Autoimmune responses in T1DM: quantitative methods to understand onset, progression, and prevention of disease

Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that need to be thoroughly sorted out by careful thought when analyzing these diseases. Type 1 diabetes (T1D) is a typical example of such diseases....

Full description

Saved in:
Bibliographic Details
Published in:Pediatric diabetes Vol. 15; no. 3; pp. 162 - 174
Main Authors: Jaberi-Douraki, Majid, Liu, Shang Wan (Shalon), Pietropaolo, Massimo, Khadra, Anmar
Format: Journal Article
Language:English
Published: Former Munksgaard John Wiley & Sons A/S 01.05.2014
Subjects:
ISSN:1399-543X, 1399-5448, 1399-5448
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that need to be thoroughly sorted out by careful thought when analyzing these diseases. Type 1 diabetes (T1D) is a typical example of such diseases. It is mediated by autoreactive cytotoxic CD4+ and CD8+ T‐cells that infiltrate the pancreatic islets of Langerhans and destroy insulin‐secreting β‐cells, leading to abnormal levels of glucose in affected individuals. The disease is also associated with a series of islet‐specific autoantibodies that appear in high‐risk subjects (HRS) several years prior to the onset of diabetes‐related symptoms. It has been suggested that T1D is relapsing‐remitting in nature and that islet‐specific autoantibodies released by lymphocytic B‐cells are detectable at different stages of the disease, depending on their binding affinity (the higher, the earlier they appear). The multifaceted nature of this disease and its intrinsic complexity make this disease very difficult to analyze experimentally as a whole. The use of quantitative methods, in the form of mathematical models and computational tools, to examine the disease has been a very powerful tool in providing predictions and insights about the underlying mechanism(s) regulating its onset and development. Furthermore, the models developed may have prognostic implications by aiding in the enrollment of HRS into trials for T1D prevention. In this review, we summarize recent advances made in determining T‐ and B‐cell involvement in T1D using these quantitative approaches and delineate areas where mathematical modeling can make further contributions in unraveling certain aspect of this disease.
AbstractList Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that need to be thoroughly sorted out by careful thought when analyzing these diseases. Type 1 diabetes (T1D) is a typical example of such diseases. It is mediated by autoreactive cytotoxic CD4⁺ and CD8⁺ T-cells that infiltrate the pancreatic islets of Langerhans and destroy insulin-secreting β-cells, leading to abnormal levels of glucose in affected individuals. The disease is also associated with a series of islet-specific autoantibodies that appear in high-risk subjects (HRS) several years prior to the onset of diabetes-related symptoms. It has been suggested that T1D is relapsing-remitting in nature and that islet-specific autoantibodies released by lymphocytic B-cells are detectable at different stages of the disease, depending on their binding affinity (the higher, the earlier they appear). The multifaceted nature of this disease and its intrinsic complexity make this disease very difficult to analyze experimentally as a whole. The use of quantitative methods, in the form of mathematical models and computational tools, to examine the disease has been a very powerful tool in providing predictions and insights about the underlying mechanism(s) regulating its onset and development. Furthermore, the models developed may have prognostic implications by aiding in the enrollment of HRS into trials for T1D prevention. In this review, we summarize recent advances made in determining T- and B-cell involvement in T1D using these quantitative approaches and delineate areas where mathematical modeling can make further contributions in unraveling certain aspect of this disease.
Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that need to be thoroughly sorted out by careful thought when analyzing these diseases. Type 1 diabetes (T1D) is a typical example of such diseases. It is mediated by autoreactive cytotoxic CD4+ and CD8+ T‐cells that infiltrate the pancreatic islets of Langerhans and destroy insulin‐secreting β‐cells, leading to abnormal levels of glucose in affected individuals. The disease is also associated with a series of islet‐specific autoantibodies that appear in high‐risk subjects (HRS) several years prior to the onset of diabetes‐related symptoms. It has been suggested that T1D is relapsing‐remitting in nature and that islet‐specific autoantibodies released by lymphocytic B‐cells are detectable at different stages of the disease, depending on their binding affinity (the higher, the earlier they appear). The multifaceted nature of this disease and its intrinsic complexity make this disease very difficult to analyze experimentally as a whole. The use of quantitative methods, in the form of mathematical models and computational tools, to examine the disease has been a very powerful tool in providing predictions and insights about the underlying mechanism(s) regulating its onset and development. Furthermore, the models developed may have prognostic implications by aiding in the enrollment of HRS into trials for T1D prevention. In this review, we summarize recent advances made in determining T‐ and B‐cell involvement in T1D using these quantitative approaches and delineate areas where mathematical modeling can make further contributions in unraveling certain aspect of this disease.
Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that need to be thoroughly sorted out by careful thought when analyzing these diseases. Type 1 diabetes (T1D) is a typical example of such diseases. It is mediated by autoreactive cytotoxic CD4⁺ and CD8⁺ T-cells that infiltrate the pancreatic islets of Langerhans and destroy insulin-secreting β-cells, leading to abnormal levels of glucose in affected individuals. The disease is also associated with a series of islet-specific autoantibodies that appear in high-risk subjects (HRS) several years prior to the onset of diabetes-related symptoms. It has been suggested that T1D is relapsing-remitting in nature and that islet-specific autoantibodies released by lymphocytic B-cells are detectable at different stages of the disease, depending on their binding affinity (the higher, the earlier they appear). The multifaceted nature of this disease and its intrinsic complexity make this disease very difficult to analyze experimentally as a whole. The use of quantitative methods, in the form of mathematical models and computational tools, to examine the disease has been a very powerful tool in providing predictions and insights about the underlying mechanism(s) regulating its onset and development. Furthermore, the models developed may have prognostic implications by aiding in the enrollment of HRS into trials for T1D prevention. In this review, we summarize recent advances made in determining T- and B-cell involvement in T1D using these quantitative approaches and delineate areas where mathematical modeling can make further contributions in unraveling certain aspect of this disease.Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that need to be thoroughly sorted out by careful thought when analyzing these diseases. Type 1 diabetes (T1D) is a typical example of such diseases. It is mediated by autoreactive cytotoxic CD4⁺ and CD8⁺ T-cells that infiltrate the pancreatic islets of Langerhans and destroy insulin-secreting β-cells, leading to abnormal levels of glucose in affected individuals. The disease is also associated with a series of islet-specific autoantibodies that appear in high-risk subjects (HRS) several years prior to the onset of diabetes-related symptoms. It has been suggested that T1D is relapsing-remitting in nature and that islet-specific autoantibodies released by lymphocytic B-cells are detectable at different stages of the disease, depending on their binding affinity (the higher, the earlier they appear). The multifaceted nature of this disease and its intrinsic complexity make this disease very difficult to analyze experimentally as a whole. The use of quantitative methods, in the form of mathematical models and computational tools, to examine the disease has been a very powerful tool in providing predictions and insights about the underlying mechanism(s) regulating its onset and development. Furthermore, the models developed may have prognostic implications by aiding in the enrollment of HRS into trials for T1D prevention. In this review, we summarize recent advances made in determining T- and B-cell involvement in T1D using these quantitative approaches and delineate areas where mathematical modeling can make further contributions in unraveling certain aspect of this disease.
Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that need to be thoroughly sorted out by careful thought when analyzing these diseases. Type1 diabetes (T1D) is a typical example of such diseases. It is mediated by autoreactive cytotoxic CD4+ and CD8+ T-cells that infiltrate the pancreatic islets of Langerhans and destroy insulin-secreting β-cells, leading to abnormal levels of glucose in affected individuals. The disease is also associated with a series of islet-specific autoantibodies that appear in high-risk subjects (HRS) several years prior to the onset of diabetes-related symptoms. It has been suggested that T1D is relapsing-remitting in nature and that islet-specific autoantibodies released by lymphocytic B-cells are detectable at different stages of the disease, depending on their binding affinity (the higher, the earlier they appear). The multifaceted nature of this disease and its intrinsic complexity make this disease very difficult to analyze experimentally as a whole. The use of quantitative methods, in the form of mathematical models and computational tools, to examine the disease has been a very powerful tool in providing predictions and insights about the underlying mechanism(s) regulating its onset and development. Furthermore, the models developed may have prognostic implications by aiding in the enrollment of HRS into trials for T1D prevention. In this review, we summarize recent advances made in determining T- and B-cell involvement in T1D using these quantitative approaches and delineate areas where mathematical modeling can make further contributions in unraveling certain aspect of this disease.
Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that need to be thoroughly sorted out by careful thought when analyzing these diseases. Type 1 diabetes (T1D) is a typical example of such diseases. It is mediated by autoreactive cytotoxic CD4+ and CD8+ T-cells that infiltrate the pancreatic islets of Langerhans and destroy insulin-secreting beta -cells, leading to abnormal levels of glucose in affected individuals. The disease is also associated with a series of islet-specific autoantibodies that appear in high-risk subjects (HRS) several years prior to the onset of diabetes-related symptoms. It has been suggested that T1D is relapsing-remitting in nature and that islet-specific autoantibodies released by lymphocytic B-cells are detectable at different stages of the disease, depending on their binding affinity (the higher, the earlier they appear). The multifaceted nature of this disease and its intrinsic complexity make this disease very difficult to analyze experimentally as a whole. The use of quantitative methods, in the form of mathematical models and computational tools, to examine the disease has been a very powerful tool in providing predictions and insights about the underlying mechanism(s) regulating its onset and development. Furthermore, the models developed may have prognostic implications by aiding in the enrollment of HRS into trials for T1D prevention. In this review, we summarize recent advances made in determining T- and B-cell involvement in T1D using these quantitative approaches and delineate areas where mathematical modeling can make further contributions in unraveling certain aspect of this disease.
Author Khadra, Anmar
Pietropaolo, Massimo
Jaberi-Douraki, Majid
Liu, Shang Wan (Shalon)
AuthorAffiliation 1 Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
2 Laboratory of Immunogenetics, University of Michigan, Ann Arbor, MI, USA 48105-5714
AuthorAffiliation_xml – name: 2 Laboratory of Immunogenetics, University of Michigan, Ann Arbor, MI, USA 48105-5714
– name: 1 Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
Author_xml – sequence: 1
  givenname: Majid
  surname: Jaberi-Douraki
  fullname: Jaberi-Douraki, Majid
  organization: Department of Physiology, McGill University, Quebec, Montreal, Canada
– sequence: 2
  givenname: Shang Wan (Shalon)
  surname: Liu
  fullname: Liu, Shang Wan (Shalon)
  organization: Department of Physiology, McGill University, Quebec, Montreal, Canada
– sequence: 3
  givenname: Massimo
  surname: Pietropaolo
  fullname: Pietropaolo, Massimo
  organization: Laboratory of Immunogenetics, University of Michigan, MI, Ann Arbor, USA
– sequence: 4
  givenname: Anmar
  surname: Khadra
  fullname: Khadra, Anmar
  email: anmar.khadra@mcgill.ca
