 2022030406034425600_msac034-B69
– volume: 50
  start-page: 906
  issue: 7
  year: 2018
  ident: 2022030406034425600_msac034-B59
  article-title: Mixed-model association for Biobank-scale datasets
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0144-6
– volume: 26
  start-page: 1781
  issue: 16
  year: 2005
  ident: 2022030406034425600_msac034-B75
  article-title: Scalable molecular dynamics with NAMD
  publication-title: J Comput Chem
  doi: 10.1002/jcc.20289
– start-page: 1
  year: 2020
  ident: 2022030406034425600_msac034-B45
– volume: 20
  start-page: 257
  issue: 1
  year: 2019
  ident: 2022030406034425600_msac034-B95
  article-title: Improved metagenomic analysis with Kraken 2
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1891-0
– volume: 18
  start-page: 474
  issue: 1
  year: 2017
  ident: 2022030406034425600_msac034-B58
  article-title: Reference-guided de novo assembly approach improves genome reconstruction for related species
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1911-6
– volume: 10
  start-page: e1003571
  issue: 4
  year: 2014
  ident: 2022030406034425600_msac034-B80
  article-title: RDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003571
– volume: 550
  start-page: 204
  issue: 7675
  year: 2017
  ident: 2022030406034425600_msac034-B28
  publication-title: Nature
  doi: 10.1038/nature24277
– volume: 15
  start-page: R42
  issue: 3
  year: 2014
  ident: 2022030406034425600_msac034-B39
  article-title: A comprehensive evaluation of assembly scaffolding tools
  publication-title: Genome Biol
  doi: 10.1186/gb-2014-15-3-r42
– volume: 20
  start-page: 228
  issue: 1
  year: 2019
  ident: 2022030406034425600_msac034-B90
  article-title: Scaling computational genomics to millions of individuals with GPUs
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1836-7
– volume: 31
  start-page: 2577
  issue: 15
  year: 2015
  ident: 2022030406034425600_msac034-B51
  article-title: ExaML version 3: a tool for phylogenomic analyses on supercomputers
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv184
– volume: 26
  start-page: 1721
  issue: 12
  year: 2016
  ident: 2022030406034425600_msac034-B50
  article-title: Centrifuge: rapid and sensitive classification of metagenomic sequences
  publication-title: Genome Res
  doi: 10.1101/gr.210641.116
– year: .
  ident: 2022030406034425600_msac034-B6
– volume: 18
  start-page: 821
  issue: 5
  year: 2008
  ident: 2022030406034425600_msac034-B97
  article-title: Velvet: algorithms for de novo short read assembly using de Bruijn graphs
  publication-title: Genome Res
  doi: 10.1101/gr.074492.107
– start-page: 824
  year: 2017
  ident: 2022030406034425600_msac034-B70
– volume: 198
  start-page: 122
  year: 2019
  ident: 2022030406034425600_msac034-B37
  article-title: CO2-equivalent emissions from European passenger vehicles in the years 1995–2015 based on real-world use: assessing the climate benefit of the European ‘Diesel Boom’
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2018.10.039
– volume: 578
  start-page: 82
  issue: 7793
  year: 2020
  ident: 2022030406034425600_msac034-B40
  article-title: Pan-cancer analysis of whole genomes
  publication-title: Nature
  doi: 10.1038/s41586-020-1969-6
– volume: 32
  start-page: 1479
  issue: 10
  year: 2016
  ident: 2022030406034425600_msac034-B72
  article-title: Fast and efficient QTL mapper for thousands of molecular phenotypes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv722
– volume: 4
  start-page: 843
  issue: 9
  year: 2020
  ident: 2022030406034425600_msac034-B87
  article-title: The imperative to reduce carbon emissions in astronomy
  publication-title: Nat Astron
  doi: 10.1038/s41550-020-1169-1
– volume: 25
  start-page: 680
  issue: 8
  year: 2006
  ident: 2022030406034425600_msac034-B52
  article-title: Role of respiratory viruses in acute upper and lower respiratory tract illness in the first year of life: a birth cohort study
  publication-title: Pediatr Infect Dis J
  doi: 10.1097/01.inf.0000226912.88900.a3
– volume: 562
  start-page: 203
  issue: 7726
  year: 2018
  ident: 2022030406034425600_msac034-B17
  article-title: The UK Biobank resource with deep phenotyping and genomic data
  publication-title: Nature
  doi: 10.1038/s41586-018-0579-z
– volume: 29
  start-page: 15
