Local Field Potentials: Myths and Misunderstandings

The intracerebral local field potential (LFP) is a measure of brain activity that reflects the highly dynamic flow of information across neural networks. This is a composite signal that receives contributions from multiple neural sources, yet interpreting its nature and significance may be hindered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in neural circuits Jg. 10; S. 101
1. Verfasser: Herreras, Oscar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland Frontiers Research Foundation 15.12.2016
Frontiers Media S.A
Schlagworte:
ISSN:1662-5110, 1662-5110
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The intracerebral local field potential (LFP) is a measure of brain activity that reflects the highly dynamic flow of information across neural networks. This is a composite signal that receives contributions from multiple neural sources, yet interpreting its nature and significance may be hindered by several confounding factors and technical limitations. By and large, the main factor defining the amplitude of LFPs is the geometry of the current sources, over and above the degree of synchronization or the properties of the media. As such, similar levels of activity may result in potentials that differ in several orders of magnitude in different populations. The geometry of these sources has been experimentally inaccessible until intracerebral high density recordings enabled the co-activating sources to be revealed. Without this information, it has proven difficult to interpret a century's worth of recordings that used temporal cues alone, such as event or spike related potentials and frequency bands. Meanwhile, a collection of biophysically ill-founded concepts have been considered legitimate, which can now be corrected in the light of recent advances. The relationship of LFPs to their sources is often counterintuitive. For instance, most LFP activity is not local but remote, it may be larger further from rather than close to the source, the polarity does not define its excitatory or inhibitory nature, and the amplitude may increase when source's activity is reduced. As technological developments foster the use of LFPs, the time is now ripe to raise awareness of the need to take into account spatial aspects of these signals and of the errors derived from neglecting to do so.
AbstractList The intracerebral local field potential (LFP) is a measure of brain activity that reflects the highly dynamic flow of information across neural networks. This is a composite signal that receives contributions from multiple neural sources, yet interpreting its nature and significance may be hindered by several confounding factors and technical limitations. By and large, the main factor defining the amplitude of LFPs is the geometry of the current sources, over and above the degree of synchronization or the properties of the media. As such, similar levels of activity may result in potentials that differ in several orders of magnitude in different populations. The geometry of these sources has been experimentally inaccessible until intracerebral high density recordings enabled the co-activating sources to be revealed. Without this information, it has proven difficult to interpret a century’s worth of recordings that used temporal cues alone, such as event or spike related potentials and frequency bands. As such, a collection of biophysically ill-founded concepts have been considered legitimate, which can now be corrected in the light of recent advances. The relationship of LFPs to their sources is often counterintuitive. For instance, most LFP activity is not local but remote, it may be larger further from rather than close to the source, the polarity does not define its excitatory or inhibitory nature, and the amplitude may increase when source’s activity is reduced. As technological developments foster the use of LFPs, the time is now ripe to raise awareness of the need to take into account spatial aspects of these signals and of the errors derived from neglecting to do so.
The intracerebral local field potential (LFP) is a measure of brain activity that reflects the highly dynamic flow of information across neural networks. This is a composite signal that receives contributions from multiple neural sources, yet interpreting its nature and significance may be hindered by several confounding factors and technical limitations. By and large, the main factor defining the amplitude of LFPs is the geometry of the current sources, over and above the degree of synchronization or the properties of the media. As such, similar levels of activity may result in potentials that differ in several orders of magnitude in different populations. The geometry of these sources has been experimentally inaccessible until intracerebral high density recordings enabled the co-activating sources to be revealed. Without this information, it has proven difficult to interpret a century's worth of recordings that used temporal cues alone, such as event or spike related potentials and frequency bands. Meanwhile, a collection of biophysically ill-founded concepts have been considered legitimate, which can now be corrected in the light of recent advances. The relationship of LFPs to their sources is often counterintuitive. For instance, most LFP activity is not local but remote, it may be larger further from rather than close to the source, the polarity does not define its excitatory or inhibitory nature, and the amplitude may increase when source's activity is reduced. As technological developments foster the use of LFPs, the time is now ripe to raise awareness of the need to take into account spatial aspects of these signals and of the errors derived from neglecting to do so.
The intracerebral local field potential (LFP) is a measure of brain activity that reflects the highly dynamic flow of information across neural networks. This is a composite signal that receives contributions from multiple neural sources, yet interpreting its nature and significance may be hindered by several confounding factors and technical limitations. By and large, the main factor defining the amplitude of LFPs is the geometry of the current sources, over and above the degree of synchronization or the properties of the media. As such, similar levels of activity may result in potentials that differ in several orders of magnitude in different populations. The geometry of these sources has been experimentally inaccessible until intracerebral high density recordings enabled the co-activating sources to be revealed. Without this information, it has proven difficult to interpret a century's worth of recordings that used temporal cues alone, such as event or spike related potentials and frequency bands. Meanwhile, a collection of biophysically ill-founded concepts have been considered legitimate, which can now be corrected in the light of recent advances. The relationship of LFPs to their sources is often counterintuitive. For instance, most LFP activity is not local but remote, it may be larger further from rather than close to the source, the polarity does not define its excitatory or inhibitory nature, and the amplitude may increase when source's activity is reduced. As technological developments foster the use of LFPs, the time is now ripe to raise awareness of the need to take into account spatial aspects of these signals and of the errors derived from neglecting to do so.The intracerebral local field potential (LFP) is a measure of brain activity that reflects the highly dynamic flow of information across neural networks. This is a composite signal that receives contributions from multiple neural sources, yet interpreting its nature and significance may be hindered by several confounding factors and technical limitations. By and large, the main factor defining the amplitude of LFPs is the geometry of the current sources, over and above the degree of synchronization or the properties of the media. As such, similar levels of activity may result in potentials that differ in several orders of magnitude in different populations. The geometry of these sources has been experimentally inaccessible until intracerebral high density recordings enabled the co-activating sources to be revealed. Without this information, it has proven difficult to interpret a century's worth of recordings that used temporal cues alone, such as event or spike related potentials and frequency bands. Meanwhile, a collection of biophysically ill-founded concepts have been considered legitimate, which can now be corrected in the light of recent advances. The relationship of LFPs to their sources is often counterintuitive. For instance, most LFP activity is not local but remote, it may be larger further from rather than close to the source, the polarity does not define its excitatory or inhibitory nature, and the amplitude may increase when source's activity is reduced. As technological developments foster the use of LFPs, the time is now ripe to raise awareness of the need to take into account spatial aspects of these signals and of the errors derived from neglecting to do so.