  organization: Department of Physiology, McGill University, Quebec, Montreal, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24827702$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9rFTEUxYNU7B_d-AEkS5FOTSaZSeKiUNraFqoWqegu5GXutNGZZJpknvbbO9PXPlREzCaX5PwO53K20YYPHhB6Tskenc7rARq3R0vK5SO0RZlSRcW53FjP7Msm2k7pKyFUKMafoM2Sy1IIUm4hfzDm4Pp-9IAjpCH4BAk7jy_p0bs3-GY0PrtsslsC7iFfhybhHPDoG4gpG9_gmci7eIjhajJILvhdPL8PEZYwwcHj0OLGJTAJnqLHrekSPLu_d9Cnt8eXh6fF-YeTs8OD88JyRWUBjC4srVvZ1pIzAcQCrwlIrqxQxioqZDXNkhu5qExd25a0hjasYVxSC4ztoP2V7zAuemjsFCSaTg_R9Sbe6mCc_v3Hu2t9FZaak4owMRu8vDeI4WaElHXvkoWuMx7CmDStOClLqhT_D2lZiZoTNru--DXWOs9DH5Pg1UpgY0gpQruWUKLnsvVctr4rexKTP8T2rqowr-S6vyN0hXx3Hdz-w1xfHB-dPTDFinEpw481Y-I3XQsmKv35_YmuycW0Jv-oT9lPhzLNHg
CitedBy_id crossref_primary_10_1016_j_abb_2015_08_011
crossref_primary_10_1159_000448003
crossref_primary_10_1016_j_jcyt_2015_07_006
crossref_primary_10_1016_j_autrev_2016_06_005
crossref_primary_10_1371_journal_pone_0190349
crossref_primary_10_1002_dmrr_2996
crossref_primary_10_1016_j_imlet_2018_03_013
crossref_primary_10_1097_MD_0000000000042490
crossref_primary_10_1016_j_mbs_2016_10_002
crossref_primary_10_1111_pedi_12269
crossref_primary_10_4239_wjd_v12_i8_1325
crossref_primary_10_1038_s41390_022_02069_w
crossref_primary_10_1016_j_jtbi_2015_07_032
crossref_primary_10_1371_journal_pcbi_1009413
crossref_primary_10_3389_fphys_2016_00633
crossref_primary_10_3390_pharmaceutics16121559
crossref_primary_10_1186_s13256_018_1708_x
crossref_primary_10_2337_dbi23_0017
crossref_primary_10_1016_j_heliyon_2024_e32781
crossref_primary_10_1080_15569527_2016_1258709
crossref_primary_10_1186_s40425_016_0196_z
crossref_primary_10_1002_iub_1330
Cites_doi 10.1007/BF00401518
10.4049/jimmunol.1201787
10.2337/db12-0091
10.2337/diabetes.54.suppl_2.S25
10.2337/diab.42.2.213
10.1007/s00125-003-1164-y
10.1038/ni723
10.2337/db10-1797
10.2337/diab.45.7.926
10.1210/jc.2007-0339
10.1111/j.1600-065X.2008.00637.x
10.1016/j.immuni.2010.03.015
10.2337/diabetes.51.5.1375
10.1016/S1074-7613(00)80220-4
10.3389/fimmu.2013.00321
10.2337/diabetes.53.2.354
10.1007/s125-002-8246-5
10.1016/S1471-4906(01)01976-7
10.1038/sj.cdd.4400973
10.1001/jama.2013.6285
10.1097/00001648-199205000-00008
10.2337/db09-1486
10.1056/NEJMoa043980
10.1111/j.1399-543X.2005.00127.x
10.1002/msj.20054
10.2337/diab.43.11.1304
10.1007/BF00400830
10.1152/japplphysiol.00514.2007
10.1007/s00125-013-2896-y
10.1016/j.jtbi.2004.10.030
10.1038/35021081
10.1016/j.coi.2004.09.001
10.1016/j.mbs.2006.03.021
10.1038/ni.1850
10.1006/jtbi.2000.2150
10.1038/nri2192
10.1073/pnas.1006545107
10.1016/j.jaut.2005.09.018
10.2337/diabetes.51.8.2481
10.1542/peds.78.6.1027
10.1038/329599a0
10.1006/jaut.1999.0281
10.1073/pnas.93.15.7855
10.1073/pnas.85.21.8111
10.1056/NEJM198605223142106
10.1371/journal.pone.0093326
10.1098/rsta.2006.1769
10.1159/000060541
10.1093/intimm/dxq041
10.1137/060661144
10.1136/bmj.298.6673.558
10.1056/NEJM199010253231704
10.2337/db06-0066
10.4049/jimmunol.157.5.1823
10.1038/nm1250
10.1016/j.jtbi.2008.09.019
10.1101/cshperspect.a012831
10.1055/s-0038-1657711
10.4049/jimmunol.180.6.3849
10.4049/jimmunol.1001306
10.2337/db06-0129
10.1073/pnas.91.2.444
10.1016/j.jaut.2004.03.012
10.1093/intimm/dxl040
10.1038/icb.2013.9
10.1159/000218170
10.1371/journal.pone.0051909
10.1007/s00018-011-0738-y
10.1182/blood-2004-12-4848
10.1016/j.imlet.2013.12.018
10.2337/diabetes.48.9.1677
10.1016/j.biosystems.2010.07.018
10.1038/nature06406
10.1073/pnas.1113954108
10.1002/dmrr.341
10.1056/NEJMoa012864
10.2337/diab.44.3.249
10.1172/JCI34236
10.2337/diabetes.54.2.452
10.1016/S0092-8674(00)81106-X
10.1172/JCI24219
10.1172/JCI200316409
10.1038/psp.2013.30
10.3934/mbe.2009.6.753
10.2337/diabetes.49.1.1
10.1002/eji.200526158
10.2337/diab.37.12.1591
10.4049/jimmunol.154.10.5567
ContentType Journal Article
Copyright 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Copyright_xml – notice: 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
– notice: 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
H94
5PM
DOI 10.1111/pedi.12148
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Immunology Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
DatabaseTitleList MEDLINE

MEDLINE - Academic

AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1399-5448
EndPage 174
ExternalDocumentID PMC4050373
24827702
10_1111_pedi_12148
PEDI12148
ark_67375_WNG_60P5254R_H
Genre reviewArticle
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Natural Sciences and Engineering Council of Canada
– fundername: National Institutes of Health
  funderid: R01 DK53456; R01 DK56200; R21 DK073724
– fundername: NIDDK NIH HHS
  grantid: P30 DK020572
– fundername: NIDDK NIH HHS
  grantid: R01 DK053456
– fundername: NIDDK NIH HHS
  grantid: R21 DK073724
– fundername: NIDDK NIH HHS
  grantid: R01 DK53456
– fundername: NIDDK NIH HHS
  grantid: R01 DK56200
– fundername: NIDDK NIH HHS
  grantid: R01 DK056200
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
7RV
7X7
8-0
8-1
8-3
8-4
8-5
8C1
8FI
8FJ
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAKAS
AAMMB
AANHP
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPPZ
ABPVW
ABUWG
ABXGK
ACAHQ
ACBWZ
ACCMX
ACCZN
ACGFS
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
AEFGJ
AEIMD
AENEX
AFBPY
AFEBI
AFFHD
AFGKR
AFKRA
AFZJQ
AGQPQ
AGXDD
AIACR
AIDQK
AIDYY
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FYUFA
G-S
G.N
GODZA
H.X
H13
HF~
HMCUK
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NAPCQ
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
TEORI
UB1
UKHRP
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
XG1
YFH
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
AAHHS
AAJEY
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
H94
5PM
ID FETCH-LOGICAL-c4918-e31bc16f8f68437e0ce460e849c79ac9178549c84a8b5a66cf0fa1d3d3481ce33
IEDL.DBID DRFUL
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000335836000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1399-543X
1399-5448
IngestDate Tue Nov 04 02:04:16 EST 2025
Fri Sep 05 14:38:22 EDT 2025
Thu Oct 02 05:42:58 EDT 2025
Thu Apr 03 06:56:59 EDT 2025
Sat Nov 29 06:09:55 EST 2025
Tue Nov 18 21:51:03 EST 2025
Sun Sep 21 06:23:25 EDT 2025
Tue Nov 11 03:31:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords T-cells
avidity
B-cells
autoimmunity
predictive algorithms
β-cells
T1D
mathematical models
Markov models
autoantibodies
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4918-e31bc16f8f68437e0ce460e849c79ac9178549c84a8b5a66cf0fa1d3d3481ce33
Notes istex:0FFA31EA1DDBCA752EF28DC9BCFDAE930FD0243C
Natural Sciences and Engineering Council of Canada
ArticleID:PEDI12148
National Institutes of Health - No. R01 DK53456; No. R01 DK56200; No. R21 DK073724
ark:/67375/WNG-60P5254R-H
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/pedi.12148
PMID 24827702
PQID 1525764033
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4050373
proquest_miscellaneous_1540221994
proquest_miscellaneous_1525764033
pubmed_primary_24827702
crossref_primary_10_1111_pedi_12148
crossref_citationtrail_10_1111_pedi_12148
wiley_primary_10_1111_pedi_12148_PEDI12148
istex_primary_ark_67375_WNG_60P5254R_H
PublicationCentury 2000
PublicationDate May 2014
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: May 2014
PublicationDecade 2010
PublicationPlace Former Munksgaard
PublicationPlace_xml – name: Former Munksgaard
– name: Denmark
PublicationTitle Pediatric diabetes
PublicationTitleAlternate Pediatr Diabetes
PublicationYear 2014
Publisher John Wiley & Sons A/S
Publisher_xml – name: John Wiley & Sons A/S
References Nerup J, Mandrup-Poulsen T, Molvig J, Helqvist S, Wogensen L, Egeberg J. Mechanisms of pancreatic beta-cell destruction in type I diabetes. Diabetes Care 1988: 11 (Suppl 1): 16-23.
Nejentsev S, Howson JM, Walker NM et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 2007: 450: 887-892.
Trudeau JD, Kelly-Smith C, Verchere CB et al. Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood. J Clin Invest 2003: 111: 217-223.
Amrani A, Verdaguer J, Serra P, Tafuro S, Tan R, Santamaria P. Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature 2000: 406: 739-742.
Pietropaolo M, Towns R, Eisenbarth GS. Humoral autoimmunity in type 1 diabetes: prediction, significance, and detection of distinct disease subtypes. Cold Spring Harb Perspect Med 2012: 2: a012831. doi: 10.1101/cshperspect.a012831.
Trudeau JD, Dutz JP, Arany E, Hill DJ, Fieldus WE, Finegood DT. Neonatal beta-cell apoptosis: a trigger for autoimmune diabetes? Diabetes 2000: 49: 1-7.
Marée AF, Kublik R, Finegood DT, Edelstein-Keshet L. Modelling the onset of type 1 diabetes: can impaired macrophage phagocytosis make the difference between health and disease? Philos Transact A Math Phys Eng Sci 2006: 364: 1267-1282.
Palosuo T, Virtamo J, Haukka J et al. High antibody levels to prothrombin imply a risk of deep venous thrombosis and pulmonary embolism in middle-aged men - a nested case-control study. Thromb Haemost 1997: 78: 1178-1182.
Herold KC, Hagopian W, Auger JA et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med 2002: 346: 1692-1698.
Nerup J, Mandrup-Poulsen T, Helqvist S et al. On the pathogenesis of IDDM. Diabetologia 1994: 37 (Suppl 2): S82-S89.
Han B, Serra P, Yamanouchi J et al. Developmental control of CD8 T cell-avidity maturation in autoimmune diabetes. J Clin Invest 2005: 115: 1879-1887.
Wang J, Tsai S, Han B, Tailor P, Santamaria P. Autoantigen Recognition Is Required for Recruitment of IGRP206-214-Autoreactive CD8+ T Cells but Is Dispensable for Tolerance. J Immunol 2012: 189: 2975-2984.
O'Brien BA, Huang Y, Geng X, Dutz JP, Finegood DT. Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced. Diabetes 2002: 51: 2481-2488.
Beyan H, Buckley LR, Yousaf N, Londei M, Leslie RD. A role for innate immunity in type 1 diabetes? Diabetes Metab Res Rev 2003: 19: 89-100.
Bingley PJ, Christie MR, Bonifacio E et al. Combined analysis of autoantibodies improves prediction of IDDM in islet cell antibody-positive relatives. Diabetes 1994: 43: 1304-1310.
Ajmera I, Swat M, Laibe C, Novere NL, Chelliah V. The impact of mathematical modeling on the understanding of diabetes and related complications. CPT Pharmacometrics Syst Pharmacol 2013: 2: e54.
Suri A, Walters JJ, Rohrs HW, Gross ML, Unanue ER. First signature of islet beta-cell-derived naturally processed peptides selected by diabetogenic class II MHC molecules. J Immunol 2008: 180: 3849-3856.
Maclaren N, Lan M, Coutant R et al. Only multiple autoantibodies to islet cells (ICA), insulin, GAD65, IA-2 and IA-2beta predict immune-mediated (Type 1) diabetes in relatives. J Autoimmun 1999: 12: 279-287.
Ziegler AG, Rewers M, Simell O et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 2013: 309: 2473-2479.
Topp B, Promislow K, de Vries G, Miura RM, Finegood DT. A model of beta-cell mass, insulin, and glucose kinetics: pathways to diabetes. J Theor Biol 2000: 206: 605-619.
Pietropaolo M, Becker DJ, LaPorte RE et al. Progression to insulin-requiring diabetes in seronegative prediabetic subjects: the role of two HLA-DQ high-risk haplotypes. Diabetologia 2002: 45: 66-76.
Bingley PJ, Gale EA. Incidence of insulin dependent diabetes in England: a study in the Oxford region, 1985-1986. BMJ 1989: 298: 558-560.
Toes RE, Offringa R, Blom RJ, Melief CJ, Kast WM. Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction. Proc Natl Acad Sci USA 1996: 93: 7855-7860.
Schnell S. A model of the unfolded protein response: pancreatic beta-cell as a case study. Cell Physiol Biochem 2009: 23: 233-244.
Quartey-Papafio R, Lund T, Chandler P et al. Aspartate at position 57 of nonobese diabetic I-Ag7 beta-chain diminishes the spontaneous incidence of insulin-dependent diabetes mellitus. J Immunol 1995: 154: 5567-5575.
Yewdell JW, Anton LC, Bennink JR. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J Immunol 1996: 157: 1823-1826.
Tsai S, Clemente-Casares X, Santamaria P. CD8+ Tregs in autoimmunity: learning "self"-control from experience. Cell Mol Life Sci 2011: 68: 3781-3795.
Bour-Jordan H, Bluestone JA. B cell depletion: a novel therapy for autoimmune diabetes? J Clin Invest 2007: 117: 3642-3645.
Bollyky J, Sanda S, Greenbaum CJ. Type 1 diabetes mellitus: primary, secondary, and tertiary prevention. Mt Sinai J Med 2008: 75: 385-397.
Velthuis JH, Unger WW, Abreu JR et al. Simultaneous detection of circulating autoreactive CD8+ T-cells specific for different islet cell-associated epitopes using combinatorial MHC multimers. Diabetes 2010: 59: 1721-1730.
Naik RG, Palmer JP. Preservation of β-cell function in type 1 diabetes. Diabetes Rev 1999: 7: 154-182.
Latek RR, Suri A, Petzold SJ et al. Structural basis of peptide binding and presentation by the type I diabetes-associated MHC class II molecule of NOD mice. Immunity 2000: 12: 699-710.
Khadra A, Tsai S, Santamaria P, Edelstein-Keshet L. On how monospecific memory-like autoregulatory CD8+ T cells can blunt diabetogenic autoimmunity: a computational approach. J Immunol 2010: 185: 5962-5972.
Mallone R, Kochik SA, Reijonen H et al. Functional avidity directs T-cell fate in autoreactive CD4+ T cells. Blood 2005: 106: 2798-2805.
Keymeulen B, Vandemeulebroucke E, Ziegler AG et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 2005: 352: 2598-2608.
Estella E, McKenzie MD, Catterall T et al. Granzyme B-mediated death of pancreatic beta-cells requires the proapoptotic BH3-only molecule bid. Diabetes 2006: 55: 2212-2219.
Pietropaolo M, Yu S, Libman IM et al. Cytoplasmic islet cell antibodies remain valuable in defining risk of progression to type 1 diabetes in subjects with other islet autoantibodies. Pediatr Diabetes 2005: 6: 184-192.
Anderton SM. Post-translational modifications of self antigens: implications for autoimmunity. Curr Opin Immunol 2004: 16: 753-758.
O'Sullivan-Murphy B, Urano F. ER stress as a trigger for beta-cell dysfunction and autoimmunity in type 1 diabetes. Diabetes 2012: 61: 780-781.