  issue: 1
  year: 2013
  ident: 2022030406034425600_msac034-B22
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 26
  start-page: 1668
  issue: 16
  year: 2005
  ident: 2022030406034425600_msac034-B19
  article-title: The AMBER biomolecular simulation programs
  publication-title: J Comput Chem
  doi: 10.1002/jcc.20290
– volume: 30
  start-page: 1312
  issue: 9
  year: 2014
  ident: 2022030406034425600_msac034-B86
  article-title: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu033
– volume: 3
  start-page: e104
  year: 2017
  ident: 2022030406034425600_msac034-B60
  article-title: Bracken: estimating species abundance in metagenomics data
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.104
– year: .
  ident: 2022030406034425600_msac034-B67
– volume: 65
  start-page: 381
  issue: 3
  year: 2016
  ident: 2022030406034425600_msac034-B71
  article-title: Computational performance and statistical accuracy of BEAST and comparisons with other methods
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syv118
– volume: 40
  start-page: 10073
  issue: 20
  year: 2012
  ident: 2022030406034425600_msac034-B33
  article-title: Modelling and simulating generic RNA-seq experiments with the flux simulator
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks666
– volume: 2
  start-page: 10
  issue: 1
  year: 2013
  ident: 2022030406034425600_msac034-B15
  article-title: Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species
  publication-title: Gigascience
  doi: 10.1186/2047-217X-2-10
– start-page: 455
  year: 2016
  ident: 2022030406034425600_msac034-B20
– volume: 346
  start-page: 1320
  issue: 6215
  year: 2014
  ident: 2022030406034425600_msac034-B43
  article-title: Whole-genome analyses resolve early branches in the tree of life of modern birds
  publication-title: Science
  doi: 10.1126/science.1253451
– year: .
  ident: 2022030406034425600_msac034-B11
– volume: 4
  start-page: 812
  issue: 9
  year: 2020
  ident: 2022030406034425600_msac034-B42
  article-title: An astronomical institute’s perspective on meeting the challenges of the climate crisis
  publication-title: Nat Astron
  doi: 10.1038/s41550-020-1202-4
– volume: 10
  start-page: 3066
  issue: 1
  year: 2019
  ident: 2022030406034425600_msac034-B21
  article-title: Strain-level metagenomic assignment and compositional estimation for long reads with MetaMaps
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10934-2
– volume: 61
  start-page: 170
  issue: 1
  year: 2012
  ident: 2022030406034425600_msac034-B7
  article-title: BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syr100
– volume: 5
  start-page: e15928
  year: 2016
  ident: 2022030406034425600_msac034-B66
  article-title: How scientists can reduce their carbon footprint
  publication-title: ELife
  doi: 10.7554/eLife.15928
– year: 2016
  ident: 2022030406034425600_msac034-B2
– volume: 215
  start-page: 403
  issue: 3
  year: 1990
  ident: 2022030406034425600_msac034-B3
  article-title: Basic local alignment search tool
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(05)80360-2
– volume: 4
  start-page: 819
  issue: 9
  year: 2020
  ident: 2022030406034425600_msac034-B77
  article-title: The ecological impact of high-performance computing in astrophysics
  publication-title: Nat Astron
  doi: 10.1038/s41550-020-1208-y
– volume: 22
  start-page: 557
  issue: 3
  year: 2012
  ident: 2022030406034425600_msac034-B81
  article-title: GAGE: a critical evaluation of genome assemblies and assembly algorithms
  publication-title: Genome Res
  doi: 10.1101/gr.131383.111
– volume: 35
  start-page: 486
  issue: 2
  year: 2018
  ident: 2022030406034425600_msac034-B98
  article-title: Evaluating fast maximum likelihood-based phylogenetic programs using empirical phylogenomic data sets
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msx302
– volume: 394
  start-page: 1836
  issue: 10211
  year: 2019
  ident: 2022030406034425600_msac034-B94
  article-title: The 2019 report of the lancet countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)32596-6
– volume: 37
  start-page: 907
  issue: 8
  year: 2019
  ident: 2022030406034425600_msac034-B48
  article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0201-4
– year: 2020
  ident: 2022030406034425600_msac034-B18
– year: .