Author Herreras, Oscar
AuthorAffiliation Department of Translational Neuroscience, Cajal Institute-CSIC Madrid, Spain
AuthorAffiliation_xml – name: Department of Translational Neuroscience, Cajal Institute-CSIC Madrid, Spain
Author_xml – sequence: 1
  givenname: Oscar
  surname: Herreras
  fullname: Herreras, Oscar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28018180$$D View this record in MEDLINE/PubMed
BookMark eNp1Uk1PGzEQtSqq8tHee6pW4tJL0vHHer0ckBAqBSkIDu3Z8vojONrYYHsr8e_rJFABEifP2G-e38y8Q7QXYrAIfcUwp1T0P1zQPs0JYD4HwIA_oAPMOZm1GMPei3gfHea8AuCEt-wT2icCsMACDhBdRK3G5sLb0TS3sdhQvBrzSXP9WO5yo4Jprn2egrEpl5r5sMyf0UdXMfbL03mE_lz8_H1-OVvc_Lo6P1vMNOuhzDqmne6EGwbc9z1XnWWqxgIExQMZemWE0a6DrtNMc0IGAwPnyoAhXUsUo0foasdrolrJ--TXKj3KqLzcXsS0lCoVr0crQSvHsLMDqw2qzglW_2KUElGTOp_Kdbrjup-GtTW69pnU-Ir09Uvwd3IZ_8oWt1xQqATfnwhSfJhsLnLts7bjqIKNU5ZYtJS2AFvo8RvoKk4p1FFJQnpO6qJoW1HfXir6L-V5NxXAdwCdYs7JOql9UcXHjUA_SgxyYwK5NYHcmEBuTVAL4U3hM_e7Jf8Aj6S0Pg
CitedBy_id crossref_primary_10_1007_s00429_017_1569_x
crossref_primary_10_1093_cercor_bhac297
crossref_primary_10_1113_JP284587
crossref_primary_10_1111_epi_18212
crossref_primary_10_3389_fncir_2020_00052
crossref_primary_10_3389_fpsyt_2021_678103
crossref_primary_10_1371_journal_pbio_3003278
crossref_primary_10_1088_1741_2552_ac605f
crossref_primary_10_1038_s41386_023_01532_4
crossref_primary_10_1109_TNSRE_2025_3564625
crossref_primary_10_1177_0271678X221107422
crossref_primary_10_1089_bioe_2020_0028
crossref_primary_10_1038_s41380_025_03105_x
crossref_primary_10_1038_s41598_020_78179_4
crossref_primary_10_1371_journal_pone_0301713
crossref_primary_10_1002_admi_202500158
crossref_primary_10_1016_j_clinph_2024_12_008
crossref_primary_10_1038_s41598_018_22051_z
crossref_primary_10_3389_fnhum_2023_1134811
crossref_primary_10_1111_ejn_70080
crossref_primary_10_1152_jn_00464_2021
crossref_primary_10_1111_acer_70111
crossref_primary_10_3389_fnins_2024_1428901
crossref_primary_10_1063_5_0228901
crossref_primary_10_3389_fnsys_2019_00078
crossref_primary_10_1038_s41467_021_22468_7
crossref_primary_10_1093_cercor_bhz061
crossref_primary_10_7554_eLife_92254
crossref_primary_10_1002_advs_202207732
crossref_primary_10_1523_JNEUROSCI_1212_19_2019
crossref_primary_10_1177_02698811231164231
crossref_primary_10_1523_JNEUROSCI_3507_17_2018
crossref_primary_10_1016_j_neuron_2020_09_043
crossref_primary_10_1073_pnas_2023265118
crossref_primary_10_1016_j_clinph_2024_06_003
crossref_primary_10_1371_journal_pcbi_1008731
crossref_primary_10_1039_D5LC00058K
crossref_primary_10_3389_fnins_2021_658703
crossref_primary_10_1016_j_neuroimage_2017_12_015
crossref_primary_10_3389_fncir_2022_846905
crossref_primary_10_1016_j_jneumeth_2018_10_028
crossref_primary_10_1186_s12915_021_00950_4
crossref_primary_10_1002_hbm_23913
crossref_primary_10_3389_fncir_2023_1138774
crossref_primary_10_1038_s41398_022_02065_y
crossref_primary_10_1016_j_jneumeth_2018_06_021
crossref_primary_10_1038_s41598_018_30203_4
crossref_primary_10_3389_fncel_2023_1217081
crossref_primary_10_1016_j_neurom_2025_02_005
crossref_primary_10_1088_1741_2552_ac3cc5
crossref_primary_10_1002_hipo_23490
crossref_primary_10_1146_annurev_resource_101722_082743
crossref_primary_10_1038_s41551_018_0338_3
crossref_primary_10_1111_ejn_16108
crossref_primary_10_1016_j_brainresbull_2024_110992
crossref_primary_10_1088_1741_2552_ad5049
crossref_primary_10_1038_s41593_023_01284_w
crossref_primary_10_1093_cercor_bhx353
crossref_primary_10_1152_jn_00376_2021
crossref_primary_10_3389_fncel_2023_1129097
crossref_primary_10_3389_fnins_2025_1565255
crossref_primary_10_1016_j_nbd_2021_105490
crossref_primary_10_1109_ACCESS_2021_3105457
crossref_primary_10_3389_fncom_2018_00078
crossref_primary_10_1016_j_clinph_2025_2110804
crossref_primary_10_3233_JAD_180875
crossref_primary_10_1088_1741_2552_ad54f0
crossref_primary_10_1038_s41467_022_29208_5
crossref_primary_10_7554_eLife_106481_3
crossref_primary_10_1113_JP284418
crossref_primary_10_3390_brainsci13020354
crossref_primary_10_3389_fnins_2023_1175575
crossref_primary_10_1162_neco_a_01389
crossref_primary_10_1038_s41598_018_24629_z
crossref_primary_10_1016_j_bpj_2022_02_022
crossref_primary_10_1016_j_neuroscience_2017_12_008
crossref_primary_10_1117_1_NPh_9_4_045009
crossref_primary_10_1016_j_cub_2023_02_006
crossref_primary_10_1111_ejn_15426
crossref_primary_10_1016_j_cortex_2022_09_011
crossref_primary_10_1177_2514183X19834764
crossref_primary_10_1371_journal_pcbi_1009601
crossref_primary_10_7554_eLife_92254_3
crossref_primary_10_1088_2057_1976_ab9fed
crossref_primary_10_3389_fnhum_2023_1178527
crossref_primary_10_1162_imag_a_00190
crossref_primary_10_3389_fphar_2021_792148
crossref_primary_10_1007_s00359_019_01369_7
crossref_primary_10_3389_fnbeh_2022_936036
crossref_primary_10_7554_eLife_106481
crossref_primary_10_1523_JNEUROSCI_0600_17_2017
crossref_primary_10_1111_epi_15540
crossref_primary_10_1088_1741_2552_acd3b2
crossref_primary_10_1523_JNEUROSCI_2113_19_2020
crossref_primary_10_1038_s41598_019_41955_y
crossref_primary_10_3389_fnint_2024_1321872
crossref_primary_10_1016_j_neubiorev_2021_02_025
crossref_primary_10_1162_netn_a_00365
crossref_primary_10_1016_j_brainresbull_2023_110777
crossref_primary_10_1371_journal_pone_0309521
crossref_primary_10_1007_s11571_021_09698_7
crossref_primary_10_1016_j_neuroimage_2020_117300
crossref_primary_10_1134_S0362119723700378