Achenbach P, Hummel M, Thumer L, Boerschmann H, Hofelmann D, Ziegler AG. Characteristics of rapid vs slow progression to type 1 diabetes in multiple islet autoantibody-positive children. Diabetologia 2013: 56: 1615-1622.
Tsai S, Santamaria P. MHC Class II polymorphisms, autoreactive T-cells, and autoimmunity. Front Immunol 2013: 4: 321.
Stadinski BD, Zhang L, Crawford F, Marrack P, Eisenbarth GS, Kappler JW. Diabetogenic T cells recognize insulin bound to IAg7 in an unexpected, weakly binding register. Proc Natl Acad Sci USA 2010: 107: 10978-10983.
Maclaren NK. How, when, and why to predict IDDM. Diabetes 1988: 37: 1591-1594.
Todd JA, Bell JI, McDevitt HO. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 1987: 329: 599-604.
LaPorte RE, Dorman JS, Tajima N et al. Pittsburgh Insulin-Dependent Diabetes Mellitus Morbidity and Mortality Study: physical activity and diabetic complications. Pediatrics 1986: 78: 1027-1033.
Sugarman J, Tsai S, Santamaria P, Khadra A. Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy. Immunol Cell Biol 2013: 91: 350-359.
Marinković T, Sysi-Aho M, Oresic M. Integrated model of metabolism and autoimmune response in beta-cell death and progression to type 1 diabetes. PLoS One 2012: 7: e51909.
Wang X, He Z, Ghosh S. Investigation of the age-at-onset heterogeneity in type 1 diabetes through mathematical modeling. Math Biosci 2006: 203: 79-99.
Magombedze G, Nduru P, Bhunu CP, Mushayabasa S. Mathematical modelling of immune regulation of type 1 diabetes. Biosystems 2010: 102: 88-98.
Atkinson MA, Bluestone JA, Eisenbarth GS et al. How does type 1 diabetes develop? The notion of homicide or beta-cell suicide revisited. Diabetes 2011: 60: 1370-1379.
Freiesleben De Blasio B, Bak P, Pociot F, Karlsen AE, Nerup J. Onset of type 1 diabetes: a dynamical instability. Diabetes 1999: 48: 1677-1685.
Doyle HA, Mamula MJ. Post-translational protein modifications in antigen recognition and autoimmunity. Trends Immunol 2001: 22: 443-449.
Finegood DT, Scaglia L, Bonner-Weir S. Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 1995: 44: 249-256.
Derbinski J, Schulte A, Kyewski B, Klein L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2001: 2: 1032-1039.
Bingley PJ, Bonifacio E, Gale EA. Can we really predict IDDM? Diabetes 1993: 42: 213-220.
Jaberi-Douraki M, Pietropaolo M, Khadra A. Predictive models of type 1 diabetes progression: understanding T-cell cycles and their implications on autoantibody release. PLoS One 2014: 9: e93326. doi:10.1371/journal.pone.0093326.
Walter U, Toepfer T, Dittmar KE et al. Pancreatic NOD beta cells express MHC class II protein and the frequency of I-A(g7) mRNA-expressing beta cells strongly increases during progression to autoimmune diabetes. Diabetologia 2003: 46: 1106-1114.
Kostraba JN, Gay EC, Cai Y et al. Incidence of insulin-dependent diabetes mellitus in Colorado. Epidemiology 1992: 3: 232-238.
Standifer NE, Ouyang Q, Panagiotopoulos C et al. Identification of novel HLA-A*0201 - restricted epitopes in recent-onset type 1 diabetic subjects and antibody-positive relatives. Diabetes 2006: 55: 3061-3
2012; 61
2010; 11
2010; 59
2013; 4
2000; 49
2013; 2
2010; 107
2002; 51
2011; 60
1986; 78
1988; 37
1999; 48
2004; 23
2010; 102
2010; 185
2008; 104
2003; 19
2008; 75
2008; 223
2003; 111
2005; 25
2010; 22
2000; 12
2013; 56
2002; 45
2000; 206
2007; 450
2000; 406
2005; 106
2003; 46
1999; 12
2002; 346
2007; 7
2011; 68
1994; 37
1988; 85
2014; 9
2006; 203
2007; 67
1992; 3
2006; 364
2005; 35
2009; 23
2010; 32
2012; 189
1986; 314
1990; 323
2002; 9
2005; 352
1991; 34
2013; 309
2005; 233
2006; 55
1987; 329
2005; 115
1993; 42
1989; 298
2013; 91
1988; 11
1996; 93
2006; 18
2007; 92
2009; 256
2001; 22
1999; 7
1995; 154
2014; 158
1994; 43
2008; 180
2004; 53
2012; 2
2011; 108
2007; 117
2004; 16
2001; 4
1995; 44
1997; 78
1996; 85
2005; 54
2005; 6
2001; 2
2009; 6
2012; 7
1994; 91
1996; 157
2005; 11
1996; 45
Morel (10.1111/pedi.12148-BIB0018|pedi12148-cit-0018) 1988; 85
Trudeau (10.1111/pedi.12148-BIB0060|pedi12148-cit-0060) 2000; 49
Tisch (10.1111/pedi.12148-BIB0050|pedi12148-cit-0050) 1996; 85
O'Brien (10.1111/pedi.12148-BIB0009|pedi12148-cit-0009) 2002; 9
Stoffels (10.1111/pedi.12148-BIB0070|pedi12148-cit-0070) 2004; 23
Derbinski (10.1111/pedi.12148-BIB0007|pedi12148-cit-0007) 2001; 2
Kostraba (10.1111/pedi.12148-BIB0042|pedi12148-cit-0042) 1992; 3
Quartey-Papafio (10.1111/pedi.12148-BIB0051|pedi12148-cit-0051) 1995; 154
Sugarman (10.1111/pedi.12148-BIB0084|pedi12148-cit-0084) 2013; 91
Marée (10.1111/pedi.12148-BIB0068|pedi12148-cit-0068) 2005; 233
Suri (10.1111/pedi.12148-BIB0053|pedi12148-cit-0053) 2008; 180
O'Sullivan-Murphy (10.1111/pedi.12148-BIB0015|pedi12148-cit-0015) 2012; 61
Topp (10.1111/pedi.12148-BIB0066|pedi12148-cit-0066) 2000; 206
Han (10.1111/pedi.12148-BIB0089|pedi12148-cit-0089) 2005; 115
Herold (10.1111/pedi.12148-BIB0022|pedi12148-cit-0022) 2002; 346
Trudeau (10.1111/pedi.12148-BIB0077|pedi12148-cit-0077) 2003; 111
Mohan (10.1111/pedi.12148-BIB0056|pedi12148-cit-0056) 2010; 11
Doyle (10.1111/pedi.12148-BIB0057|pedi12148-cit-0057) 2001; 22
Mahaffy (10.1111/pedi.12148-BIB0078|pedi12148-cit-0078) 2007; 67
Marée (10.1111/pedi.12148-BIB0067|pedi12148-cit-0067) 2008; 104
Oling (10.1111/pedi.12148-BIB0001|pedi12148-cit-0001) 2005; 25
Magombedze (10.1111/pedi.12148-BIB0087|pedi12148-cit-0087) 2010; 102
Achenbach (10.1111/pedi.12148-BIB0034|pedi12148-cit-0034) 2013; 56
Marée (10.1111/pedi.12148-BIB0069|pedi12148-cit-0069) 2006; 364
Bour-Jordan (10.1111/pedi.12148-BIB0024|pedi12148-cit-0024) 2007; 117
Tsai (10.1111/pedi.12148-BIB0026|pedi12148-cit-0026) 2010; 32
Beyan (10.1111/pedi.12148-BIB0011|pedi12148-cit-0011) 2003; 19
Schnell (10.1111/pedi.12148-BIB0016|pedi12148-cit-0016) 2009; 23
Tsai (10.1111/pedi.12148-BIB0081|pedi12148-cit-0081) 2011; 68
Finegood (10.1111/pedi.12148-BIB0059|pedi12148-cit-0059) 1995; 44
Mallone (10.1111/pedi.12148-BIB0088|pedi12148-cit-0088) 2005; 106
Stadinski (10.1111/pedi.12148-BIB0054|pedi12148-cit-0054) 2010; 107
Riley (10.1111/pedi.12148-BIB0045|pedi12148-cit-0045) 1990; 323
Marinković (10.1111/pedi.12148-BIB0065|pedi12148-cit-0065) 2012; 7
Palosuo (10.1111/pedi.12148-BIB0033|pedi12148-cit-0033) 1997; 78
Marée (10.1111/pedi.12148-BIB0076|pedi12148-cit-0076) 2006; 18
Herrath (10.1111/pedi.12148-BIB0079|pedi12148-cit-0079) 2007; 7
Walter (10.1111/pedi.12148-BIB0019|pedi12148-cit-0019) 2003; 46
Khadra (10.1111/pedi.12148-BIB0071|pedi12148-cit-0071) 2010; 22
Aichele (10.1111/pedi.12148-BIB0074|pedi12148-cit-0074) 1994; 91
Reijonen (10.1111/pedi.12148-BIB0002|pedi12148-cit-0002) 2002; 51
Pietropaolo (10.1111/pedi.12148-BIB0029|pedi12148-cit-0029) 2001; 4
Jaberi-Douraki (10.1111/pedi.12148-BIB0080|pedi12148-cit-0080) 2014; 9
Pietropaolo (10.1111/pedi.12148-BIB0037|pedi12148-cit-0037) 2005; 6
Nelson (10.1111/pedi.12148-BIB0085|pedi12148-cit-0085) 2009; 6
Maclaren (10.1111/pedi.12148-BIB0032|pedi12148-cit-0032) 1999; 12
Yewdell (10.1111/pedi.12148-BIB0072|pedi12148-cit-0072) 1996; 157
Eisenbarth (10.1111/pedi.12148-BIB0041|pedi12148-cit-0041) 1986; 314
Barmeier (10.1111/pedi.12148-BIB0044|pedi12148-cit-0044) 1991; 34
Anderton (10.1111/pedi.12148-BIB0058|pedi12148-cit-0058) 2004; 16
Verge (10.1111/pedi.12148-BIB0028|pedi12148-cit-0028) 1996; 45
Pietropaolo (10.1111/pedi.12148-BIB0027|pedi12148-cit-0027) 2002; 45
Ziegler (10.1111/pedi.12148-BIB0035|pedi12148-cit-0035) 2013; 309
Wang (10.1111/pedi.12148-BIB0005|pedi12148-cit-0005) 2012; 189
Eisenbarth (10.1111/pedi.12148-BIB0031|pedi12148-cit-0031) 2007; 92
Khadra (10.1111/pedi.12148-BIB0083|pedi12148-cit-0083) 2010; 185
Clemente-Casares (10.1111/pedi.12148-BIB0025|pedi12148-cit-0025) 2014; 158
Todd (10.1111/pedi.12148-BIB0049|pedi12148-cit-0049) 1987; 329
Standifer (10.1111/pedi.12148-BIB0003|pedi12148-cit-0003) 2006; 55
Chentoufi (10.1111/pedi.12148-BIB0006|pedi12148-cit-0006) 2004; 53
Brusko (10.1111/pedi.12148-BIB0086|pedi12148-cit-0086) 2008; 223
Bingley (10.1111/pedi.12148-BIB0036|pedi12148-cit-0036) 1994; 43
Ajmera (10.1111/pedi.12148-BIB0090|pedi12148-cit-0090) 2013; 2
Preda (10.1111/pedi.12148-BIB0021|pedi12148-cit-0021) 2005; 35
Freiesleben De Blasio (10.1111/pedi.12148-BIB0063|pedi12148-cit-0063) 1999; 48
Amrani (10.1111/pedi.12148-BIB0020|pedi12148-cit-0020) 2000; 406
Achenbach (10.1111/pedi.12148-BIB0030|pedi12148-cit-0030) 2005; 54
Han (10.1111/pedi.12148-BIB0073|pedi12148-cit-0073) 2005; 11
Atkinson (10.1111/pedi.12148-BIB0014|pedi12148-cit-0014) 2011; 60
Nejentsev (10.1111/pedi.12148-BIB0017|pedi12148-cit-0017) 2007; 450
Nerup (10.1111/pedi.12148-BIB0061|pedi12148-cit-0061) 1994; 37
Naik (10.1111/pedi.12148-BIB0039|pedi12148-cit-0039) 1999; 7
Maclaren (10.1111/pedi.12148-BIB0046|pedi12148-cit-0046) 1988; 37
Tsai (10.1111/pedi.12148-BIB0052|pedi12148-cit-0052) 2013; 4
Crawford (10.1111/pedi.12148-BIB0055|pedi12148-cit-0055) 2011; 108
Pietropaolo (10.1111/pedi.12148-BIB0008|pedi12148-cit-0008) 2012; 2
Toes (10.1111/pedi.12148-BIB0075|pedi12148-cit-0075) 1996; 93
Velthuis (10.1111/pedi.12148-BIB0004|pedi12148-cit-0004) 2010; 59
Bollyky (10.1111/pedi.12148-BIB0038|pedi12148-cit-0038) 2008; 75
Nerup (10.1111/pedi.12148-BIB0062|pedi12148-cit-0062) 1988; 11
Bingley (10.1111/pedi.12148-BIB0047|pedi12148-cit-0047) 1993; 42
Wang (10.1111/pedi.12148-BIB0064|pedi12148-cit-0064) 2006; 203
Cardozo (10.1111/pedi.12148-BIB0012|pedi12148-cit-0012) 2005; 54
O'Brien (10.1111/pedi.12148-BIB0010|pedi12148-cit-0010) 2002; 51
Estella (10.1111/pedi.12148-BIB0013|pedi12148-cit-0013) 2006; 55
Khadra (10.1111/pedi.12148-BIB0082|pedi12148-cit-0082) 2009; 256
Keymeulen (10.1111/pedi.12148-BIB0023|pedi12148-cit-0023) 2005; 352
Bingley (10.1111/pedi.12148-BIB0040|pedi12148-cit-0040) 1989; 298
Latek (10.1111/pedi.12148-BIB0048|pedi12148-cit-0048) 2000; 12
LaPorte (10.1111/pedi.12148-BIB0043|pedi12148-cit-0043) 1986; 78
References_xml – reference: Cardozo AK, Ortis F, Storling J et al. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes 2005: 54: 452-461.
