MVME-RCMFDE framework for discerning hyper-responsivity in Autism Spectrum Disorders
Autism Spectrum Disorder (ASD), characterized by impaired sensory processing, has a wide range of clinical heterogeneity, which handicaps effective therapeutic interventions. Therefore, it is imperative to develop potential mechanisms for delineating clinically meaningful subgroups, so as to provide...
Uložené v:
| Vydané v: | Computers in biology and medicine Ročník 149; s. 105958 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Elsevier Ltd
01.10.2022
Elsevier Limited |
| Predmet: | |
| ISSN: | 0010-4825, 1879-0534, 1879-0534 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Autism Spectrum Disorder (ASD), characterized by impaired sensory processing, has a wide range of clinical heterogeneity, which handicaps effective therapeutic interventions. Therefore, it is imperative to develop potential mechanisms for delineating clinically meaningful subgroups, so as to provide individualised medical treatment. In this study, an attempt is being made to differentiate the hyper-responsive subgroup from ASD by analysing the complexity pattern of Visual Evoked Potentials (VEPs), recorded from a group of 30 ASD participants, in the presence of vertical achromatic sinewave gratings at varying contrast conditions of low (5%), medium (50%) and high (90%).
This study proposes a new diagnostic framework incorporating a novel signal decomposition method termed as Modified Variational Mode Extraction (MVME) and a multiscale entropy approach. MVME segments the signal into five constituent modes with less spectral overlap in lower frequencies. Refined Composite Multiscale Fluctuation-based Dispersion entropy (RCMFDE) is extracted from these constituent modes, thereby facilitating the identification of hyper-responsive subgroup in ASD.
When tested on both simulated and real VEPs, MVME displays appreciable performance in terms of root mean square error and minimal spectral overlap in the lower frequencies, in comparison with the other state-of-the-art techniques. Relative Complexity analysis with RCMFDE exhibits a rising trend in 43%–50% of ASD in modes 1, 2, 3 and 4.
The proposed MVME-RCMFDE approach is efficient in discriminating the hyper-responsive subgroup in ASD in multiple modes namely mode 1, 2, 3 and 4, which correspond to delta, theta, alpha and beta frequency bands of brain signals.
•Altered sensory processing is a major diagnostic criterion for ASD.•Complexity pattern of VEPs is studied to discern hyper-responsive subgroup in ASD.•Proposed MVME method to decompose VEPs into constituent modes.•RCMFDE is employed as the complexity metric.•MVME-RCMFDE framework identifies hyper-responsivity in multiple frequency bands. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0010-4825 1879-0534 1879-0534 |
| DOI: | 10.1016/j.compbiomed.2022.105958 |