crossref_primary_10_3389_fgene_2018_00029
crossref_primary_10_1002_hbm_25987
crossref_primary_10_1093_cercor_bhac413
crossref_primary_10_1038_s42003_023_04719_z
crossref_primary_10_3390_s21217189
crossref_primary_10_1126_science_adg8758
crossref_primary_10_1242_jeb_245497
crossref_primary_10_1016_j_biopsych_2021_03_002
crossref_primary_10_1007_s10484_023_09618_x
crossref_primary_10_1186_s12984_018_0349_z
crossref_primary_10_1002_hipo_23140
crossref_primary_10_1093_cercor_bhaf135
crossref_primary_10_1152_jn_00013_2019
crossref_primary_10_3390_cells11010106
crossref_primary_10_7554_eLife_73155
crossref_primary_10_7554_eLife_76544
crossref_primary_10_1186_s42234_021_00078_4
crossref_primary_10_3389_fnins_2020_00763
crossref_primary_10_1007_s10548_021_00853_1
crossref_primary_10_1111_ejn_14750
crossref_primary_10_1016_j_bpsc_2020_08_013
crossref_primary_10_1523_JNEUROSCI_2151_21_2022
crossref_primary_10_1523_JNEUROSCI_1161_23_2024
crossref_primary_10_1038_s42003_023_04696_3
crossref_primary_10_1016_j_actbio_2023_05_004
crossref_primary_10_12688_f1000research_16451_1
crossref_primary_10_3390_ma12030542
crossref_primary_10_1016_j_heares_2021_108229
crossref_primary_10_1093_cercor_bhad114
crossref_primary_10_1016_j_celrep_2025_115685
crossref_primary_10_1016_j_neuroscience_2025_03_021
crossref_primary_10_1016_j_neubiorev_2024_105886
crossref_primary_10_1523_JNEUROSCI_0571_20_2020
crossref_primary_10_7554_eLife_57313
crossref_primary_10_1007_s00424_022_02753_0
crossref_primary_10_3389_fpsyt_2023_1080260
crossref_primary_10_1016_j_expneurol_2025_115241
crossref_primary_10_1038_s41563_018_0249_4
crossref_primary_10_3389_fbioe_2020_622923
crossref_primary_10_1016_j_biopha_2023_115259
crossref_primary_10_1016_j_jneumeth_2021_109140
crossref_primary_10_1016_j_neuroimage_2023_119905
crossref_primary_10_1038_s41598_019_53453_2
crossref_primary_10_3389_fnhum_2021_788167
crossref_primary_10_3389_fnsys_2022_995375
crossref_primary_10_1016_j_yebeh_2019_106838
crossref_primary_10_3233_JPD_181480
crossref_primary_10_1016_j_sna_2021_112983
crossref_primary_10_1038_s41598_021_03414_5
crossref_primary_10_1038_s42003_021_02751_5
crossref_primary_10_1016_j_biocel_2024_106663
crossref_primary_10_1097_FBP_0000000000000620
crossref_primary_10_1155_2022_8998150
crossref_primary_10_3389_fnins_2021_704834
crossref_primary_10_1038_s41583_024_00830_0
crossref_primary_10_1111_epi_18462
crossref_primary_10_3389_fnsys_2020_00055
crossref_primary_10_1088_1741_2552_ac86a3
crossref_primary_10_1111_ejn_13840
crossref_primary_10_1177_0271678X20935998
crossref_primary_10_1016_j_neuroscience_2019_06_019
crossref_primary_10_1371_journal_pcbi_1006769
crossref_primary_10_1371_journal_pcbi_1007858
crossref_primary_10_1016_j_brainresbull_2021_05_028
crossref_primary_10_1038_s41583_022_00659_5
crossref_primary_10_1038_s41593_023_01455_9
crossref_primary_10_1371_journal_pcbi_1010983
crossref_primary_10_1016_j_bbr_2018_11_038
crossref_primary_10_1016_j_brainresbull_2021_05_025
crossref_primary_10_1523_JNEUROSCI_0695_24_2024
crossref_primary_10_3389_fnins_2018_00385
crossref_primary_10_1016_j_jdbs_2024_03_003
crossref_primary_10_1371_journal_pcbi_1012926
crossref_primary_10_1093_cercor_bhaa022
crossref_primary_10_1186_s13195_020_00632_3
crossref_primary_10_1016_j_neuroimage_2022_119050
Cites_doi 10.1371/journal.pcbi.1005132
10.1371/journal.pcbi.1002809
10.1016/j.neuroscience.2015.09.054
10.1523/JNEUROSCI.2273-06.2006
10.1152/jn.00919.2007
10.1146/annurev-neuro-062111-150444
10.1152/physrev.00027.2007
10.3389/fnmol.2013.00048
10.1371/journal.pcbi.1005193
10.1016/bs.pbr.2015.04.002
10.1016/0013-4694(69)90092-3
10.3389/fnsys.2011.00077
10.1523/JNEUROSCI.1413-04.2004
10.1152/jn.1968.31.6.884
10.1038/nature02907
10.1016/S0014-4886(63)80006-0
10.1016/j.neuron.2008.11.016
10.1152/physrev.1985.65.1.37
10.7554/eLife.16658
10.1016/j.jneumeth.2014.07.025
10.1002/hipo.20974
10.1016/j.neuron.2014.08.051
10.1002/hipo.1073
10.1016/0013-4694(57)90088-3
10.1371/journal.pone.0105071
10.1093/acprof:oso/9780195050387.001.0001
10.1016/j.jneumeth.2007.12.010
10.1146/annurev-neuro-062012-170330
10.7554/eLife.04006
10.1152/jn.1990.64.5.1429
10.1523/JNEUROSCI.1401-06.2006
10.3389/fncom.2013.00005
10.1371/journal.pone.0020046
10.1007/s10827-010-0245-4
10.1016/S0306-4522(01)00417-1
10.1152/jn.00183.2002
10.1152/jn.00098.2011
10.1126/science.1217139
10.1152/jn.00297.2010
10.1016/B978-0-444-53839-0.00009-0
10.1093/cercor/bhg129
10.1152/jn.1994.72.2.742
10.1093/cercor/bht022
10.1093/cercor/bhv211
10.1016/0165-0173(80)90004-1
10.1016/0006-8993(93)90043-M
10.1111/j.1460-9568.2008.06358.x
10.1152/jn.1979.42.6.1557
10.1111/ejn.13003
10.1523/JNEUROSCI.2573-09.2009
10.1007/s10827-009-0206-y
10.1152/ajplegacy.1956.187.1.180
10.1016/0014-4886(70)90107-X
10.3389/fnsys.2016.00007
10.1113/jphysiol.2004.078915
10.1038/nrn3241
10.1523/JNEUROSCI.0338-13.2013
10.1016/j.neuron.2011.09.029
10.1016/j.neuron.2007.07.027
10.1016/0013-4694(84)90061-0
10.3389/fnsys.2014.00066
10.1152/jn.01047.2012
10.1111/ejn.12091
10.1152/jn.00157.2010
10.1016/0013-4694(76)90057-2
10.1152/jn.00040.2012
10.1016/0006-8993(88)90259-4
10.1016/j.neuron.2011.11.006
10.1093/cercor/bhr040
10.1152/jn.1998.79.1.159
10.1016/0014-4886(73)90290-2
10.1523/JNEUROSCI.4499-11.2012
10.1152/jn.00345.2009
10.1016/S0306-4522(03)00208-2
10.3389/neuro.01.037.2008
10.1523/JNEUROSCI.2113-04.2004
10.1016/j.neuron.2013.05.023