– reference: Pietropaolo M, Becker DJ, LaPorte RE et al. Progression to insulin-requiring diabetes in seronegative prediabetic subjects: the role of two HLA-DQ high-risk haplotypes. Diabetologia 2002: 45: 66-76.
– reference: Tsai S, Clemente-Casares X, Santamaria P. CD8+ Tregs in autoimmunity: learning "self"-control from experience. Cell Mol Life Sci 2011: 68: 3781-3795.
– reference: Nerup J, Mandrup-Poulsen T, Helqvist S et al. On the pathogenesis of IDDM. Diabetologia 1994: 37 (Suppl 2): S82-S89.
– reference: von Herrath M, Sanda S, Herold K. Type 1 diabetes as a relapsing-remitting disease? Nat Rev Immunol 2007: 7: 988-994.
– reference: Jaberi-Douraki M, Pietropaolo M, Khadra A. Predictive models of type 1 diabetes progression: understanding T-cell cycles and their implications on autoantibody release. PLoS One 2014: 9: e93326. doi:10.1371/journal.pone.0093326.
– reference: Bingley PJ, Gale EA. Incidence of insulin dependent diabetes in England: a study in the Oxford region, 1985-1986. BMJ 1989: 298: 558-560.
– reference: Pietropaolo M, Towns R, Eisenbarth GS. Humoral autoimmunity in type 1 diabetes: prediction, significance, and detection of distinct disease subtypes. Cold Spring Harb Perspect Med 2012: 2: a012831. doi: 10.1101/cshperspect.a012831.
– reference: Eisenbarth GS. Update in type 1 diabetes. J Clin Endocrinol Metab 2007: 92: 2403-2407.
– reference: Estella E, McKenzie MD, Catterall T et al. Granzyme B-mediated death of pancreatic beta-cells requires the proapoptotic BH3-only molecule bid. Diabetes 2006: 55: 2212-2219.
– reference: Tsai S, Santamaria P. MHC Class II polymorphisms, autoreactive T-cells, and autoimmunity. Front Immunol 2013: 4: 321.
– reference: Bingley PJ, Christie MR, Bonifacio E et al. Combined analysis of autoantibodies improves prediction of IDDM in islet cell antibody-positive relatives. Diabetes 1994: 43: 1304-1310.
– reference: Wang X, He Z, Ghosh S. Investigation of the age-at-onset heterogeneity in type 1 diabetes through mathematical modeling. Math Biosci 2006: 203: 79-99.
– reference: Walter U, Toepfer T, Dittmar KE et al. Pancreatic NOD beta cells express MHC class II protein and the frequency of I-A(g7) mRNA-expressing beta cells strongly increases during progression to autoimmune diabetes. Diabetologia 2003: 46: 1106-1114.
– reference: Pietropaolo M, Eisenbarth GS. Autoantibodies in human diabetes. Curr Dir Autoimmun 2001: 4: 252-282.
– reference: Todd JA, Bell JI, McDevitt HO. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 1987: 329: 599-604.
– reference: Ajmera I, Swat M, Laibe C, Novere NL, Chelliah V. The impact of mathematical modeling on the understanding of diabetes and related complications. CPT Pharmacometrics Syst Pharmacol 2013: 2: e54.
– reference: Trudeau JD, Dutz JP, Arany E, Hill DJ, Fieldus WE, Finegood DT. Neonatal beta-cell apoptosis: a trigger for autoimmune diabetes? Diabetes 2000: 49: 1-7.
– reference: Oling V, Marttila J, Ilonen J et al. GAD65- and proinsulin-specific CD4+ T-cells detected by MHC class II tetramers in peripheral blood of type 1 diabetes patients and at-risk subjects. J Autoimmun 2005: 25: 235-243.
– reference: Derbinski J, Schulte A, Kyewski B, Klein L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2001: 2: 1032-1039.
– reference: Latek RR, Suri A, Petzold SJ et al. Structural basis of peptide binding and presentation by the type I diabetes-associated MHC class II molecule of NOD mice. Immunity 2000: 12: 699-710.
– reference: Maclaren N, Lan M, Coutant R et al. Only multiple autoantibodies to islet cells (ICA), insulin, GAD65, IA-2 and IA-2beta predict immune-mediated (Type 1) diabetes in relatives. J Autoimmun 1999: 12: 279-287.
– reference: Bingley PJ, Bonifacio E, Gale EA. Can we really predict IDDM? Diabetes 1993: 42: 213-220.
– reference: Magombedze G, Nduru P, Bhunu CP, Mushayabasa S. Mathematical modelling of immune regulation of type 1 diabetes. Biosystems 2010: 102: 88-98.
– reference: O'Brien BA, Huang Y, Geng X, Dutz JP, Finegood DT. Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced. Diabetes 2002: 51: 2481-2488.
– reference: Tisch R, McDevitt H. Insulin-dependent diabetes mellitus. Cell 1996: 85: 291-297.
– reference: Kostraba JN, Gay EC, Cai Y et al. Incidence of insulin-dependent diabetes mellitus in Colorado. Epidemiology 1992: 3: 232-238.
– reference: Reijonen H, Novak EJ, Kochik S et al. Detection of GAD65-specific T-cells by major histocompatibility complex class II tetramers in type 1 diabetic patients and at-risk subjects. Diabetes 2002: 51: 1375-1382.
– reference: Stoffels K, Overbergh L, Giulietti A et al. NOD macrophages produce high levels of inflammatory cytokines upon encounter of apoptotic or necrotic cells. J Autoimmun 2004: 23: 9-15.
– reference: Sugarman J, Tsai S, Santamaria P, Khadra A. Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy. Immunol Cell Biol 2013: 91: 350-359.
– reference: Marée AF, Santamaria P, Edelstein-Keshet L. Modeling competition among autoreactive CD8+ T cells in autoimmune diabetes: implications for antigen-specific therapy. Int Immunol 2006: 18: 1067-1077.
– reference: Chentoufi AA, Palumbo M, Polychronakos C. Proinsulin expression by Hassall's corpuscles in the mouse thymus. Diabetes 2004: 53: 354-359.
– reference: O'Brien BA, Fieldus WE, Field CJ, Finegood DT. Clearance of apoptotic beta-cells is reduced in neonatal autoimmune diabetes-prone rats. Cell Death Differ 2002: 9: 457-464.
– reference: Achenbach P, Bonifacio E, Koczwara K, Ziegler AG. Natural history of type 1 diabetes. Diabetes 2005: 54 (Suppl 2): S25-S31.
– reference: Bollyky J, Sanda S, Greenbaum CJ. Type 1 diabetes mellitus: primary, secondary, and tertiary prevention. Mt Sinai J Med 2008: 75: 385-397.
– reference: Amrani A, Verdaguer J, Serra P, Tafuro S, Tan R, Santamaria P. Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature 2000: 406: 739-742.
– reference: Marée AF, Komba M, Dyck C, Labecki M, Finegood DT, Edelstein-Keshet L. Quantifying macrophage defects in type 1 diabetes. J Theor Biol 2005: 233: 533-551.
– reference: Preda I, McEvoy RC, Lin M et al. Soluble, dimeric HLA DR4-peptide chimeras: an approach for detection and immunoregulation of human type-1 diabetes. Eur J Immunol 2005: 35: 2762-2775.
– reference: Nejentsev S, Howson JM, Walker NM et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 2007: 450: 887-892.
– reference: Freiesleben De Blasio B, Bak P, Pociot F, Karlsen AE, Nerup J. Onset of type 1 diabetes: a dynamical instability. Diabetes 1999: 48: 1677-1685.
– reference: Pietropaolo M, Yu S, Libman IM et al. Cytoplasmic islet cell antibodies remain valuable in defining risk of progression to type 1 diabetes in subjects with other islet autoantibodies. Pediatr Diabetes 2005: 6: 184-192.
– reference: Herold KC, Hagopian W, Auger JA et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med 2002: 346: 1692-1698.
– reference: Suri A, Walters JJ, Rohrs HW, Gross ML, Unanue ER. First signature of islet beta-cell-derived naturally processed peptides selected by diabetogenic class II MHC molecules. J Immunol 2008: 180: 3849-3856.
– reference: Wang J, Tsai S, Han B, Tailor P, Santamaria P. Autoantigen Recognition Is Required for Recruitment of IGRP206-214-Autoreactive CD8+ T Cells but Is Dispensable for Tolerance. J Immunol 2012: 189: 2975-2984.
– reference: Achenbach P, Hummel M, Thumer L, Boerschmann H, Hofelmann D, Ziegler AG. Characteristics of rapid vs slow progression to type 1 diabetes in multiple islet autoantibody-positive children. Diabetologia 2013: 56: 1615-1622.
– reference: Morel PA, Dorman JS, Todd JA, McDevitt HO, Trucco M. Aspartic acid at position 57 of the HLA-DQ beta chain protects against type I diabetes: a family study. Proc Natl Acad Sci USA 1988: 85: 8111-8115.
– reference: Bour-Jordan H, Bluestone JA. B cell depletion: a novel therapy for autoimmune diabetes? J Clin Invest 2007: 117: 3642-3645.
– reference: Palosuo T, Virtamo J, Haukka J et al. High antibody levels to prothrombin imply a risk of deep venous thrombosis and pulmonary embolism in middle-aged men - a nested case-control study. Thromb Haemost 1997: 78: 1178-1182.
– reference: Doyle HA, Mamula MJ. Post-translational protein modifications in antigen recognition and autoimmunity. Trends Immunol 2001: 22: 443-449.
– reference: Mohan JF, Levisetti MG, Calderon B, Herzog JW, Petzold SJ, Unanue ER. Unique autoreactive T cells recognize insulin peptides generated within the islets of Langerhans in autoimmune diabetes. Nat Immunol 2010: 11: 350-354.
– reference: Maclaren NK. How, when, and why to predict IDDM. Diabetes 1988: 37: 1591-1594.
– reference: Anderton SM. Post-translational modifications of self antigens: implications for autoimmunity. Curr Opin Immunol 2004: 16: 753-758.
– reference: Verge CF, Gianani R, Kawasaki E et al. Prediction of type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes 1996: 45: 926-933.
– reference: Riley WJ, Maclaren NK, Krischer J et al. A prospective study of the development of diabetes in relatives of patients with insulin-dependent diabetes. N Engl J Med 1990: 323: 1167-1172.
– reference: Toes RE, Offringa R, Blom RJ, Melief CJ, Kast WM. Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction. Proc Natl Acad Sci USA 1996: 93: 7855-7860.
– reference: Khadra A, Tsai S, Santamaria P, Edelstein-Keshet L. On how monospecific memory-like autoregulatory CD8+ T cells can blunt diabetogenic autoimmunity: a computational approach. J Immunol 2010: 185: 5962-5972.
– reference: Nelson P, Smith N, Ciupe S, Zou W, Omenn GS, Pietropaolo M. Modeling dynamic changes in type 1 diabetes progression: quantifying beta-cell variation after the appearance of islet-specific autoimmune responses. Math Biosci Eng 2009: 6: 753-778.
– reference: Trudeau JD, Kelly-Smith C, Verchere CB et al. Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood. J Clin Invest 2003: 111: 217-223.
– reference: Crawford F, Stadinski B, Jin N et al. Specificity and detection of insulin-reactive CD4+ T cells in type 1 diabetes in the nonobese diabetic (NOD) mouse. Proc Natl Acad Sci USA 2011: 108: 16729-16734.
– reference: Marée AF, Kublik R, Finegood DT, Edelstein-Keshet L. Modelling the onset of type 1 diabetes: can impaired macrophage phagocytosis make the difference between health and disease? Philos Transact A Math Phys Eng Sci 2006: 364: 1267-1282.
– reference: O'Sullivan-Murphy B, Urano F. ER stress as a trigger for beta-cell dysfunction and autoimmunity in type 1 diabetes. Diabetes 2012: 61: 780-781.
– reference: Khadra A, Santamaria P, Edelstein-Keshet L. The pathogenicity of self-antigen decreases at high levels of autoantigenicity: a computational approach. Int Immunol 2010: 22: 571-582.
– reference: Tsai S, Shameli A, Yamanouchi J et al. Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity 2010: 32: 568-580.
– reference: Brusko TM, Putnam AL, Bluestone JA. Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol Rev 2008: 223: 371-390.
– reference: Beyan H, Buckley LR, Yousaf N, Londei M, Leslie RD. A role for innate immunity in type 1 diabetes? Diabetes Metab Res Rev 2003: 19: 89-100.
– reference: Naik RG, Palmer JP. Preservation of β-cell function in type 1 diabetes. Diabetes Rev 1999: 7: 154-182.
– reference: Quartey-Papafio R, Lund T, Chandler P et al. Aspartate at position 57 of nonobese diabetic I-Ag7 beta-chain diminishes the spontaneous incidence of insulin-dependent diabetes mellitus. J Immunol 1995: 154: 5567-5575.
– reference: Marée AF, Komba M, Finegood DT, Edelstein-Keshet L. A quantitative comparison of rates of phagocytosis and digestion of apoptotic cells by macrophages from normal (BALB/c) and diabetes-prone (NOD) mice. J Appl Physiol 2008: 104: 157-169.
– reference: Ziegler AG, Rewers M, Simell O et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 2013: 309: 2473-2479.
