Local Field Potentials: Myths and Misunderstandings
The intracerebral local field potential (LFP) is a measure of brain activity that reflects the highly dynamic flow of information across neural networks. This is a composite signal that receives contributions from multiple neural sources, yet interpreting its nature and significance may be hindered...
Gespeichert in:
| Veröffentlicht in: | Frontiers in neural circuits Jg. 10; S. 101 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
Frontiers Research Foundation
15.12.2016
Frontiers Media S.A |
| Schlagworte: | |
| ISSN: | 1662-5110, 1662-5110 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The intracerebral local field potential (LFP) is a measure of brain activity that reflects the highly dynamic flow of information across neural networks. This is a composite signal that receives contributions from multiple neural sources, yet interpreting its nature and significance may be hindered by several confounding factors and technical limitations. By and large, the main factor defining the amplitude of LFPs is the geometry of the current sources, over and above the degree of synchronization or the properties of the media. As such, similar levels of activity may result in potentials that differ in several orders of magnitude in different populations. The geometry of these sources has been experimentally inaccessible until intracerebral high density recordings enabled the co-activating sources to be revealed. Without this information, it has proven difficult to interpret a century's worth of recordings that used temporal cues alone, such as event or spike related potentials and frequency bands. Meanwhile, a collection of biophysically ill-founded concepts have been considered legitimate, which can now be corrected in the light of recent advances. The relationship of LFPs to their sources is often counterintuitive. For instance, most LFP activity is not local but remote, it may be larger further from rather than close to the source, the polarity does not define its excitatory or inhibitory nature, and the amplitude may increase when source's activity is reduced. As technological developments foster the use of LFPs, the time is now ripe to raise awareness of the need to take into account spatial aspects of these signals and of the errors derived from neglecting to do so. |
|---|---|
| AbstractList | The intracerebral local field potential (LFP) is a measure of brain activity that reflects the highly dynamic flow of information across neural networks. This is a composite signal that receives contributions from multiple neural sources, yet interpreting its nature and significance may be hindered by several confounding factors and technical limitations. By and large, the main factor defining the amplitude of LFPs is the geometry of the current sources, over and above the degree of synchronization or the properties of the media. As such, similar levels of activity may result in potentials that differ in several orders of magnitude in different populations. The geometry of these sources has been experimentally inaccessible until intracerebral high density recordings enabled the co-activating sources to be revealed. Without this information, it has proven difficult to interpret a century’s worth of recordings that used temporal cues alone, such as event or spike related potentials and frequency bands. As such, a collection of biophysically ill-founded concepts have been considered legitimate, which can now be corrected in the light of recent advances. The relationship of LFPs to their sources is often counterintuitive. For instance, most LFP activity is not local but remote, it may be larger further from rather than close to the source, the polarity does not define its excitatory or inhibitory nature, and the amplitude may increase when source’s activity is reduced. As technological developments foster the use of LFPs, the time is now ripe to raise awareness of the need to take into account spatial aspects of these signals and of the errors derived from neglecting to do so. The intracerebral local field potential (LFP) is a measure of brain activity that reflects the highly dynamic flow of information across neural networks. This is a composite signal that receives contributions from multiple neural sources, yet interpreting its nature and significance may be hindered by several confounding factors and technical limitations. By and large, the main factor defining the amplitude of LFPs is the geometry of the current sources, over and above the degree of synchronization or the properties of the media. As such, similar levels of activity may result in potentials that differ in several orders of magnitude in different populations. The geometry of these sources has been experimentally inaccessible until intracerebral high density recordings enabled the co-activating sources to be revealed. Without this information, it has proven difficult to interpret a century's worth of