10.1016/S0006-3495(04)74250-2
10.1016/j.jphysparis.2011.09.006
10.1016/0014-4886(68)90108-8
10.1016/j.bpj.2015.11.019
10.1097/00004691-198510000-00002
10.1371/journal.pone.0075499
10.1126/science.273.5283.1868
10.1038/nn.2440
10.1016/s0013-4694(97)00066-7
10.1152/jn.2000.83.4.2192
ContentType Journal Article
Copyright 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2016 Herreras. 2016 Herreras
Copyright_xml – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2016 Herreras. 2016 Herreras
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fncir.2016.00101
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5110
ExternalDocumentID oai_doaj_org_article_0caf41feb4654a7f844ab43328a7f201
PMC5156830
28018180
10_3389_fncir_2016_00101
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Ministerio de Economía y Competitividad
  grantid: BFU2013-41533R
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
INR
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
TR2
ACXDI
C1A
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c490t-74cfc78fbb19996a7e4abb180831b2b9ad8dcf7077c4c622bd0b66ad0d2752a43
IEDL.DBID M2P
ISICitedReferencesCount 229
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411896600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-5110
IngestDate Tue Oct 14 15:06:45 EDT 2025
Tue Nov 04 01:56:14 EST 2025
Fri Sep 05 11:22:15 EDT 2025
Fri Jul 25 11:51:44 EDT 2025
Mon Jul 21 06:09:10 EDT 2025
Tue Nov 18 21:25:54 EST 2025
Sat Nov 29 02:24:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords cell assembly
EEG
volume-conduction
spatial discrimination
spontaneous activity
network oscillations
local field potentials
neuronal circuits
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-74cfc78fbb19996a7e4abb180831b2b9ad8dcf7077c4c622bd0b66ad0d2752a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Reviewed by: Alain Destexhe, Unité de Neurosciences, Information and Complexité, Centre National de la Recherche Scientifique, France; Vikaas Singh Sohal, University of California, San Francisco, USA
Edited by: Michael M. Halassa, New York University, USA
OpenAccessLink https://www.proquest.com/docview/2296210135?pq-origsite=%requestingapplication%
PMID 28018180
PQID 2296210135
PQPubID 4424406
ParticipantIDs doaj_primary_oai_doaj_org_article_0caf41feb4654a7f844ab43328a7f201
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5156830
proquest_miscellaneous_1853350030
proquest_journals_2296210135
pubmed_primary_28018180
crossref_citationtrail_10_3389_fncir_2016_00101
crossref_primary_10_3389_fncir_2016_00101
PublicationCentury 2000
PublicationDate 2016-12-15
PublicationDateYYYYMMDD 2016-12-15
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-15
  day: 15
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neural circuits
PublicationTitleAlternate Front Neural Circuits
PublicationYear 2016
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Vinogradova (B90) 2001; 11
Buzsáki (B10) 2012; 13
Reimann (B75) 2013; 79
Ranck (B72) 1970; 27
Brankačk (B8) 1993; 615
Benito (B4) 2016; 5
Halnes (B36) 2016; 12
Vanderwolf (B86) 1969; 26
Martín-Vázquez (B61) 2013; 8
Bullock (B9) 2003; 121
Gomes (B31) 2016; 110
Riera (B76) 2012; 108
Seo (B79) 2015; 244
Simon (B80) 2006; 26
Gloor (B30) 1985; 2
Takács (B83) 2012; 22
Canolty (B12) 2012; 8
Goutagny (B33) 2009; 12
Nelson (B64) 2010; 103
Eggermont (B19) 2011; 5
Herreras (B41) 1988; 451
Kowalczyk (B46) 2013; 37
Gail (B26) 2004; 14
Varga (B88) 2014; 3
Bos (B7) 2016; 12
Herreras (B39) 1990; 64
Melzer (B62) 2012; 335
Okada (B69) 1994; 72
Varona (B89) 2000; 83
Borhegyi (B6) 2004; 24
Lindén (B49) 2010; 29
Rall (B70) 1968; 31
Leung (B47) 1979; 42
Elul (B20) 1971; 15
Fernández-Ruiz (B23) 2013; 33
Hartings (B37) 2009; 102
Mitzdorf (B63) 1985; 65
Gratiy (B34) 2013; 109
de Cheveigné (B15) 2013; 109
Kajikawa (B42) 2011; 72
Bédard (B2) 2004; 86
Xing (B92) 2009; 29
Rasch (B74) 2008; 99
Gorostiza (B32) 2013; 6
Nunez (B68) 1997; 103
Colgin (B13) 2013; 36
Lopes da Silva (B53) 1982
Kimura (B44) 1984; 58
Nelson (B65) 2008; 169
Hájos (B35) 2004; 24
Ranck (B71) 1963; 7
Somogyi (B81) 2005; 562
Głąbska (B29) 2014; 9
Korovaichuk (B45) 2010; 104
Herreras (B40) 2015; 310
López-Aguado (B54) 2001; 108
Logothetis (B52) 2007; 55
Lindén (B50) 2011; 72
Lorente de Nó (B56) 1947
Syková (B82) 2008; 88
López-Aguado (B55) 2002; 88
Schomburg (B78) 2014; 84
Nunez (B67) 2006
Berens (B5) 2008; 2
Foster (B25) 2016; 10
Katzner (B43) 2009; 61
Martín-Vázquez (B60) 2016; 26
Ranck (B73) 1973; 41
Denker (B17) 2011; 21
Gaucher (B27) 2012; 106
Woodbury (B91) 1960
Robinson (B77) 1980; 2
Buzsáki (B11) 2012; 35
Liu (B51) 2015; 42
Cracco (B14) 1976; 41
Fernández-Ruiz (B21) 2013; 7
Benito (B3) 2014; 24
Gieselmann (B28) 2008; 28
Nielsen (B66) 2006; 26
Makarova (B59) 2014; 8
Arieli (B1) 1996; 273
Herreras (B38) 1986
Dement (B16) 1957; 9
Fernández-Ruiz (B22) 2012; 32
Li (B48) 1968; 20
Makarov (B57) 2010; 29
Donoghue (B18) 1998; 79
Makarova (B58) 2011; 5
Timofeev (B84) 2011; 193
Tsanov (B85) 2015; 219
Fiser (B24) 2004; 431
van Harreveld (B87) 1956; 187
References_xml – volume: 12
  start-page: e1005132
  year: 2016
  ident: B7
  article-title: Identifying anatomical origins of coexisting oscillations in the cortical microcircuit
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005132
– volume: 8
  start-page: e1002809
  year: 2012
  ident: B12