  ident: 2022030406034425600_msac034-B76
– volume: 20
  start-page: 1297
  issue: 9
  year: 2010
  ident: 2022030406034425600_msac034-B62
  article-title: The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data
  publication-title: Genome Res
  doi: 10.1101/gr.107524.110
– volume: 5
  start-page: e9490
  issue: 3
  year: 2010
  ident: 2022030406034425600_msac034-B78
  article-title: FastTree 2 – approximately maximum-likelihood trees for large alignments
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0009490
– volume: 1
  start-page: 18
  issue: 1
  year: 2012
  ident: 2022030406034425600_msac034-B61
  article-title: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler
  publication-title: GigaScience
  doi: 10.1186/2047-217X-1-18
– volume: 544
  start-page: 309
  issue: 7650
  year: 2017
  ident: 2022030406034425600_msac034-B24
  article-title: Virus genomes reveal factors that spread and sustained the Ebola epidemic
  publication-title: Nature
  doi: 10.1038/nature22040
– year: .
  ident: 2022030406034425600_msac034-B25
– volume: 7
  issue: 1
  year: 2019
  ident: 2022030406034425600_msac034-B89
  article-title: Choice of assembly software has a critical impact on virome characterisation
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0626-5
– year: 2019
  ident: 2022030406034425600_msac034-B5
– volume: 59
  start-page: 307
  issue: 3
  year: 2010
  ident: 2022030406034425600_msac034-B34
  article-title: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syq010
– start-page: 1
  volume-title: Proceedings of the 13th International Workshop on Data Management on New Hardware – DAMON ’17
  year: 2017
  ident: 2022030406034425600_msac034-B47
– start-page: 610
  year: 2021
  ident: 2022030406034425600_msac034-B12
– volume: 29
  start-page: 1969
  issue: 8
  year: 2012
  ident: 2022030406034425600_msac034-B23
  article-title: Bayesian phylogenetics with BEAUti and the BEAST 1.7
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mss075
– ident: 2022030406034425600_msac034-B26
– volume: 27
  start-page: 768
  issue: 5
  year: 2017
  ident: 2022030406034425600_msac034-B41
  article-title: ABySS 2.0: resource-efficient assembly of large genomes using a bloom filter
  publication-title: Genome Res
  doi: 10.1101/gr.214346.116
– volume: 32
  start-page: 462
  issue: 5
  year: 2014
  ident: 2022030406034425600_msac034-B73
  article-title: Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2862
– volume: 14
  start-page: 135
  issue: 2
  year: 2017
  ident: 2022030406034425600_msac034-B10
  article-title: Simulation-based comprehensive benchmarking of RNA-seq aligners
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4106
– volume: 49
  start-page: 6789
  issue: 23
  year: 2006
  ident: 2022030406034425600_msac034-B38
  article-title: Benchmarking sets for molecular docking
  publication-title: J Med Chem
  doi: 10.1021/jm0608356
– volume-title: Python
  year: 2020
  ident: 2022030406034425600_msac034-B16
– volume: 31
  start-page: 455
  issue: 2
  year: 2010
  ident: 2022030406034425600_msac034-B92
  article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21334
– volume: 22
  start-page: 549
  issue: 3
  year: 2012
  ident: 2022030406034425600_msac034-B84
  article-title: Efficient de novo assembly of large genomes using compressed data structures
  publication-title: Genome Res
  doi: 10.1101/gr.126953.111
– year: .