recordings that used temporal cues alone, such as event or spike related potentials and frequency bands. Meanwhile, a collection of biophysically ill-founded concepts have been considered legitimate, which can now be corrected in the light of recent advances. The relationship of LFPs to their sources is often counterintuitive. For instance, most LFP activity is not local but remote, it may be larger further from rather than close to the source, the polarity does not define its excitatory or inhibitory nature, and the amplitude may increase when source's activity is reduced. As technological developments foster the use of LFPs, the time is now ripe to raise awareness of the need to take into account spatial aspects of these signals and of the errors derived from neglecting to do so. The intracerebral local field potential (LFP) is a measure of brain activity that reflects the highly dynamic flow of information across neural networks. This is a composite signal that receives contributions from multiple neural sources, yet interpreting its nature and significance may be hindered by several confounding factors and technical limitations. By and large, the main factor defining the amplitude of LFPs is the geometry of the current sources, over and above the degree of synchronization or the properties of the media. As such, similar levels of activity may result in potentials that differ in several orders of magnitude in different populations. The geometry of these sources has been experimentally inaccessible until intracerebral high density recordings enabled the co-activating sources to be revealed. Without this information, it has proven difficult to interpret a century's worth of recordings that used temporal cues alone, such as event or spike related potentials and frequency bands. Meanwhile, a collection of biophysically ill-founded concepts have been considered legitimate, which can now be corrected in the light of recent advances. The relationship of LFPs to their sources is often counterintuitive. For instance, most LFP activity is not local but remote, it may be larger further from rather than close to the source, the polarity does not define its excitatory or inhibitory nature, and the amplitude may increase when source's activity is reduced. As technological developments foster the use of LFPs, the time is now ripe to raise awareness of the need to take into account spatial aspects of these signals and of the errors derived from neglecting to do so.The intracerebral local field potential (LFP) is a measure of brain activity that reflects the highly dynamic flow of information across neural networks. This is a composite signal that receives contributions from multiple neural sources, yet interpreting its nature and significance may be hindered by several confounding factors and technical limitations. By and large, the main factor defining the amplitude of LFPs is the geometry of the current sources, over and above the degree of synchronization or the properties of the media. As such, similar levels of activity may result in potentials that differ in several orders of magnitude in different populations. The geometry of these sources has been experimentally inaccessible until intracerebral high density recordings enabled the co-activating sources to be revealed. Without this information, it has proven difficult to interpret a century's worth of recordings that used temporal cues alone, such as event or spike related potentials and frequency bands. Meanwhile, a collection of biophysically ill-founded concepts have been considered legitimate, which can now be corrected in the light of recent advances. The relationship of LFPs to their sources is often counterintuitive. For instance, most LFP activity is not local but remote, it may be larger further from rather than close to the source, the polarity does not define its excitatory or inhibitory nature, and the amplitude may increase when source's activity is reduced. As technological developments foster the use of LFPs, the time is now ripe to raise awareness of the need to take into account spatial aspects of these signals and of the errors derived from neglecting to do so. |
| Author | Herreras, Oscar |
| AuthorAffiliation | Department of Translational Neuroscience, Cajal Institute-CSIC Madrid, Spain |
| AuthorAffiliation_xml | – name: Department of Translational Neuroscience, Cajal Institute-CSIC Madrid, Spain |
| Author_xml | – sequence: 1 givenname: Oscar surname: Herreras fullname: Herreras, Oscar |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28018180$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1Uk1PGzEQtSqq8tHee6pW4tJL0vHHer0ckBAqBSkIDu3Z8vojONrYYHsr8e_rJFABEifP2G-e38y8Q7QXYrAIfcUwp1T0P1zQPs0JYD4HwIA_oAPMOZm1GMPei3gfHea8AuCEt-wT2icCsMACDhBdRK3G5sLb0TS3sdhQvBrzSXP9WO5yo4Jprn2egrEpl5r5sMyf0UdXMfbL03mE_lz8_H1-OVvc_Lo6P1vMNOuhzDqmne6EGwbc9z1XnWWqxgIExQMZemWE0a6DrtNMc0IGAwPnyoAhXUsUo0foasdrolrJ--TXKj3KqLzcXsS0lCoVr0crQSvHsLMDqw2qzglW_2KUElGTOp_Kdbrjup-GtTW69pnU-Ir09Uvwd3IZ_8oWt1xQqATfnwhSfJhsLnLts7bjqIKNU5ZYtJS2AFvo8RvoKk4p1FFJQnpO6qJoW1HfXir6L-V5NxXAdwCdYs7JOql9UcXHjUA_SgxyYwK5NYHcmEBuTVAL4U3hM_e7Jf8Aj6S0Pg |