  article-title: Task-dependent changes in cross-level coupling between single neurons and oscillatory activity in multiscale networks
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002809
– volume-title: Modulation of Hippocampal Excitability by Sensory Stimuli
  year: 1986
  ident: B38
– volume: 310
  start-page: 486
  year: 2015
  ident: B40
  article-title: New uses for LFPs: pathway-specific threads obtained through spatial discrimination
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2015.09.054
– volume: 26
  start-page: 9639
  year: 2006
  ident: B66
  article-title: Dissociation between local field potentials and spiking activity in macaque inferior temporal cortex reveals diagnosticity-based encoding of complex objects
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2273-06.2006
– volume: 99
  start-page: 1461
  year: 2008
  ident: B74
  article-title: Inferring spike trains from local field potentials
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00919.2007
– volume: 35
  start-page: 203
  year: 2012
  ident: B11
  article-title: Mechanisms of gamma oscillations
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-062111-150444
– volume: 88
  start-page: 1277
  year: 2008
  ident: B82
  article-title: Diffusion in brain extracellular space
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00027.2007
– volume: 6
  start-page: 48
  year: 2013
  ident: B32
  article-title: Molecular probes and switches for functional analysis of receptors, ion channels and synaptic networks
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2013.00048
– volume: 12
  start-page: e1005193
  year: 2016
  ident: B36
  article-title: Effect of ionic diffusion on extracellular potentials in neural tissue
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005193
– volume: 219
  start-page: 103
  year: 2015
  ident: B85
  article-title: Septo-hippocampal signal processing: breaking the code
  publication-title: Prog. Brain Res.
  doi: 10.1016/bs.pbr.2015.04.002
– volume: 26
  start-page: 407
  year: 1969
  ident: B86
  article-title: Hippocampal electrical activity and voluntary movement in the rat
  publication-title: Electroencephalogr. Clin. Neurophysyiol.
  doi: 10.1016/0013-4694(69)90092-3
– volume: 5
  start-page: 77
  year: 2011
  ident: B58
  article-title: Parallel readout of pathway-specific inputs to laminated brain structures
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2011.00077
– volume: 24
  start-page: 8470
  year: 2004
  ident: B6
  article-title: Phase segregation of medial septal GABAergic neurons during hippocampal theta activity
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1413-04.2004
– volume: 31
  start-page: 884
  year: 1968
  ident: B70
  article-title: Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1968.31.6.884
– volume: 431
  start-page: 573
  year: 2004
  ident: B24
  article-title: Small modulation of ongoing cortical dynamics by sensory input during natural vision
  publication-title: Nature
  doi: 10.1038/nature02907
– volume: 7
  start-page: 153
  year: 1963
  ident: B71
  article-title: Analysis of specific impedance of rabbit cerebral cortex
  publication-title: Exp. Neurol.
  doi: 10.1016/S0014-4886(63)80006-0
– volume: 61
  start-page: 35
  year: 2009
  ident: B43
  article-title: Local origin of field potentials in visual cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.11.016
– volume: 65
  start-page: 37
  year: 1985
  ident: B63
  article-title: Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.1985.65.1.37
– volume: 5
  start-page: e16658
  year: 2016
  ident: B4
  article-title: The right hippocampus leads the bilateral integration of gamma-parsed lateralized information
  publication-title: eLife
  doi: 10.7554/eLife.16658
– volume: 244
  start-page: 114
  year: 2015
  ident: B79
  article-title: Model validation of untethered, ultrasonic neural dust motes for cortical recording
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2014.07.025
– start-page: 384
  volume-title: A Study of Nerve Physiology
  year: 1947
  ident: B56
  article-title: Analysis of the distribution of action currents of nerves in volume conductors
– volume: 22
  start-page: 1379
  year: 2012
  ident: B83
  article-title: Extrinsic and local glutamatergic inputs of the rat hippocampal CA1 area differentially innervate pyramidal cells and interneurons
  publication-title: Hippocampus
  doi: 10.1002/hipo.20974
– volume: 84
  start-page: 470
  year: 2014
  ident: B78
  article-title: Theta phase segregation of input-specific gamma patterns in entorhinal-hippocampal networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.08.051
– volume: 11
  start-page: 578
  year: 2001
  ident: B90
  article-title: Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information
  publication-title: Hippocampus
  doi: 10.1002/hipo.1073
– volume: 9
  start-page: 673
  year: 1957
  ident: B16
  article-title: Cyclic variations in EEG during sleep and their relation to eye movements, body motility and dreaming
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(57)90088-3
– volume: 9
  start-page: e105071
  year: 2014
  ident: B29
  article-title: Independent components of neural activity carry information on individual populations
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0105071
– volume-title: Electric Fields of the Brain. The Neurophysics of EEG.