– reference: Stadinski BD, Zhang L, Crawford F, Marrack P, Eisenbarth GS, Kappler JW. Diabetogenic T cells recognize insulin bound to IAg7 in an unexpected, weakly binding register. Proc Natl Acad Sci USA 2010: 107: 10978-10983.
– reference: Yewdell JW, Anton LC, Bennink JR. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J Immunol 1996: 157: 1823-1826.
– reference: Barmeier H, McCulloch DK, Neifing JL et al. Risk for developing type 1 (insulin-dependent) diabetes mellitus and the presence of islet 64K antibodies. Diabetologia 1991: 34: 727-733.
– reference: Keymeulen B, Vandemeulebroucke E, Ziegler AG et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 2005: 352: 2598-2608.
– reference: Topp B, Promislow K, de Vries G, Miura RM, Finegood DT. A model of beta-cell mass, insulin, and glucose kinetics: pathways to diabetes. J Theor Biol 2000: 206: 605-619.
– reference: Khadra A, Santamaria P, Edelstein-Keshet L. The role of low avidity T cells in the protection against type 1 diabetes: a modeling investigation. J Theor Biol 2009: 256: 126-141.
– reference: Han B, Serra P, Amrani A et al. Prevention of diabetes by manipulation of anti-IGRP autoimmunity: high efficiency of a low-affinity peptide. Nat Med 2005: 11: 645-652.
– reference: Han B, Serra P, Yamanouchi J et al. Developmental control of CD8 T cell-avidity maturation in autoimmune diabetes. J Clin Invest 2005: 115: 1879-1887.
– reference: Eisenbarth GS. Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med 1986: 314: 1360-1368.
– reference: Nerup J, Mandrup-Poulsen T, Molvig J, Helqvist S, Wogensen L, Egeberg J. Mechanisms of pancreatic beta-cell destruction in type I diabetes. Diabetes Care 1988: 11 (Suppl 1): 16-23.
– reference: Clemente-Casares X, Santamaria P. Nanomedicine in autoimmunity. Immunol Lett 2014: 158: 167-174.
– reference: Velthuis JH, Unger WW, Abreu JR et al. Simultaneous detection of circulating autoreactive CD8+ T-cells specific for different islet cell-associated epitopes using combinatorial MHC multimers. Diabetes 2010: 59: 1721-1730.
– reference: Mallone R, Kochik SA, Reijonen H et al. Functional avidity directs T-cell fate in autoreactive CD4+ T cells. Blood 2005: 106: 2798-2805.
– reference: Finegood DT, Scaglia L, Bonner-Weir S. Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 1995: 44: 249-256.
– reference: Schnell S. A model of the unfolded protein response: pancreatic beta-cell as a case study. Cell Physiol Biochem 2009: 23: 233-244.
– reference: Standifer NE, Ouyang Q, Panagiotopoulos C et al. Identification of novel HLA-A*0201 - restricted epitopes in recent-onset type 1 diabetic subjects and antibody-positive relatives. Diabetes 2006: 55: 3061-3067.
– reference: Mahaffy JM, Edelstein-Keshet L. Modeling cyclic waves of circulating T cells in autoimmune diabetes. SIAM J Appl Math 2007: 67: 915-937.
– reference: Atkinson MA, Bluestone JA, Eisenbarth GS et al. How does type 1 diabetes develop? The notion of homicide or beta-cell suicide revisited. Diabetes 2011: 60: 1370-1379.
– reference: Aichele P, Kyburz D, Ohashi PS et al. Peptide-induced T-cell tolerance to prevent autoimmune diabetes in a transgenic mouse model. Proc Natl Acad Sci USA 1994: 91: 444-448.
– reference: LaPorte RE, Dorman JS, Tajima N et al. Pittsburgh Insulin-Dependent Diabetes Mellitus Morbidity and Mortality Study: physical activity and diabetic complications. Pediatrics 1986: 78: 1027-1033.
– reference: Marinković T, Sysi-Aho M, Oresic M. Integrated model of metabolism and autoimmune response in beta-cell death and progression to type 1 diabetes. PLoS One 2012: 7: e51909.
– volume: 314
  start-page: 1360
  year: 1986
  end-page: 1368
  article-title: Type I diabetes mellitus. A chronic autoimmune disease
  publication-title: N Engl J Med
– volume: 2
  start-page: 1032
  year: 2001
  end-page: 1039
  article-title: Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self
  publication-title: Nat Immunol
– volume: 46
  start-page: 1106
  year: 2003
  end-page: 1114
  article-title: Pancreatic NOD beta cells express MHC class II protein and the frequency of I‐A(g7) mRNA‐expressing beta cells strongly increases during progression to autoimmune diabetes
  publication-title: Diabetologia
– volume: 3
  start-page: 232
  year: 1992
  end-page: 238
  article-title: Incidence of insulin‐dependent diabetes mellitus in Colorado
  publication-title: Epidemiology
– volume: 37
  start-page: S82
  issue: Suppl 2
  year: 1994
  end-page: S89
  article-title: On the pathogenesis of IDDM
  publication-title: Diabetologia
– volume: 92
  start-page: 2403
  year: 2007
  end-page: 2407
  article-title: Update in type 1 diabetes
  publication-title: J Clin Endocrinol Metab
– volume: 12
  start-page: 279
  year: 1999
  end-page: 287
  article-title: Only multiple autoantibodies to islet cells (ICA), insulin, GAD65, IA‐2 and IA‐2beta predict immune‐mediated (Type 1) diabetes in relatives
  publication-title: J Autoimmun
– volume: 85
  start-page: 8111
  year: 1988
  end-page: 8115
  article-title: Aspartic acid at position 57 of the HLA‐DQ beta chain protects against type I diabetes: a family study
  publication-title: Proc Natl Acad Sci USA
– volume: 48
  start-page: 1677
  year: 1999
  end-page: 1685
  article-title: Onset of type 1 diabetes: a dynamical instability
  publication-title: Diabetes
– volume: 203
  start-page: 79
  year: 2006
  end-page: 99
  article-title: Investigation of the age‐at‐onset heterogeneity in type 1 diabetes through mathematical modeling
  publication-title: Math Biosci
– volume: 115
  start-page: 1879
  year: 2005
  end-page: 1887
  article-title: Developmental control of CD8 T cell‐avidity maturation in autoimmune diabetes
  publication-title: J Clin Invest
– volume: 56
  start-page: 1615
  year: 2013
  end-page: 1622
  article-title: Characteristics of rapid vs slow progression to type 1 diabetes in multiple islet autoantibody‐positive children
  publication-title: Diabetologia
– volume: 23
  start-page: 9
  year: 2004
  end-page: 15
  article-title: NOD macrophages produce high levels of inflammatory cytokines upon encounter of apoptotic or necrotic cells
  publication-title: J Autoimmun
– volume: 233
  start-page: 533
  year: 2005
  end-page: 551
  article-title: Quantifying macrophage defects in type 1 diabetes
  publication-title: J Theor Biol
– volume: 256
  start-page: 126
  year: 2009
  end-page: 141
  article-title: The role of low avidity T cells in the protection against type 1 diabetes: a modeling investigation
  publication-title: J Theor Biol
– volume: 106
  start-page: 2798
  year: 2005
  end-page: 2805
  article-title: Functional avidity directs T‐cell fate in autoreactive CD4+ T cells
  publication-title: Blood
– volume: 51
  start-page: 2481
  year: 2002
  end-page: 2488
  article-title: Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced
  publication-title: Diabetes
– volume: 329
  start-page: 599
  year: 1987
  end-page: 604
  article-title: HLA‐DQ beta gene contributes to susceptibility and resistance to insulin‐dependent diabetes mellitus
  publication-title: Nature
– volume: 154
  start-page: 5567
  year: 1995
  end-page: 5575
  article-title: Aspartate at position 57 of nonobese diabetic I‐Ag7 beta‐chain diminishes the spontaneous incidence of insulin‐dependent diabetes mellitus
  publication-title: J Immunol
– volume: 117
  start-page: 3642
  year: 2007
  end-page: 3645
  article-title: B cell depletion: a novel therapy for autoimmune diabetes?
  publication-title: J Clin Invest
– volume: 78
  start-page: 1178
  year: 1997
  end-page: 1182
  article-title: High antibody levels to prothrombin imply a risk of deep venous thrombosis and pulmonary embolism in middle‐aged men – a nested case–control study
  publication-title: Thromb Haemost
– volume: 108
  start-page: 16729
  year: 2011
  end-page: 16734
  article-title: Specificity and detection of insulin‐reactive CD4+ T cells in type 1 diabetes in the nonobese diabetic (NOD) mouse
  publication-title: Proc Natl Acad Sci USA
– volume: 67
  start-page: 915
  year: 2007
  end-page: 937
  article-title: Modeling cyclic waves of circulating T cells in autoimmune diabetes
  publication-title: SIAM J Appl Math
– volume: 45
  start-page: 66
  year: 2002
  end-page: 76
  article-title: Progression to insulin‐requiring diabetes in seronegative prediabetic subjects: the role of two HLA‐DQ high‐risk haplotypes
  publication-title: Diabetologia
– volume: 85
  start-page: 291
  year: 1996
  end-page: 297
  article-title: Insulin‐dependent diabetes mellitus
  publication-title: Cell
– volume: 7
  start-page: 154
  year: 1999
  end-page: 182
  article-title: Preservation of β‐cell function in type 1 diabetes
  publication-title: Diabetes Rev
– volume: 206
  start-page: 605
  year: 2000
  end-page: 619
  article-title: A model of beta‐cell mass, insulin, and glucose kinetics: pathways to diabetes
  publication-title: J Theor Biol
– volume: 111
  start-page: 217
  year: 2003
  end-page: 223
  article-title: Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood
  publication-title: J Clin Invest
– volume: 75
  start-page: 385
  year: 2008
  end-page: 397
  article-title: Type 1 diabetes mellitus: primary, secondary, and tertiary prevention
  publication-title: Mt Sinai J Med
– volume: 104
  start-page: 157
  year: 2008
  end-page: 169
  article-title: A quantitative comparison of rates of phagocytosis and digestion of apoptotic cells by macrophages from normal (BALB/c) and diabetes‐prone (NOD) mice
  publication-title: J Appl Physiol
– volume: 102
  start-page: 88
  year: 2010
  end-page: 98
  article-title: Mathematical modelling of immune regulation of type 1 diabetes
  publication-title: Biosystems
– volume: 406
  start-page: 739
  year: 2000
  end-page: 742
  article-title: Progression of autoimmune diabetes driven by avidity maturation of a T‐cell population
  publication-title: Nature
– volume: 49
  start-page: 1
  year: 2000
  end-page: 7
  article-title: Neonatal beta‐cell apoptosis: a trigger for autoimmune diabetes?
  publication-title: Diabetes
– volume: 157
  start-page: 1823
  year: 1996
  end-page: 1826
  article-title: Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules?
  publication-title: J Immunol
– volume: 35
  start-page: 2762
  year: 2005
  end-page: 2775
  article-title: Soluble, dimeric HLA DR4‐peptide chimeras: an approach for detection and immunoregulation of human type‐1 diabetes
  publication-title: Eur J Immunol
– volume: 32
  start-page: 568
  year: 2010
  end-page: 580
  article-title: Reversal of autoimmunity by boosting memory‐like autoregulatory T cells
  publication-title: Immunity
– volume: 9
  start-page: 457
  year: 2002
  end-page: 464
  article-title: Clearance of apoptotic beta‐cells is reduced in neonatal autoimmune diabetes‐prone rats
  publication-title: Cell Death Differ
– volume: 346
  start-page: 1692
  year: 2002
  end-page: 1698
  article-title: Anti‐CD3 monoclonal antibody in new‐onset type 1 diabetes mellitus
  publication-title: N Engl J Med
– volume: 25
  start-page: 235
  year: 2005
  end-page: 243
  article-title: GAD65‐ and proinsulin‐specific CD4+ T‐cells detected by MHC class II tetramers in peripheral blood of type 1 diabetes patients and at‐risk subjects
  publication-title: J Autoimmun
– volume: 450
  start-page: 887
  year: 2007
  end-page: 892
  article-title: Localization of type 1 diabetes susceptibility to the MHC class I genes HLA‐B and HLA‐A
  publication-title: Nature
– volume: 18
  start-page: 1067
  year: 2006
  end-page: 1077
  article-title: Modeling competition among autoreactive CD8+ T cells in autoimmune diabetes: implications for antigen‐specific therapy
  publication-title: Int Immunol
– volume: 44
  start-page: 249
  year: 1995
  end-page: 256
  article-title: Dynamics of beta‐cell mass in the growing rat pancreas. Estimation with a simple mathematical model
  publication-title: Diabetes
– volume: 7
  start-page: 988
  year: 2007
  end-page: 994
  article-title: Type 1 diabetes as a relapsing‐remitting disease?
  publication-title: Nat Rev Immunol
– volume: 22
  start-page: 571
  year: 2010
  end-page: 582
  article-title: The pathogenicity of self‐antigen decreases at high levels of autoantigenicity: a computational approach
  publication-title: Int Immunol
– volume: 93
  start-page: 7855
  year: 1996
  end-page: 7860
  article-title: Peptide vaccination can lead to enhanced tumor growth through specific T‐cell tolerance induction
  publication-title: Proc Natl Acad Sci USA
– volume: 185
  start-page: 5962
  year: 2010
  end-page: 5972
  article-title: On how monospecific memory‐like autoregulatory CD8+ T cells can blunt diabetogenic autoimmunity: a computational approach
  publication-title: J Immunol
– volume: 223
  start-page: 371
  year: 2008
  end-page: 390
  article-title: Human regulatory T cells: role in autoimmune disease and therapeutic opportunities
  publication-title: Immunol Rev
– volume: 352
  start-page: 2598
  year: 2005
  end-page: 2608
  article-title: Insulin needs after CD3‐antibody therapy in new‐onset type 1 diabetes
  publication-title: N Engl J Med
– volume: 7
  start-page: e51909
  year: 2012
  article-title: Integrated model of metabolism and autoimmune response in beta‐cell death and progression to type 1 diabetes
  publication-title: PLoS One
– volume: 61
  start-page: 780
  year: 2012
  end-page: 781
  article-title: ER stress as a trigger for beta‐cell dysfunction and autoimmunity in type 1 diabetes
  publication-title: Diabetes
– volume: 364
  start-page: 1267
  year: 2006
  end-page: 1282
  article-title: Modelling the onset of type 1 diabetes: can impaired macrophage phagocytosis make the difference between health and disease?