  ident: 2022030406034425600_msac034-B8
– volume: 119
  start-page: 1105
  issue: 5
  year: 2007
  ident: 2022030406034425600_msac034-B53
  article-title: Early-life respiratory viral infections, atopic sensitization, and risk of subsequent development of persistent asthma
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2006.12.669
– volume: 26
  start-page: 1701
  issue: 16
  year: 2005
  ident: 2022030406034425600_msac034-B85
  article-title: GROMACS: fast, flexible, and free
  publication-title: J Comput Chem
  doi: 10.1002/jcc.20291
– volume: 16
  start-page: 150
  issue: 1
  year: 2015
  ident: 2022030406034425600_msac034-B46
  article-title: Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0702-5
– volume: 578
  start-page: 112
  issue: 7793
  year: 2020
  ident: 2022030406034425600_msac034-B74
  article-title: Patterns of somatic structural variation in human cancer genomes
  publication-title: Nature
  doi: 10.1038/s41586-019-1913-9
– volume: 14
  start-page: R36
  issue: 4
  year: 2013
  ident: 2022030406034425600_msac034-B49
  article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
  publication-title: Genome Biol
  doi: 10.1186/gb-2013-14-4-r36
– year: 2019
  ident: 2022030406034425600_msac034-B14
– year: 2016
  ident: 2022030406034425600_msac034-B83
– volume: 28
  start-page: 511
  issue: 5
  year: 2010
  ident: 2022030406034425600_msac034-B91
  article-title: Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1621
– year: .
  ident: 2022030406034425600_msac034-B1
– start-page: 691
  volume-title: Evolutionary genomics: statistical and computational methods
  year: 2019
  ident: 2022030406034425600_msac034-B9
  doi: 10.1007/978-1-4939-9074-0_23
– volume: 27
  start-page: 578
  issue: 4
  year: 2011
  ident: 2022030406034425600_msac034-B13
  article-title: Scaffolding pre-assembled contigs using SSPACE
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq683
– year: 2021
  ident: 2022030406034425600_msac034-B79
– volume: 11
  start-page: 725
  issue: 5
  year: 1994
  ident: 2022030406034425600_msac034-B30
  article-title: A codon-based model of nucleotide substitution for protein-coding DNA sequences
  publication-title: Mol Biol Evol
– volume: 8
  start-page: 2100707
  issue: 12
  year: 2021
  ident: 2022030406034425600_msac034-B54
  article-title: Green algorithms: quantifying the carbon footprint of computation
  publication-title: Adv Sci (Weinh)
  doi: 10.1002/advs.202100707
– volume: 52
  start-page: 696
  issue: 5
  year: 2003
  ident: 2022030406034425600_msac034-B35
  article-title: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood
  publication-title: Syst Biol
  doi: 10.1080/10635150390235520
– volume: 12
  start-page: e0169662
  issue: 1
  year: 2017
  ident: 2022030406034425600_msac034-B93
  article-title: Comparing and evaluating metagenome assembly tools from a microbiologist’s perspective – not only size matters!