  year: 2006
  ident: B67
  doi: 10.1093/acprof:oso/9780195050387.001.0001
– volume: 169
  start-page: 141
  year: 2008
  ident: B65
  article-title: Review of signal distortion through metal microelectrode recording circuits and filters
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.12.010
– volume: 36
  start-page: 295
  year: 2013
  ident: B13
  article-title: Mechanisms and functions of theta rhythms
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-062012-170330
– volume: 3
  start-page: 04006
  year: 2014
  ident: B88
  article-title: Functional fission of parvalbumin interneuron classes during fast network events
  publication-title: Elife
  doi: 10.7554/eLife.04006
– volume: 64
  start-page: 1429
  year: 1990
  ident: B39
  article-title: Propagating dendritic action potential mediates synaptic transmission in CA1 pyramidal cells in situ
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1990.64.5.1429
– volume: 26
  start-page: 9038
  year: 2006
  ident: B80
  article-title: Firing properties of anatomically identified neurons in the medial septum of anesthetized and unanesthetized restrained rats
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1401-06.2006
– volume: 7
  start-page: 5
  year: 2013
  ident: B21
  article-title: Identifying the synaptic origin of ongoing neuronal oscillations through spatial discrimination of electric fields
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2013.00005
– volume: 5
  start-page: e20046
  year: 2011
  ident: B19
  article-title: Comparison of LFP-based and spike-based spectro-temporal receptive fields and cross-correlation in cat primary auditory cortex
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0020046
– volume: 29
  start-page: 423
  year: 2010
  ident: B49
  article-title: Intrinsic dendritic filtering gives low-pass power spectra of local field potentials
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-010-0245-4
– volume: 108
  start-page: 249
  year: 2001
  ident: B54
  article-title: Activity-dependent changes of tissue resistivity in the CA1 region in vivo are layer-specific: modulation of evoked potentials
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(01)00417-1
– volume: 88
  start-page: 2809
  year: 2002
  ident: B55
  article-title: Structural inhomogeneities differentially modulate action currents and population spikes initiated in the axon or dendrites
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00183.2002
– volume: 108
  start-page: 956
  year: 2012
  ident: B76
  article-title: Pitfalls in the dipolar model for the neocortical EEG sources
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00098.2011
– volume: 335
  start-page: 1506
  year: 2012
  ident: B62
  article-title: Long-range-projecting GABAergic neurons modulate inhibition in hippocampus and entorhinal cortex
  publication-title: Science
  doi: 10.1126/science.1217139
– volume: 104
  start-page: 484
  year: 2010
  ident: B45
  article-title: Minor contribution of principal excitatory pathways to hippocampal LFPs in the anesthetized rat: a combined independent component and current source density study
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00297.2010
– volume: 193
  start-page: 121
  year: 2011
  ident: B84
  article-title: Neuronal plasticity and thalamocortical sleep and waking oscillations
  publication-title: Prog. Brain Res.
  doi: 10.1016/B978-0-444-53839-0.00009-0
– volume: 14
  start-page: 300
  year: 2004
  ident: B26
  article-title: Perception-related modulations of local field potential power and coherence in primary visual cortex of awake monkey during binocular rivalry
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhg129
– volume: 72
  start-page: 742
  year: 1994
  ident: B69
  article-title: Origin of the apparent tissue conductivity in the molecular and granular layers of the in vitro turtle cerebellum and the interpretation of current source-density analysis
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1994.72.2.742
– volume: 24
  start-page: 1738
  year: 2014
  ident: B3
  article-title: Spatial modules of coherent activity in pathway-specific LFPs in the hippocampus reflect topology and different modes of presynaptic synchronization
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bht022
– volume: 26
  start-page: 4082
  year: 2016
  ident: B60
  article-title: Diversity of LFPs activated in different target regions by a common CA3 input
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhv211
– volume: 2
  start-page: 65
  year: 1980
  ident: B77
  article-title: Hippocampal rhythmical slow activity (RASA; Theta): a critical analysis of selected studies and discussion of possible species-differences
  publication-title: Brain Res. Rev.
  doi: 10.1016/0165-0173(80)90004-1
– start-page: 83
  volume-title: Medical Physiology and Biophysics
  year: 1960
  ident: B91
  article-title: Potentials in a volume conductor
– volume: 615
  start-page: 310
  year: 1993
  ident: B8
  article-title: Current source density analysis of the hippocampal theta rhythm: associated sustained potentials and candidate synaptic generators
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(93)90043-M
– volume: 28
  start-page: 447
  year: 2008
  ident: B28
  article-title: Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2008.06358.x
– volume: 42
  start-page: 1557
  year: 1979
  ident: B47
  article-title: Potentials evoked by alvear tract in hippocampal CA1 region of rats. II. Spatial field analysis
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1979.42.6.1557
– volume: 42
  start-page: 2289
  year: 2015
  ident: B51
  article-title: Local field potentials are local events in the mouse auditory cortex
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.13003
– volume: 29
  start-page: 11540
  year: 2009
  ident: B92
  article-title: Spatial spread of the local field potential and its laminar variation in visual cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2573-09.2009
– volume: 29
  start-page: 445
  year: 2010
  ident: B57
  article-title: Disentanglement of local field potential sources by independent component analysis
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-009-0206-y
– volume: 187
  start-page: 180
  year: 1956
  ident: B87
  article-title: Cerebral impedance changes after circulatory arrest
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajplegacy.1956.187.1.180
– volume: 27
  start-page: 454
  year: 1970
  ident: B72
  article-title: Electrical impedance changes in many sites of brain in paradoxical sleep, anesthesia, and activity
  publication-title: Exp. Neurol.
  doi: 10.1016/0014-4886(70)90107-X
– volume: 10
  start-page: 7
  year: 2016
  ident: B25
  article-title: Spontaneous neural dynamics and multi-scale network organization
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2016.00007
– volume: 562
  start-page: 9
  year: 2005
  ident: B81
  article-title: Defined types of cortical interneurone structure space and spike timing in the hippocampus
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2004.078915
– volume: 13
  start-page: 407
  year: 2012
  ident: B10
  article-title: The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3241
– volume: 33
  start-page: 15518
  year: 2013
  ident: B23
  article-title: Cytoarchitectonic and dynamic origins of giant positive LFPs in the Dentate Gyrus
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0338-13.2013
– volume: 72
  start-page: 847
  year: 2011
  ident: B42
  article-title: How local is the local field potential?
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.029
– volume: 55
  start-page: 809
  year: 2007
  ident: B52
  article-title: In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.07.027
– volume: 58
  start-page: 351
  year: 1984
  ident: B44
  article-title: Stationary peaks from a moving source in far-field recording
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(84)90061-0
– volume: 8
  start-page: 66
  year: 2014
  ident: B59
  article-title: Can pathway-specific LFPs be obtained in cytoarchitectonically complex structures?
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2014.00066
– volume: 109
  start-page: 1681
  year: 2013
  ident: B34
  article-title: Pitfalls in the interpretation of multielectrode data: on the infeasibility of the neuronal current-source monopoles
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.01047.2012
– volume: 37
  start-page: 679
  year: 2013
  ident: B46
  article-title: The generation of theta rhythm in hippocampal formation maintained in vitro
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.12091
– volume: 103
  start-page: 2315
  year: 2010
  ident: B64
  article-title: Do electrode properties create a problem in interpreting local field potential recordings?