  publication-title: Philos Transact A Math Phys Eng Sci
– volume: 2
  start-page: a012831
  year: 2012
  article-title: Humoral autoimmunity in type 1 diabetes: prediction, significance, and detection of distinct disease subtypes
  publication-title: Cold Spring Harb Perspect Med
– volume: 189
  start-page: 2975
  year: 2012
  end-page: 2984
  article-title: Autoantigen Recognition Is Required for Recruitment of IGRP206–214‐Autoreactive CD8+ T Cells but Is Dispensable for Tolerance
  publication-title: J Immunol
– volume: 2
  start-page: e54
  year: 2013
  article-title: The impact of mathematical modeling on the understanding of diabetes and related complications
  publication-title: CPT Pharmacometrics Syst Pharmacol
– volume: 45
  start-page: 926
  year: 1996
  end-page: 933
  article-title: Prediction of type I diabetes in first‐degree relatives using a combination of insulin, GAD, and ICA512bdc/IA‐2 autoantibodies
  publication-title: Diabetes
– volume: 6
  start-page: 184
  year: 2005
  end-page: 192
  article-title: Cytoplasmic islet cell antibodies remain valuable in defining risk of progression to type 1 diabetes in subjects with other islet autoantibodies
  publication-title: Pediatr Diabetes
– volume: 323
  start-page: 1167
  year: 1990
  end-page: 1172
  article-title: A prospective study of the development of diabetes in relatives of patients with insulin‐dependent diabetes
  publication-title: N Engl J Med
– volume: 42
  start-page: 213
  year: 1993
  end-page: 220
  article-title: Can we really predict IDDM?
  publication-title: Diabetes
– volume: 34
  start-page: 727
  year: 1991
  end-page: 733
  article-title: Risk for developing type 1 (insulin‐dependent) diabetes mellitus and the presence of islet 64K antibodies
  publication-title: Diabetologia
– volume: 51
  start-page: 1375
  year: 2002
  end-page: 1382
  article-title: Detection of GAD65‐specific T‐cells by major histocompatibility complex class II tetramers in type 1 diabetic patients and at‐risk subjects
  publication-title: Diabetes
– volume: 78
  start-page: 1027
  year: 1986
  end-page: 1033
  article-title: Pittsburgh Insulin‐Dependent Diabetes Mellitus Morbidity and Mortality Study: physical activity and diabetic complications
  publication-title: Pediatrics
– volume: 91
  start-page: 444
  year: 1994
  end-page: 448
  article-title: Peptide‐induced T‐cell tolerance to prevent autoimmune diabetes in a transgenic mouse model
  publication-title: Proc Natl Acad Sci USA
– volume: 4
  start-page: 321
  year: 2013
  article-title: MHC Class II polymorphisms, autoreactive T‐cells, and autoimmunity
  publication-title: Front Immunol
– volume: 55
  start-page: 2212
  year: 2006
  end-page: 2219
  article-title: Granzyme B‐mediated death of pancreatic beta‐cells requires the proapoptotic BH3‐only molecule bid
  publication-title: Diabetes
– volume: 11
  start-page: 16
  issue: Suppl 1
  year: 1988
  end-page: 23
  article-title: Mechanisms of pancreatic beta‐cell destruction in type I diabetes
  publication-title: Diabetes Care
– volume: 180
  start-page: 3849
  year: 2008
  end-page: 3856
  article-title: First signature of islet beta‐cell‐derived naturally processed peptides selected by diabetogenic class II MHC molecules
  publication-title: J Immunol
– volume: 107
  start-page: 10978
  year: 2010
  end-page: 10983
  article-title: Diabetogenic T cells recognize insulin bound to IAg7 in an unexpected, weakly binding register
  publication-title: Proc Natl Acad Sci USA
– volume: 9
  start-page: e93326
  year: 2014
  article-title: Predictive models of type 1 diabetes progression: understanding T‐cell cycles and their implications on autoantibody release
  publication-title: PLoS One
– volume: 60
  start-page: 1370
  year: 2011
  end-page: 1379
  article-title: How does type 1 diabetes develop? The notion of homicide or beta‐cell suicide revisited
  publication-title: Diabetes
– volume: 298
  start-page: 558
  year: 1989
  end-page: 560
  article-title: Incidence of insulin dependent diabetes in England: a study in the Oxford region, 1985–1986
  publication-title: BMJ
– volume: 16
  start-page: 753
  year: 2004
  end-page: 758
  article-title: Post‐translational modifications of self antigens: implications for autoimmunity
  publication-title: Curr Opin Immunol
– volume: 19
  start-page: 89
  year: 2003
  end-page: 100
  article-title: A role for innate immunity in type 1 diabetes?
  publication-title: Diabetes Metab Res Rev
– volume: 68
  start-page: 3781
  year: 2011
  end-page: 3795
  article-title: CD8+ Tregs in autoimmunity: learning “self”‐control from experience
  publication-title: Cell Mol Life Sci
– volume: 54
  start-page: 452
  year: 2005
  end-page: 461
  article-title: Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta‐cells
  publication-title: Diabetes
– volume: 4
  start-page: 252
  year: 2001
  end-page: 282
  article-title: Autoantibodies in human diabetes
  publication-title: Curr Dir Autoimmun
– volume: 309
  start-page: 2473
  year: 2013
  end-page: 2479
  article-title: Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children
  publication-title: JAMA
– volume: 37
  start-page: 1591
  year: 1988
  end-page: 1594
  article-title: How, when, and why to predict IDDM
  publication-title: Diabetes
– volume: 11
  start-page: 645
  year: 2005
  end-page: 652
  article-title: Prevention of diabetes by manipulation of anti‐IGRP autoimmunity: high efficiency of a low‐affinity peptide
  publication-title: Nat Med
– volume: 55
  start-page: 3061
  year: 2006
  end-page: 3067
  article-title: Identification of novel HLA‐A*0201 – restricted epitopes in recent‐onset type 1 diabetic subjects and antibody‐positive relatives
  publication-title: Diabetes
– volume: 53
  start-page: 354
  year: 2004
  end-page: 359
  article-title: Proinsulin expression by Hassall's corpuscles in the mouse thymus
  publication-title: Diabetes
– volume: 23
  start-page: 233
  year: 2009
  end-page: 244
  article-title: A model of the unfolded protein response: pancreatic beta‐cell as a case study
  publication-title: Cell Physiol Biochem
– volume: 6
  start-page: 753
  year: 2009
  end-page: 778
  article-title: Modeling dynamic changes in type 1 diabetes progression: quantifying beta‐cell variation after the appearance of islet‐specific autoimmune responses
  publication-title: Math Biosci Eng
– volume: 158
  start-page: 167
  year: 2014
  end-page: 174
  article-title: Nanomedicine in autoimmunity
  publication-title: Immunol Lett
– volume: 54
  start-page: S25
  issue: Suppl 2
  year: 2005
  end-page: S31
  article-title: Natural history of type 1 diabetes
  publication-title: Diabetes
– volume: 12
  start-page: 699
  year: 2000
  end-page: 710
  article-title: Structural basis of peptide binding and presentation by the type I diabetes‐associated MHC class II molecule of NOD mice
  publication-title: Immunity
– volume: 11
  start-page: 350
  year: 2010
  end-page: 354
  article-title: Unique autoreactive T cells recognize insulin peptides generated within the islets of Langerhans in autoimmune diabetes
  publication-title: Nat Immunol
– volume: 59
  start-page: 1721
  year: 2010
  end-page: 1730
  article-title: Simultaneous detection of circulating autoreactive CD8+ T‐cells specific for different islet cell‐associated epitopes using combinatorial MHC multimers
  publication-title: Diabetes
– volume: 22
  start-page: 443
  year: 2001
  end-page: 449
  article-title: Post‐translational protein modifications in antigen recognition and autoimmunity
  publication-title: Trends Immunol
– volume: 91
  start-page: 350
  year: 2013
  end-page: 359
  article-title: Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy
  publication-title: Immunol Cell Biol
– volume: 43
  start-page: 1304
  year: 1994
  end-page: 1310
  article-title: Combined analysis of autoantibodies improves prediction of IDDM in islet cell antibody‐positive relatives
  publication-title: Diabetes
– volume: 34
  start-page: 727
  year: 1991
  ident: 10.1111/pedi.12148-BIB0044|pedi12148-cit-0044
  article-title: Risk for developing type 1 (insulin-dependent) diabetes mellitus and the presence of islet 64K antibodies
  publication-title: Diabetologia
  doi: 10.1007/BF00401518
– volume: 189
  start-page: 2975
  year: 2012
  ident: 10.1111/pedi.12148-BIB0005|pedi12148-cit-0005
  article-title: Autoantigen Recognition Is Required for Recruitment of IGRP206-214-Autoreactive CD8+ T Cells but Is Dispensable for Tolerance
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1201787
– volume: 61
  start-page: 780
  year: 2012
  ident: 10.1111/pedi.12148-BIB0015|pedi12148-cit-0015
  article-title: ER stress as a trigger for beta-cell dysfunction and autoimmunity in type 1 diabetes
  publication-title: Diabetes
  doi: 10.2337/db12-0091
– volume: 54
  start-page: S25
  issue: Suppl 2
  year: 2005
  ident: 10.1111/pedi.12148-BIB0030|pedi12148-cit-0030
  article-title: Natural history of type 1 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.suppl_2.S25
– volume: 42
  start-page: 213
  year: 1993
  ident: 10.1111/pedi.12148-BIB0047|pedi12148-cit-0047
  article-title: Can we really predict IDDM?