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0169662
– year: .
  ident: 2022030406034425600_msac034-B31
– volume: 22
  start-page: 1760
  issue: 9
  year: 2012
  ident: 2022030406034425600_msac034-B36
  article-title: GENCODE: the reference human genome annotation for the ENCODE project
  publication-title: Genome Res
  doi: 10.1101/gr.135350.111
– volume: 12
  start-page: 323
  year: 2011
  ident: 2022030406034425600_msac034-B55
  article-title: RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-323
– year: 2019
  ident: 2022030406034425600_msac034-B88
– volume: 383
  start-page: 1522
  issue: 16
  year: 2020
  ident: 2022030406034425600_msac034-B82
  article-title: Genomewide association study of severe COVID-19 with respiratory failure
  publication-title: New Engl J Med
  doi: 10.1056/NEJMoa2020283
– volume: 32
  start-page: 268
  issue: 1
  year: 2015
  ident: 2022030406034425600_msac034-B68
  article-title: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msu300
– volume: 15
  start-page: R46
  issue: 3
  year: 2014
  ident: 2022030406034425600_msac034-B96
  article-title: Kraken: ultrafast metagenomic sequence classification using exact alignments
  publication-title: Genome Biol
  doi: 10.1186/gb-2014-15-3-r46
– volume: 40
  start-page: e155
  issue: 20
  year: 2012
  ident: 2022030406034425600_msac034-B65
  article-title: MetaVelvet: an extension of velvet assembler to de novo metagenome assembly from short sequence reads
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks678
– volume-title: Microsoft’s cloud infrastructure, datacenters and network fact sheet
  year: 2015
  ident: 2022030406034425600_msac034-B63
– year: .
  ident: 2022030406034425600_msac034-B64
– volume: 47
  start-page: 1739
  issue: 7
  year: 2004
  ident: 2022030406034425600_msac034-B27
  article-title: Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy
  publication-title: J Med Chem
  doi: 10.1021/jm0306430
– year: 2019
  ident: 2022030406034425600_msac034-B32
– year: .
  ident: 2022030406034425600_msac034-B29
– volume: 102
  start-page: 3
  year: 2016
  ident: 2022030406034425600_msac034-B56
  article-title: MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.02.020
SSID ssj0014466
Score 2.5979202
Snippet Abstract Bioinformatic research relies on large-scale computational infrastructures which have a nonzero carbon footprint but so far, no study has quantified...
Bioinformatic research relies on large-scale computational infrastructures which have a nonzero carbon footprint but so far, no study has quantified the...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Air pollution
Algorithms
Australia
Bioinformatics
Carbon
Carbon dioxide
Carbon Footprint
Central processing units
Computational Biology
Computer software industry
CPUs
Discoveries
Ecological footprint
Emissions
Energy conservation
Footprint analysis
Gene sequencing
Genome-wide association studies
Genome-Wide Association Study
Genomes
Genomics
Geography
Graphics processing units
Greenhouse gases
Metagenomics
Microprocessors
Parallel processing
Phylogeny
Power consumption
RNA
RNA sequencing
Software
United Kingdom
United States
Upgrading
Title The Carbon Footprint of Bioinformatics
URI https://www.ncbi.nlm.nih.gov/pubmed/35143670
https://www.proquest.com/docview/3170889753
https://www.proquest.com/docview/2628301751
https://pubmed.ncbi.nlm.nih.gov/PMC8892942
Volume 39