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00157.2010
– volume: 41
  start-page: 460
  year: 1976
  ident: B14
  article-title: Somatosensory evoked potential in man: far field potentials
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(76)90057-2
– volume: 109
  start-page: 261
  year: 2013
  ident: B15
  article-title: Component analysis reveals sharp tuning of the local field potential in the guinea pig auditory cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00040.2012
– volume: 15
  start-page: 228
  year: 1971
  ident: B20
  article-title: The genesis of the EEG
  publication-title: Int. Rev. Neurobiol.
– volume: 451
  start-page: 290
  year: 1988
  ident: B41
  article-title: Sensory modulation of hippocampal transmission. I. Opposite effects on CA1 and dentate gyrus synapsis
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(88)90259-4
– volume: 72
  start-page: 859
  year: 2011
  ident: B50
  article-title: Modeling the spatial reach of the LFP
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.11.006
– volume: 21
  start-page: 2681
  year: 2011
  ident: B17
  article-title: The local field potential reflects surplus spike synchrony
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr040
– volume: 79
  start-page: 159
  year: 1998
  ident: B18
  article-title: Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1998.79.1.159
– volume: 41
  start-page: 461
  year: 1973
  ident: B73
  article-title: Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires
  publication-title: Exp. Neurol.
  doi: 10.1016/0014-4886(73)90290-2
– volume: 32
  start-page: 5165
  year: 2012
  ident: B22
  article-title: Schaffer-specific local field potentials reflect discrete excitatory events at gamma-frequency that may fire postsynaptic hippocampal CA1 units
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4499-11.2012
– volume: 102
  start-page: 2563
  year: 2009
  ident: B37
  article-title: Recovery of slow potentials in AC-coupled electrocorticography: application to spreading depolarizations in rat and human cerebral cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00345.2009
– volume: 121
  start-page: 233
  year: 2003
  ident: B9
  article-title: Are the electroencephalograms mainly rhythmic? Assessment of periodicity in wide-band time series
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(03)00208-2
– start-page: 15
  volume-title: Electroencephalography: Basic Principles, Clinical applications, and Related Fields
  year: 1982
  ident: B53
  article-title: Biophysical aspects of EEG and EMG generation
– volume: 2
  start-page: 199
  year: 2008
  ident: B5
  article-title: Feature selectivity of the gamma-band of the local field potential in primate primary visual cortex
  publication-title: Front. Neurosci.
  doi: 10.3389/neuro.01.037.2008
– volume: 24
  start-page: 9127
  year: 2004
  ident: B35
  article-title: Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2113-04.2004
– volume: 79
  start-page: 375
  year: 2013
  ident: B75
  article-title: A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.05.023
– volume: 86
  start-page: 1829
  year: 2004
  ident: B2
  article-title: Modeling extracellular field potentials and the frequency-filtering properties of extracellular space
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(04)74250-2
– volume: 106
  start-page: 93
  year: 2012
  ident: B27
  article-title: How different are the local field potentials and spiking activities? Insights from multielectrodes arrays. J. Physiol
  publication-title: Paris
  doi: 10.1016/j.jphysparis.2011.09.006
– volume: 20
  start-page: 544
  year: 1968
  ident: B48
  article-title: Specific resistivity of the cerebral cortex and white matter
  publication-title: Exp. Neurol.
  doi: 10.1016/0014-4886(68)90108-8
– volume: 110
  start-page: 234
  year: 2016
  ident: B31
  article-title: Intracellular impedance measurements reveal non-ohmic properties of the extracellular medium around neurons
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2015.11.019
– volume: 2
  start-page: 327
  year: 1985
  ident: B30
  article-title: Neuronal generators and the problem of localization in electroencephalography: application of volume conductor theory to electroencephalography
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/00004691-198510000-00002
– volume: 8
  start-page: e75499
  year: 2013
  ident: B61
  article-title: Determining the true polarity and amplitude of synaptic currents underlying gamma oscillations of local field potentials
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0075499
– volume: 273
  start-page: 1868
  year: 1996
  ident: B1
  article-title: Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses
  publication-title: Science
  doi: 10.1126/science.273.5283.1868
– volume: 12
  start-page: 1491
  year: 2009
  ident: B33
  article-title: Self-generated theta oscillations in the hippocampus
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2440
– volume: 103
  start-page: 499
  year: 1997
  ident: B68
  article-title: EEG coherency. I: statistics, reference electrode, volume conduction, laplacians, cortical imaging, and interpretation at multiple scales
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/s0013-4694(97)00066-7
– volume: 83
  start-page: 2192
  year: 2000
  ident: B89
  article-title: Macroscopic and subcellular factors shaping CA1 population spikes
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2000.83.4.2192
SSID ssj0062654