  publication-title: Diabetes
  doi: 10.2337/diab.42.2.213
– volume: 46
  start-page: 1106
  year: 2003
  ident: 10.1111/pedi.12148-BIB0019|pedi12148-cit-0019
  article-title: Pancreatic NOD beta cells express MHC class II protein and the frequency of I-A(g7) mRNA-expressing beta cells strongly increases during progression to autoimmune diabetes
  publication-title: Diabetologia
  doi: 10.1007/s00125-003-1164-y
– volume: 2
  start-page: 1032
  year: 2001
  ident: 10.1111/pedi.12148-BIB0007|pedi12148-cit-0007
  article-title: Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self
  publication-title: Nat Immunol
  doi: 10.1038/ni723
– volume: 60
  start-page: 1370
  year: 2011
  ident: 10.1111/pedi.12148-BIB0014|pedi12148-cit-0014
  article-title: How does type 1 diabetes develop? The notion of homicide or beta-cell suicide revisited
  publication-title: Diabetes
  doi: 10.2337/db10-1797
– volume: 45
  start-page: 926
  year: 1996
  ident: 10.1111/pedi.12148-BIB0028|pedi12148-cit-0028
  article-title: Prediction of type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies
  publication-title: Diabetes
  doi: 10.2337/diab.45.7.926
– volume: 92
  start-page: 2403
  year: 2007
  ident: 10.1111/pedi.12148-BIB0031|pedi12148-cit-0031
  article-title: Update in type 1 diabetes
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2007-0339
– volume: 223
  start-page: 371
  year: 2008
  ident: 10.1111/pedi.12148-BIB0086|pedi12148-cit-0086
  article-title: Human regulatory T cells: role in autoimmune disease and therapeutic opportunities
  publication-title: Immunol Rev
  doi: 10.1111/j.1600-065X.2008.00637.x
– volume: 32
  start-page: 568
  year: 2010
  ident: 10.1111/pedi.12148-BIB0026|pedi12148-cit-0026
  article-title: Reversal of autoimmunity by boosting memory-like autoregulatory T cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.03.015
– volume: 51
  start-page: 1375
  year: 2002
  ident: 10.1111/pedi.12148-BIB0002|pedi12148-cit-0002
  article-title: Detection of GAD65-specific T-cells by major histocompatibility complex class II tetramers in type 1 diabetic patients and at-risk subjects
  publication-title: Diabetes
  doi: 10.2337/diabetes.51.5.1375
– volume: 12
  start-page: 699
  year: 2000
  ident: 10.1111/pedi.12148-BIB0048|pedi12148-cit-0048
  article-title: Structural basis of peptide binding and presentation by the type I diabetes-associated MHC class II molecule of NOD mice
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80220-4
– volume: 4
  start-page: 321
  year: 2013
  ident: 10.1111/pedi.12148-BIB0052|pedi12148-cit-0052
  article-title: MHC Class II polymorphisms, autoreactive T-cells, and autoimmunity
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2013.00321
– volume: 53
  start-page: 354
  year: 2004
  ident: 10.1111/pedi.12148-BIB0006|pedi12148-cit-0006
  article-title: Proinsulin expression by Hassall's corpuscles in the mouse thymus
  publication-title: Diabetes
  doi: 10.2337/diabetes.53.2.354
– volume: 45
  start-page: 66
  year: 2002
  ident: 10.1111/pedi.12148-BIB0027|pedi12148-cit-0027
  article-title: Progression to insulin-requiring diabetes in seronegative prediabetic subjects: the role of two HLA-DQ high-risk haplotypes
  publication-title: Diabetologia
  doi: 10.1007/s125-002-8246-5
– volume: 22
  start-page: 443
  year: 2001
  ident: 10.1111/pedi.12148-BIB0057|pedi12148-cit-0057
  article-title: Post-translational protein modifications in antigen recognition and autoimmunity
  publication-title: Trends Immunol
  doi: 10.1016/S1471-4906(01)01976-7
– volume: 9
  start-page: 457
  year: 2002
  ident: 10.1111/pedi.12148-BIB0009|pedi12148-cit-0009
  article-title: Clearance of apoptotic beta-cells is reduced in neonatal autoimmune diabetes-prone rats
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4400973
– volume: 309
  start-page: 2473
  year: 2013
  ident: 10.1111/pedi.12148-BIB0035|pedi12148-cit-0035
  article-title: Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children
  publication-title: JAMA
  doi: 10.1001/jama.2013.6285
– volume: 3
  start-page: 232
  year: 1992
  ident: 10.1111/pedi.12148-BIB0042|pedi12148-cit-0042
  article-title: Incidence of insulin-dependent diabetes mellitus in Colorado
  publication-title: Epidemiology
  doi: 10.1097/00001648-199205000-00008
– volume: 59
  start-page: 1721
  year: 2010
  ident: 10.1111/pedi.12148-BIB0004|pedi12148-cit-0004
  article-title: Simultaneous detection of circulating autoreactive CD8+ T-cells specific for different islet cell-associated epitopes using combinatorial MHC multimers
  publication-title: Diabetes
  doi: 10.2337/db09-1486
– volume: 352
  start-page: 2598
  year: 2005
  ident: 10.1111/pedi.12148-BIB0023|pedi12148-cit-0023
  article-title: Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa043980
– volume: 6
  start-page: 184
  year: 2005
  ident: 10.1111/pedi.12148-BIB0037|pedi12148-cit-0037
  article-title: Cytoplasmic islet cell antibodies remain valuable in defining risk of progression to type 1 diabetes in subjects with other islet autoantibodies
  publication-title: Pediatr Diabetes
  doi: 10.1111/j.1399-543X.2005.00127.x
– volume: 75
  start-page: 385
  year: 2008
  ident: 10.1111/pedi.12148-BIB0038|pedi12148-cit-0038
  article-title: Type 1 diabetes mellitus: primary, secondary, and tertiary prevention
  publication-title: Mt Sinai J Med
  doi: 10.1002/msj.20054
– volume: 43
  start-page: 1304
  year: 1994
  ident: 10.1111/pedi.12148-BIB0036|pedi12148-cit-0036
  article-title: Combined analysis of autoantibodies improves prediction of IDDM in islet cell antibody-positive relatives
  publication-title: Diabetes
  doi: 10.2337/diab.43.11.1304
– volume: 37
  start-page: S82
  issue: Suppl 2
  year: 1994
  ident: 10.1111/pedi.12148-BIB0061|pedi12148-cit-0061
  article-title: On the pathogenesis of IDDM
  publication-title: Diabetologia
  doi: 10.1007/BF00400830
– volume: 104
  start-page: 157
  year: 2008
  ident: 10.1111/pedi.12148-BIB0067|pedi12148-cit-0067
  article-title: A quantitative comparison of rates of phagocytosis and digestion of apoptotic cells by macrophages from normal (BALB/c) and diabetes-prone (NOD) mice
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00514.2007
– volume: 56
  start-page: 1615
  year: 2013
  ident: 10.1111/pedi.12148-BIB0034|pedi12148-cit-0034
  article-title: Characteristics of rapid vs slow progression to type 1 diabetes in multiple islet autoantibody-positive children
  publication-title: Diabetologia
  doi: 10.1007/s00125-013-2896-y
– volume: 233
  start-page: 533
  year: 2005
  ident: 10.1111/pedi.12148-BIB0068|pedi12148-cit-0068
  article-title: Quantifying macrophage defects in type 1 diabetes
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2004.10.030
– volume: 406
  start-page: 739
  year: 2000
  ident: 10.1111/pedi.12148-BIB0020|pedi12148-cit-0020
  article-title: Progression of autoimmune diabetes driven by avidity maturation of a T-cell population
  publication-title: Nature
  doi: 10.1038/35021081
– volume: 16
  start-page: 753
  year: 2004
  ident: 10.1111/pedi.12148-BIB0058|pedi12148-cit-0058
  article-title: Post-translational modifications of self antigens: implications for autoimmunity
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2004.09.001
– volume: 203
  start-page: 79
  year: 2006
  ident: 10.1111/pedi.12148-BIB0064|pedi12148-cit-0064
  article-title: Investigation of the age-at-onset heterogeneity in type 1 diabetes through mathematical modeling
  publication-title: Math Biosci
  doi: 10.1016/j.mbs.2006.03.021
– volume: 11
  start-page: 350
  year: 2010
  ident: 10.1111/pedi.12148-BIB0056|pedi12148-cit-0056
  article-title: Unique autoreactive T cells recognize insulin peptides generated within the islets of Langerhans in autoimmune diabetes
  publication-title: Nat Immunol
  doi: 10.1038/ni.1850
– volume: 206
  start-page: 605
  year: 2000
  ident: 10.1111/pedi.12148-BIB0066|pedi12148-cit-0066
  article-title: A model of beta-cell mass, insulin, and glucose kinetics: pathways to diabetes
  publication-title: J Theor Biol
  doi: 10.1006/jtbi.2000.2150
– volume: 7
  start-page: 988
  year: 2007
  ident: 10.1111/pedi.12148-BIB0079|pedi12148-cit-0079
  article-title: Type 1 diabetes as a relapsing-remitting disease?
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2192
– volume: 107
  start-page: 10978
  year: 2010
  ident: 10.1111/pedi.12148-BIB0054|pedi12148-cit-0054
  article-title: Diabetogenic T cells recognize insulin bound to IAg7 in an unexpected, weakly binding register
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1006545107
– volume: 25
  start-page: 235
  year: 2005
  ident: 10.1111/pedi.12148-BIB0001|pedi12148-cit-0001
  article-title: GAD65- and proinsulin-specific CD4+ T-cells detected by MHC class II tetramers in peripheral blood of type 1 diabetes patients and at-risk subjects
  publication-title: J Autoimmun
  doi: 10.1016/j.jaut.2005.09.018
– volume: 51
  start-page: 2481
  year: 2002
  ident: 10.1111/pedi.12148-BIB0010|pedi12148-cit-0010
  article-title: Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced
  publication-title: Diabetes
  doi: 10.2337/diabetes.51.8.2481
– volume: 78
  start-page: 1027
  year: 1986
  ident: 10.1111/pedi.12148-BIB0043|pedi12148-cit-0043
  article-title: Pittsburgh Insulin-Dependent Diabetes Mellitus Morbidity and Mortality Study: physical activity and diabetic complications
  publication-title: Pediatrics
  doi: 10.1542/peds.78.6.1027
– volume: 329
  start-page: 599
  year: 1987
  ident: 10.1111/pedi.12148-BIB0049|pedi12148-cit-0049
  article-title: HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus
  publication-title: Nature
  doi: 10.1038/329599a0
– volume: 12
  start-page: 279
  year: 1999
  ident: 10.1111/pedi.12148-BIB0032|pedi12148-cit-0032
  article-title: Only multiple autoantibodies to islet cells (ICA), insulin, GAD65, IA-2 and IA-2beta predict immune-mediated (Type 1) diabetes in relatives
  publication-title: J Autoimmun
  doi: 10.1006/jaut.1999.0281
– volume: 93
  start-page: 7855
  year: 1996
  ident: 10.1111/pedi.12148-BIB0075|pedi12148-cit-0075
  article-title: Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.93.15.7855
– volume: 85
  start-page: 8111
  year: 1988
  ident: 10.1111/pedi.12148-BIB0018|pedi12148-cit-0018
  article-title: Aspartic acid at position 57 of the HLA-DQ beta chain protects against type I diabetes: a family study
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.85.21.8111
– volume: 314
  start-page: 1360
  year: 1986
  ident: 10.1111/pedi.12148-BIB0041|pedi12148-cit-0041
  article-title: Type I diabetes mellitus. A chronic autoimmune disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJM198605223142106
– volume: 9
  start-page: e93326
  year: 2014
  ident: 10.1111/pedi.12148-BIB0080|pedi12148-cit-0080
  article-title: Predictive models of type 1 diabetes progression: understanding T-cell cycles and their implications on autoantibody release
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0093326
– volume: 364
  start-page: 1267
  year: 2006
  ident: 10.1111/pedi.12148-BIB0069|pedi12148-cit-0069
  article-title: Modelling the onset of type 1 diabetes: can impaired macrophage phagocytosis make the difference between health and disease?
  publication-title: Philos Transact A Math Phys Eng Sci
  doi: 10.1098/rsta.2006.1769
– volume: 4
  start-page: 252
  year: 2001
  ident: 10.1111/pedi.12148-BIB0029|pedi12148-cit-0029
  article-title: Autoantibodies in human diabetes
  publication-title: Curr Dir Autoimmun
  doi: 10.1159/000060541
– volume: 22
  start-page: 571
  year: 2010
  ident: 10.1111/pedi.12148-BIB0071|pedi12148-cit-0071
  article-title: The pathogenicity of self-antigen decreases at high levels of autoantigenicity: a computational approach
  publication-title: Int Immunol
  doi: 10.1093/intimm/dxq041
– volume: 67
  start-page: 915
  year: 2007
  ident: 10.1111/pedi.12148-BIB0078|pedi12148-cit-0078
  article-title: Modeling cyclic waves of circulating T cells in autoimmune diabetes
  publication-title: SIAM J Appl Math
  doi: 10.1137/060661144
– volume: 298
  start-page: 558
  year: 1989
  ident: 10.1111/pedi.12148-BIB0040|pedi12148-cit-0040
  article-title: Incidence of insulin dependent diabetes in England: a study in the Oxford region, 1985-1986
  publication-title: BMJ
  doi: 10.1136/bmj.298.6673.558
– volume: 323
  start-page: 1167
  year: 1990
  ident: 10.1111/pedi.12148-BIB0045|pedi12148-cit-0045
  article-title: A prospective study of the development of diabetes in relatives of patients with insulin-dependent diabetes
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199010253231704
– volume: 55
  start-page: 3061
  year: 2006
  ident: 10.1111/pedi.12148-BIB0003|pedi12148-cit-0003
  article-title: Identification of novel HLA-A*0201 - restricted epitopes in recent-onset type 1 diabetic subjects and antibody-positive relatives
  publication-title: Diabetes
  doi: 10.2337/db06-0066
– volume: 157
  start-page: 1823
  year: 1996
  ident: 10.1111/pedi.12148-BIB0072|pedi12148-cit-0072
  article-title: Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules?
  publication-title: J Immunol
  doi: 10.4049/jimmunol.157.5.1823
– volume: 11
  start-page: 645
  year: 2005
  ident: 10.1111/pedi.12148-BIB0073|pedi12148-cit-0073
  article-title: Prevention of diabetes by manipulation of anti-IGRP autoimmunity: high efficiency of a low-affinity peptide
  publication-title: Nat Med
  doi: 10.1038/nm1250
– volume: 256
  start-page: 126
  year: 2009
  ident: 10.1111/pedi.12148-BIB0082|pedi12148-cit-0082
  article-title: The role of low avidity T cells in the protection against type 1 diabetes: a modeling investigation
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2008.09.019
– volume: 2
  start-page: a012831
  year: 2012
  ident: 10.1111/pedi.12148-BIB0008|pedi12148-cit-0008
  article-title: Humoral autoimmunity in type 1 diabetes: prediction, significance, and detection of distinct disease subtypes
  publication-title: Cold Spring Harb Perspect Med
  doi: 10.1101/cshperspect.a012831
– volume: 78
  start-page: 1178
  year: 1997
  ident: 10.1111/pedi.12148-BIB0033|pedi12148-cit-0033
  article-title: High antibody levels to prothrombin imply a risk of deep venous thrombosis and pulmonary embolism in middle-aged men - a nested case-control study
  publication-title: Thromb Haemost
  doi: 10.1055/s-0038-1657711
– volume: 180
  start-page: 3849
  year: 2008
  ident: 10.1111/pedi.12148-BIB0053|pedi12148-cit-0053
  article-title: First signature of islet beta-cell-derived naturally processed peptides selected by diabetogenic class II MHC molecules
  publication-title: J Immunol
  doi: 10.4049/jimmunol.180.6.3849
– volume: 185
  start-page: 5962
  year: 2010
  ident: 10.1111/pedi.12148-BIB0083|pedi12148-cit-0083
  article-title: On how monospecific memory-like autoregulatory CD8+ T cells can blunt diabetogenic autoimmunity: a computational approach
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1001306
– volume: 55
  start-page: 2212
  year: 2006
  ident: 10.1111/pedi.12148-BIB0013|pedi12148-cit-0013
  article-title: Granzyme B-mediated death of pancreatic beta-cells requires the proapoptotic BH3-only molecule bid
  publication-title: Diabetes
  doi: 10.2337/db06-0129
– volume: 91
  start-page: 444
  year: 1994
  ident: 10.1111/pedi.12148-BIB0074|pedi12148-cit-0074
  article-title: Peptide-induced T-cell tolerance to prevent autoimmune diabetes in a transgenic mouse model
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.91.2.444
– volume: 23
  start-page: 9
  year: 2004
  ident: 10.1111/pedi.12148-BIB0070|pedi12148-cit-0070
  article-title: NOD macrophages produce high levels of inflammatory cytokines upon encounter of apoptotic or necrotic cells
  publication-title: J Autoimmun
  doi: 10.1016/j.jaut.2004.03.012
– volume: 18
  start-page: 1067
  year: 2006
  ident: 10.1111/pedi.12148-BIB0076|pedi12148-cit-0076
  article-title: Modeling competition among autoreactive CD8+ T cells in autoimmune diabetes: implications for antigen-specific therapy
  publication-title: Int Immunol
  doi: 10.1093/intimm/dxl040
– volume: 91
  start-page: 350
  year: 2013
  ident: 10.1111/pedi.12148-BIB0084|pedi12148-cit-0084
  article-title: Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy
  publication-title: Immunol Cell Biol
  doi: 10.1038/icb.2013.9
– volume: 23
  start-page: 233
  year: 2009
  ident: 10.1111/pedi.12148-BIB0016|pedi12148-cit-0016
  article-title: A model of the unfolded protein response: pancreatic beta-cell as a case study
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000218170
– volume: 7
  start-page: e51909
  year: 2012
  ident: 10.1111/pedi.12148-BIB0065|pedi12148-cit-0065
  article-title: Integrated model of metabolism and autoimmune response in beta-cell death and progression to type 1 diabetes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0051909
– volume: 68
  start-page: 3781
  year: 2011
  ident: 10.1111/pedi.12148-BIB0081|pedi12148-cit-0081
  article-title: CD8+ Tregs in autoimmunity: learning “self”-control from experience
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-011-0738-y
– volume: 106
  start-page: 2798
  year: 2005
  ident: 10.1111/pedi.12148-BIB0088|pedi12148-cit-0088
  article-title: Functional avidity directs T-cell fate in autoreactive CD4+ T cells
  publication-title: Blood
  doi: 10.1182/blood-2004-12-4848
– volume: 158
  start-page: 167
  year: 2014
  ident: 10.1111/pedi.12148-BIB0025|pedi12148-cit-0025
  article-title: Nanomedicine in autoimmunity
  publication-title: Immunol Lett
  doi: 10.1016/j.imlet.2013.12.018
– volume: 48
  start-page: 1677
  year: 1999
  ident: 10.1111/pedi.12148-BIB0063|pedi12148-cit-0063
  article-title: Onset of type 1 diabetes: a dynamical instability
  publication-title: Diabetes
  doi: 10.2337/diabetes.48.9.1677
– volume: 102
  start-page: 88
  year: 2010
  ident: 10.1111/pedi.12148-BIB0087|pedi12148-cit-0087
  article-title: Mathematical modelling of immune regulation of type 1 diabetes
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2010.07.018
– volume: 450
  start-page: 887
  year: 2007
  ident: 10.1111/pedi.12148-BIB0017|pedi12148-cit-0017
  article-title: Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A
  publication-title: Nature
  doi: 10.1038/nature06406
– volume: 108
  start-page: 16729
  year: 2011
  ident: 10.1111/pedi.12148-BIB0055|pedi12148-cit-0055
  article-title: Specificity and detection of insulin-reactive CD4+ T cells in type 1 diabetes in the nonobese diabetic (NOD) mouse
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1113954108
– volume: 19
  start-page: 89
  year: 2003
  ident: 10.1111/pedi.12148-BIB0011|pedi12148-cit-0011
  article-title: A role for innate immunity in type 1 diabetes?