WOSCitedRecordID wos000764264700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (Open Access)
  customDbUrl:
  eissn: 1537-1719
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014466
  issn: 0737-4038
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Open Access Journals
  customDbUrl:
  eissn: 1537-1719
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014466
  issn: 0737-4038
  databaseCode: TOX
  dateStart: 19831201
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Open Access Journals
  customDbUrl:
  eissn: 1537-1719
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014466
  issn: 0737-4038
  databaseCode: TOX
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1537-1719
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014466
  issn: 0737-4038
  databaseCode: M7P
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl:
  eissn: 1537-1719
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014466
  issn: 0737-4038
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest_Health & Medical Collection
  customDbUrl:
  eissn: 1537-1719
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014466
  issn: 0737-4038
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1537-1719
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014466
  issn: 0737-4038
  databaseCode: M2O
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFgQXHgXaQFkFhOAUbWwnsXNCpeqKC9sVKtLeotiO1UptUjZppf57ZhJv6CIBBy4-JCO_xo_xPL4BeI9Sqk6YMZGTOo6SkpuoZJWKDMGHpUILZ12fbELO52q5zBde4dZ6t8r1mdgf1LYxpCOf4j1HHjkoXX-6-hFR1iiyrvoUGluwQygJvHfdW4xWhLWtUgqJ7yShRtBGMb1sLnR1M71sSxOLZONS8kfzRrzbHbHzd-_JO9fR7Mn_DuQpPPaCaHg4rJxncK-qd-HBkJrydhce-uzoZ7fP4QOupfCoXOmmDmdN05EusAsbFyK1B14lsOcX8H12fHr0JfL5FSKT5KyLDOd5kisrLHOZdrHD92qWJ8Y4pXPFcWJ0xg25o_EqlTLVzDmUv5gq89QyG4uXsF03dbUPoU2ldWleKfye4JNGZ0lpjU40SsUuZi6AaD3BhfHg45QD46IYjOCiGBhSeIYE8HGkvxpgN_5MSfwqaLhYoyl9WAH2i5CtikOUb1Wm8jgL4B2y9J_VHay5Vvjd3Ba_WBbA2_E37kMyrpR11Vy3Bc8ISg2FMRbA3rBAxqYoWoKA8gKQG0tnJCCM780_9flZj_WNzSKT-Ku_d-s1POIUlkG-cfwAtrvVdfUG7pub7rxdTWBLLmVfqgnsfD6eL75Net0Dll_5yaTfNFienix_AuedHjo
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAiqXAuUVWiAgHqdoE8dJ7EOFqsKqVcvCoUi9mdiJ1UptUjZp0f4pfmNnNk7oIgGnHrgmlu3En8cznplvAF6jlqp5ZExgMx0GPGcmyKNSBIbow5JYx7aw82IT2WQiDg_llyX42efCUFhlLxPngrqoDd2Rj_Cco4gc1K7fn30PqGoUeVf7EhodLPbK2Q802ZrN3Q-4vm8YG3882N4JXFWBwHAZtYFhTHIpiriIbKptaNFKSyU3xgotBTNhrFNmKAiLlUmWJTqyFrWOSOQyKaIijLHfG3CTkyVEoYLs8-C16H2jWZyhXRaLgSQyHp3WJ7q8GJ02OQ7AFw5BdxQs5NddUXN_j9a8cvyN7_5vP-4erDpF29_qdsZ9WCqrNbjdld6crcGKq_5-NHsAb3Gv-Nv5VNeVP67rlu46W7-2PrZ2xLJEZv0Qvl7LhB_BclVX5RPwiyQrbCJLgc85mmw65XlhNNeo9dswsh4E_YIq48jVqcbHieqc_LHqAKAcADx4N7Q_62hF_tyS8KHoc7FHk7u0CZwXMXepLdTfRSpkmHrwCiH0z-42epQoJ60a9QsiHrwcXqOcIedRXpX1eaNYSlRxqGxGHjzuADkMRdkgRAToQbYA1aEBcZgvvqmOj-Zc5jgsLhJ7-vdpvYCVnYNP-2p_d7K3DncYpaBQHCDbgOV2el4-g1vmoj1ups_nG9KHb9cN5EulA3R-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Carbon+Footprint+of+Bioinformatics&rft.jtitle=Molecular+biology+and+evolution&rft.au=Grealey%2C+Jason&rft.au=Lannelongue%2C+Lo%C3%AFc&rft.au=Saw%2C+Woei-Yuh&rft.au=Marten%2C+Jonathan&rft.date=2022-03-02&rft.issn=1537-1719&rft.eissn=1537-1719&rft.volume=39&rft.issue=3&rft_id=info:doi/10.1093%2Fmolbev%2Fmsac034&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0737-4038&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0737-4038&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0737-4038&client=summon