Score 2.5391488
SecondaryResourceType review_article
Snippet The intracerebral local field potential (LFP) is a measure of brain activity that reflects the highly dynamic flow of information across neural networks. This...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 101
SubjectTerms Animals
Biophysics
Biophysics - standards
Brain - physiology
cell assembly
EEG
Electric currents
Electroencephalography
Electrophysiological Phenomena
Electrophysiological recording
Geometry
Humans
Independent Component Analysis
Local Field Potentials
Nerve Net - physiology
Neural networks
Neurons
Neuroscience
Neurosciences
Neurosciences - standards
Polarity
Recording equipment
Researchers
Spatial Discrimination
spontaneous activity
Synchronization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1CyCGX0iZp6zYNKpRAD2ZtWbbk3tKSJYck5JBCbkKfZKH1ltgp5N93RvZusqW0lx5tySC_kTQzmtEbgA-oxblyNXonTphchBBzE2LMK6HQPva4bUaXik3Iy0t1c9NePSn1RTlhIz3wCNyscCaKMgZLxF9GRiWEsUS6pfCBjze3CtmunKlxD0YrvRZjUBJdsHYWO7cg8s8yRR6mAjArJZS4-v9kYP6eJ_lE8cyfw7PJYmQn40hfwFbo9mD_pENv-fsDO2YphzMdju9DdU6qic0pLY1dLQdKBcL59YldPAy3PTOdZxcLupP3eKGlP4Cv89PrL2f5VBYhd6IthlwKF51U0VqiEGiMDIiILRXVDLPctsYr76IspHTCNZxbX9imMb7wXNbciOolbHfLLrwG5tF94caZVlE0UkUTS29CJUxTx9b6JoPZCiftJs5wKl3xTaPvQMjqhKwmZHVCNoOP6y9-jHwZf-n7maBf9yOm6_QC5a8n-et_yT-Dw5Xg9LT8es1526AvW1Z1Bu_XzbhwKBpiurC87zUZKlVNm1wGr0Y5r0fCFfGYKWyRGzNgY6ibLd3iNpFzo33YqKp48z_-7S3sElqUPVPWh7A93N2Hd7Djfg6L_u4ozfhfEFwHGA
  priority: 102
  providerName: Directory of Open Access Journals
Title Local Field Potentials: Myths and Misunderstandings
URI https://www.ncbi.nlm.nih.gov/pubmed/28018180
https://www.proquest.com/docview/2296210135
https://www.proquest.com/docview/1853350030
https://pubmed.ncbi.nlm.nih.gov/PMC5156830
https://doaj.org/article/0caf41feb4654a7f844ab43328a7f201
Volume 10
WOSCitedRecordID wos000411896600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5110
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062654
  issn: 1662-5110
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5110
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062654
  issn: 1662-5110
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-5110
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062654
  issn: 1662-5110
  databaseCode: M7P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-5110
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062654
  issn: 1662-5110
  databaseCode: BENPR
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1662-5110
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062654
  issn: 1662-5110
  databaseCode: PIMPY
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-5110
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062654
  issn: 1662-5110
  databaseCode: M2P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH9iGwcu42PACqMKEkLiEDVxnNjhgjbUCiRaRQikcrIcf7BKkIwmQ9qFvx0_1-koQrtwsZLYiRw_-334Pf8ewAsnxQlXubNOFJUxNcbG0lgbZ5Q7_Vg7tmmVTzbBFgu-XJZV2HDrQljlwBM9o9atwj3yCSFl4cyTNMvfXPyIMWsUeldDCo09OHCaTYohXXNSDZzY6eo53bgmnSFWTmyjVggBmnr_Q0gDM4gij9j_LzXz72jJP8TP7O7_dvweHAbFMzrdzJT7cMs0D-DotHFG9_er6GXkQ0H9HvsRZB9QwkUzjG6LqrbHiCI3TV9H86v-vItko6P5Co_2XZ-L6R7C59n009t3cciuECtaJn3MqLKKcVvXiERQSGaodNccU4_VpC6l5lpZljCmqCoIqXVSF4XUiSYsJ5Jmj2C_aRtzDJF2VhCRSpYcnZrcSptqaTIqi9yWtS5GMBkGWqgAPY4ZML4JZ4IgaYQnjUDSCE-aEbzavnGxgd24oe0Z0m7bDgGz_YN2_VWE9ScSJS1NrakRP04yy6n7W8Ru4-6G4EdOBuqJsIo7cU26ETzfVrv1h04V2Zj2shOo72Q58soRPN5MlG1PCEc4NO5q2M4U2unqbk2zOvcY307NLHiWPLm5W0_hDo4Dhtek-Qns9-tL8wxuq5_9qluPYY8t-RgOzqaL6uPY7zaM_QLBkvny19TVV-_n1ZffJBscUw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJceJXHQgEjARKHaBPHSRwkhMpj1VV3V3soUjm5jh90JUjKJgXtn-I34vEmWxah3nrglsSONbE_zyMzngF47qQ45Spx1oliMmDG2EAaa4OYcacfa8c2rfLFJrLplB8d5bMt-NWdhcGwyo4nekatK4X_yAeU5qkzT6I4eXv6PcCqUehd7UporGBxYJY_nclWvxl9cOv7gtLhx8P3-0FbVSBQLA-bIGPKqozbosAT-KnMDJPummPJrYIWudRcK5uFWaaYSiktdFikqdShpllCJYvduFdgmzmwhz3Yno0ms88d73fWQcJWzlBn-uUDW6o5Jh2NvMejLTzTCT9fI-Bfiu3f8Zl_CLzhzf9tqm7BjVa1JnurvXAbtkx5B3b2StlU35bkJfHBrt6LsAPxGGU4GWL8HplVDcZMuY34mkyWzUlNZKnJZI6HF89P_tR34dOlkH8PemVVmgdAtLPzqFQy5-i25VbaSEsTM5kmNi902odBt7BCtcnVscbHV-GMLISC8FAQCAXhodCHV-s3TleJRS7o-w6xsu6HKcH9g2rxRbQcRoRKWhZZU2CGPJlZztzXYnY67m4oDrLboUW0fKoW51Dpw7N1s-Mw6DaSpanOaoEaXZygNOjD_RUw15RQjgnfuGvJNiC7QepmSzk_8VnMnSKd8jh8eDFZT-Ha_uFkLMaj6cEjuI5zgsFEUbILvWZxZh7DVfWjmdeLJ-1WJHB82ZD-DVG_dMc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJceJXHQoEgARKHaLOOEztICLW0K6q2qxUCqTfj-NGuVJKySUH71_h1zGSTLYtQbz1wS2LHmtif55EZzwC8RCnOpEnQOjFch9w5H2rnfRhzifqxRbbpTVNsQozH8ugom6zBr-4sDIVVdjyxYdS2NPSPfMBYlqJ5MoyTgW_DIiY7o_dn30OqIEWe1q6cxgIi-27-E8236t3eDq71K8ZGu58_fAzbCgOh4VlUh4Ibb4T0eU6n8VMtHNd4Lan8Vs7yTFtpjReREIablLHcRnmaahtZJhKmeYzjXoN1EaPR04P17d3x5FMnB9BSSPjCMYpmYDbwhZlSAtJh4_1oi9B0grCpF_AvJffvWM0_hN_o9v88bXfgVqtyB1uLPXIX1lxxDza2Cl2X3-bB66AJgm28CxsQH5BsD0YU1xdMyppiqXCDvg0O5_VJFejCBodTOtR4cSKoug9froT8B9ArysI9gsCi_ce00Zkkd6702g-tdjHXaeKz3KZ9GHSLrEybdJ1qf5wqNL4IFqqBhSJYqAYWfXizfONskXDkkr7bhJtlP0oV3jwoZ8eq5TwqMtrzoXc5Zc7TwkuOX0tZ6yTeMBpks0OOavlXpS5g04cXy2bkPORO0oUrzytFml6ckJTow8MFSJeUMEmJ4CS2iBX4rpC62lJMT5rs5qhgpzKOHl9O1nO4gThWB3vj_Sdwk6aEYoyGySb06tm5ewrXzY96Ws2etbsygK9XjejfQxl9YQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+Field+Potentials%3A+Myths+and+Misunderstandings&rft.jtitle=Frontiers+in+neural+circuits&rft.au=Herreras%2C+Oscar&rft.date=2016-12-15&rft.eissn=1662-5110&rft.volume=10&rft.spage=101&rft_id=info:doi/10.3389%2Ffncir.2016.00101&rft_id=info%3Apmid%2F28018180&rft.externalDocID=28018180
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5110&client=summon