  publication-title: Diabetes Metab Res Rev
  doi: 10.1002/dmrr.341
– volume: 346
  start-page: 1692
  year: 2002
  ident: 10.1111/pedi.12148-BIB0022|pedi12148-cit-0022
  article-title: Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa012864
– volume: 44
  start-page: 249
  year: 1995
  ident: 10.1111/pedi.12148-BIB0059|pedi12148-cit-0059
  article-title: Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model
  publication-title: Diabetes
  doi: 10.2337/diab.44.3.249
– volume: 117
  start-page: 3642
  year: 2007
  ident: 10.1111/pedi.12148-BIB0024|pedi12148-cit-0024
  article-title: B cell depletion: a novel therapy for autoimmune diabetes?
  publication-title: J Clin Invest
  doi: 10.1172/JCI34236
– volume: 54
  start-page: 452
  year: 2005
  ident: 10.1111/pedi.12148-BIB0012|pedi12148-cit-0012
  article-title: Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.2.452
– volume: 85
  start-page: 291
  year: 1996
  ident: 10.1111/pedi.12148-BIB0050|pedi12148-cit-0050
  article-title: Insulin-dependent diabetes mellitus
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81106-X
– volume: 115
  start-page: 1879
  year: 2005
  ident: 10.1111/pedi.12148-BIB0089|pedi12148-cit-0089
  article-title: Developmental control of CD8 T cell-avidity maturation in autoimmune diabetes
  publication-title: J Clin Invest
  doi: 10.1172/JCI24219
– volume: 11
  start-page: 16
  issue: Suppl 1
  year: 1988
  ident: 10.1111/pedi.12148-BIB0062|pedi12148-cit-0062
  article-title: Mechanisms of pancreatic beta-cell destruction in type I diabetes
  publication-title: Diabetes Care
– volume: 111
  start-page: 217
  year: 2003
  ident: 10.1111/pedi.12148-BIB0077|pedi12148-cit-0077
  article-title: Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood
  publication-title: J Clin Invest
  doi: 10.1172/JCI200316409
– volume: 2
  start-page: e54
  year: 2013
  ident: 10.1111/pedi.12148-BIB0090|pedi12148-cit-0090
  article-title: The impact of mathematical modeling on the understanding of diabetes and related complications
  publication-title: CPT Pharmacometrics Syst Pharmacol
  doi: 10.1038/psp.2013.30
– volume: 6
  start-page: 753
  year: 2009
  ident: 10.1111/pedi.12148-BIB0085|pedi12148-cit-0085
  article-title: Modeling dynamic changes in type 1 diabetes progression: quantifying beta-cell variation after the appearance of islet-specific autoimmune responses
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2009.6.753
– volume: 49
  start-page: 1
  year: 2000
  ident: 10.1111/pedi.12148-BIB0060|pedi12148-cit-0060
  article-title: Neonatal beta-cell apoptosis: a trigger for autoimmune diabetes?
  publication-title: Diabetes
  doi: 10.2337/diabetes.49.1.1
– volume: 35
  start-page: 2762
  year: 2005
  ident: 10.1111/pedi.12148-BIB0021|pedi12148-cit-0021
  article-title: Soluble, dimeric HLA DR4-peptide chimeras: an approach for detection and immunoregulation of human type-1 diabetes
  publication-title: Eur J Immunol
  doi: 10.1002/eji.200526158
– volume: 7
  start-page: 154
  year: 1999
  ident: 10.1111/pedi.12148-BIB0039|pedi12148-cit-0039
  article-title: Preservation of β-cell function in type 1 diabetes
  publication-title: Diabetes Rev
– volume: 37
  start-page: 1591
  year: 1988
  ident: 10.1111/pedi.12148-BIB0046|pedi12148-cit-0046
  article-title: How, when, and why to predict IDDM
  publication-title: Diabetes
  doi: 10.2337/diab.37.12.1591
– volume: 154
  start-page: 5567
  year: 1995
  ident: 10.1111/pedi.12148-BIB0051|pedi12148-cit-0051
  article-title: Aspartate at position 57 of nonobese diabetic I-Ag7 beta-chain diminishes the spontaneous incidence of insulin-dependent diabetes mellitus
  publication-title: J Immunol
  doi: 10.4049/jimmunol.154.10.5567
SSID ssj0017934
Score 2.1481202
SecondaryResourceType review_article
Snippet Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 162
SubjectTerms Animals
autoantibodies
Autoantibodies - analysis
Autoimmunity
avidity
B-cells
Biomarkers - metabolism
Cytotoxicity, Immunologic
Diabetes Mellitus, Type 1 - diagnosis
Diabetes Mellitus, Type 1 - immunology
Diabetes Mellitus, Type 1 - metabolism
Diabetes Mellitus, Type 1 - physiopathology
Disease Progression
Humans
Insulin - metabolism
Insulin Secretion
Insulin-Secreting Cells - immunology
Insulin-Secreting Cells - metabolism
Markov models
mathematical models
Models, Biological
predictive algorithms
Prognosis
T-cells
T1D
β-cells
Title Autoimmune responses in T1DM: quantitative methods to understand onset, progression, and prevention of disease
URI https://api.istex.fr/ark:/67375/WNG-60P5254R-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpedi.12148
https://www.ncbi.nlm.nih.gov/pubmed/24827702
https://www.proquest.com/docview/1525764033
https://www.proquest.com/docview/1540221994
https://pubmed.ncbi.nlm.nih.gov/PMC4050373
Volume 15
WOSCitedRecordID wos000335836000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1399-5448
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017934
  issn: 1399-543X
  databaseCode: DRFUL
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_aOxFfrF_V2FpWFEFpYJPd7If4UryeFdrjKK3eW9jsbfBQkvOSiH--u5tc2sNSEN9CMsuyuzOzM5mZ3wC8JpGWeUxJmJN5HlJFSCh5JsOMJVmCccYzj8D35ZRPJmI2k9Mt-LCuhWnxIfofbk4yvL52Aq6y6pqQL61yd9gIVGzDMLaMSwcwHJ2PL0_7KILlvbaprZRhQsmsgyd1mTxXozcupKHb2983WZt_J01eN2b9bTTe-b91PID7nRWKjlq2eQhbpngEd8-6OPtjKI6auly40hGDVm0WranQokAX0ejsPfrZqMIXp1lVidoe1BWqS9T0lTLIjagPkU__aqE_DpF7v-wgo8oClTnqwkNP4HJ8fPHxJOw6M4SaykiEhkSZjlguciYo4QZrQxk2gkrNpdLWBRTW79SCKpElijGd41xFczJ3Zb_aELILg6IszDNA88RYk9HeGDjWNMmwVQOKSMOYNZwcMFAAb9fHk-oOttx1z_iRrt0Xt4Gp38AAXvW0yxas40aqN_6UexK1-u7S23iSfp18ShmeJtZrPk9PAni5ZoPUCp2LpKjClE2VuqZRnFFMyG001jWPHfRyAE9b1ulnjB34KsdxAHyDqXoCB_q9-aVYfPPg39QB-HA77zvPVLesM50ejz77p-f_QrwH96xRSNukzn0Y1KvGvIA7-le9qFYHsM1n4qATtD_hRSwB
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dj9MwDLdgQ8AL3x_lMwiEBLpKaZMmLW8ndmMntmk67bi9RW2WignUjq1F_PnEaVdu4nQS4q1qHUVNbMeO7Z8B3rBAJ3nImZ-zZe7zlDE_kVniZyLKIkozmTkEvi9jOZ3Gi0Uya3NzsBamwYfoLtxQMpy-RgHHC-lzUr622h3BEXh8Ffrc8lHUg_7gZHg67sIIlvmarrZJ4kecLVp8Ukzl-TN670Tq4-L-usjc_Dtr8rw1646j4e3__JE7cKu1Q8lhwzh34Yop7sH1SRtpvw_FYV2VKyweMWTT5NGaLVkVZB4MJh_IjzotXHmaVZak6UK9JVVJ6q5WhuCI6oC4BLAG_OOA4Pt1CxpVFqTMSRsgegCnw6P5x5Hf9mbwNU-C2DcsyHQg8jgXMWfSUG24oCbmiZZJqq0TGFvPU8c8jbMoFULnNE-DJVti4a82jD2EXlEW5jGQZWSs0WjPDBpqHmXUKoKUJUYIazohNJAH73b7o3QLXI79M76rnQODC6jcAnrwuqNdN3AdF1K9ddvckaSbb5jgJiN1Nv2kBJ1F1m8-USMPXu34QFmxw1hKWpiy3ipsGyUFp4xdRmOd8xDBlz141PBON2OI8KuShh7IPa7qCBD2e_9Lsfrq4L85QvhIO-97x1WX_KeaHQ2O3dOTfyF-CTdG88lYjY-nn5_CTWsi8ibF8xn0qk1tnsM1_bNabTcvWnn7Da-vLwk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BiiZe-P4In0YgJKZFcmLHjnmb6MomuqqaNuiblTiOqEBJaVPEn4_PScMqpkmItyg5y7J9d77L3f0O4A2LjCpjzsKSFWXIM8ZCJXMV5iLJE0pzmXsEvs9jOZmks5madrk5WAvT4kP0P9xQMry-RgG3i6K8IOULp90RHIGn12HAEyWcXA6Gp6PzcR9GcMzXdrVVKkw4m3X4pJjK82f01o00wM39dZm5-XfW5EVr1l9Ho9v_uZA7cKuzQ8lByzh34Zqt7sHuSRdpvw_Vwbqp51g8YsmyzaO1KzKvyFk0PHlPfqyzypenOWVJ2i7UK9LUZN3XyhAc0ewTnwDWgn_sE3y_6ECj6orUJekCRA_gfHR49uEo7HozhIarKA0ti3ITiTItRcqZtNRYLqhNuTJSZcY5ganzPE3KszRPMiFMScssKliBhb_GMvYQdqq6so-BFIl1RqO7M2hseJJTpwgypqwQznRCaKAA3m3OR5sOuBz7Z3zXGwcGN1D7DQzgdU-7aOE6LqV664-5J8mW3zDBTSb6y-SjFnSaOL_5VB8F8GrDB9qJHcZSssrW65XGtlFScMrYVTTOOY8RfDmARy3v9DPGCL8qaRyA3OKqngBhv7e_VPOvHv6bI4SPdPPuea66Yp16ejg89k9P_oX4JexOhyM9Pp58ego3nYXI2wzPZ7DTLNf2OdwwP5v5avmiE7ff-BQuhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoimmune+responses+in+T1DM%3A+quantitative+methods+to+understand+onset%2C+progression%2C+and+prevention+of+disease&rft.jtitle=Pediatric+diabetes&rft.au=Jaberi-Douraki%2C+Majid&rft.au=Liu%2C+Shang+Wan+Shalon&rft.au=Pietropaolo%2C+Massimo&rft.au=Khadra%2C+Anmar&rft.date=2014-05-01&rft.issn=1399-543X&rft.volume=15&rft.issue=3&rft.spage=162&rft.epage=174&rft_id=info:doi/10.1111%2Fpedi.12148&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_pedi_12148
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1399-543X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1399-543X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1399-543X&client=summon