| CitedBy_id | crossref_primary_10_1007_s00429_017_1569_x crossref_primary_10_1093_cercor_bhac297 crossref_primary_10_1113_JP284587 crossref_primary_10_1111_epi_18212 crossref_primary_10_3389_fncir_2020_00052 crossref_primary_10_3389_fpsyt_2021_678103 crossref_primary_10_1371_journal_pbio_3003278 crossref_primary_10_1088_1741_2552_ac605f crossref_primary_10_1038_s41386_023_01532_4 crossref_primary_10_1109_TNSRE_2025_3564625 crossref_primary_10_1177_0271678X221107422 crossref_primary_10_1089_bioe_2020_0028 crossref_primary_10_1038_s41380_025_03105_x crossref_primary_10_1038_s41598_020_78179_4 crossref_primary_10_1371_journal_pone_0301713 crossref_primary_10_1002_admi_202500158 crossref_primary_10_1016_j_clinph_2024_12_008 crossref_primary_10_1038_s41598_018_22051_z crossref_primary_10_3389_fnhum_2023_1134811 crossref_primary_10_1111_ejn_70080 crossref_primary_10_1152_jn_00464_2021 crossref_primary_10_1111_acer_70111 crossref_primary_10_3389_fnins_2024_1428901 crossref_primary_10_1063_5_0228901 crossref_primary_10_3389_fnsys_2019_00078 crossref_primary_10_1038_s41467_021_22468_7 crossref_primary_10_1093_cercor_bhz061 crossref_primary_10_7554_eLife_92254 crossref_primary_10_1002_advs_202207732 crossref_primary_10_1523_JNEUROSCI_1212_19_2019 crossref_primary_10_1177_02698811231164231 crossref_primary_10_1523_JNEUROSCI_3507_17_2018 crossref_primary_10_1016_j_neuron_2020_09_043 crossref_primary_10_1073_pnas_2023265118 crossref_primary_10_1016_j_clinph_2024_06_003 crossref_primary_10_1371_journal_pcbi_1008731 crossref_primary_10_1039_D5LC00058K crossref_primary_10_3389_fnins_2021_658703 crossref_primary_10_1016_j_neuroimage_2017_12_015 crossref_primary_10_3389_fncir_2022_846905 crossref_primary_10_1016_j_jneumeth_2018_10_028 crossref_primary_10_1186_s12915_021_00950_4 crossref_primary_10_1002_hbm_23913 crossref_primary_10_3389_fncir_2023_1138774 crossref_primary_10_1038_s41398_022_02065_y crossref_primary_10_1016_j_jneumeth_2018_06_021 crossref_primary_10_1038_s41598_018_30203_4 crossref_primary_10_3389_fncel_2023_1217081 crossref_primary_10_1016_j_neurom_2025_02_005 crossref_primary_10_1088_1741_2552_ac3cc5 crossref_primary_10_1002_hipo_23490 crossref_primary_10_1146_annurev_resource_101722_082743 crossref_primary_10_1038_s41551_018_0338_3 crossref_primary_10_1111_ejn_16108 crossref_primary_10_1016_j_brainresbull_2024_110992 crossref_primary_10_1088_1741_2552_ad5049 crossref_primary_10_1038_s41593_023_01284_w crossref_primary_10_1093_cercor_bhx353 crossref_primary_10_1152_jn_00376_2021 crossref_primary_10_3389_fncel_2023_1129097 crossref_primary_10_3389_fnins_2025_1565255 crossref_primary_10_1016_j_nbd_2021_105490 crossref_primary_10_1109_ACCESS_2021_3105457 crossref_primary_10_3389_fncom_2018_00078 crossref_primary_10_1016_j_clinph_2025_2110804 crossref_primary_10_3233_JAD_180875 crossref_primary_10_1088_1741_2552_ad54f0 crossref_primary_10_1038_s41467_022_29208_5 crossref_primary_10_7554_eLife_106481_3 crossref_primary_10_1113_JP284418 crossref_primary_10_3390_brainsci13020354 crossref_primary_10_3389_fnins_2023_1175575 crossref_primary_10_1162_neco_a_01389 crossref_primary_10_1038_s41598_018_24629_z crossref_primary_10_1016_j_bpj_2022_02_022 crossref_primary_10_1016_j_neuroscience_2017_12_008 crossref_primary_10_1117_1_NPh_9_4_045009 crossref_primary_10_1016_j_cub_2023_02_006 crossref_primary_10_1111_ejn_15426 crossref_primary_10_1016_j_cortex_2022_09_011 crossref_primary_10_1177_2514183X19834764 crossref_primary_10_1371_journal_pcbi_1009601 crossref_primary_10_7554_eLife_92254_3 crossref_primary_10_1088_2057_1976_ab9fed crossref_primary_10_3389_fnhum_2023_1178527 crossref_primary_10_1162_imag_a_00190 crossref_primary_10_3389_fphar_2021_792148 crossref_primary_10_1007_s00359_019_01369_7 crossref_primary_10_3389_fnbeh_2022_936036 crossref_primary_10_7554_eLife_106481 crossref_primary_10_1523_JNEUROSCI_0600_17_2017 crossref_primary_10_1111_epi_15540 crossref_primary_10_1088_1741_2552_acd3b2 crossref_primary_10_1523_JNEUROSCI_2113_19_2020 crossref_primary_10_1038_s41598_019_41955_y crossref_primary_10_3389_fnint_2024_1321872 crossref_primary_10_1016_j_neubiorev_2021_02_025 crossref_primary_10_1162_netn_a_00365 crossref_primary_10_1016_j_brainresbull_2023_110777 crossref_primary_10_1371_journal_pone_0309521 crossref_primary_10_1007_s11571_021_09698_7 crossref_primary_10_1016_j_neuroimage_2020_117300 crossref_primary_10_1134_S0362119723700378 crossref_primary_10_3389_fgene_2018_00029 crossref_primary_10_1002_hbm_25987 crossref_primary_10_1093_cercor_bhac413 crossref_primary_10_1038_s42003_023_04719_z crossref_primary_10_3390_s21217189 crossref_primary_10_1126_science_adg8758 crossref_primary_10_1242_jeb_245497 crossref_primary_10_1016_j_biopsych_2021_03_002 crossref_primary_10_1007_s10484_023_09618_x crossref_primary_10_1186_s12984_018_0349_z crossref_primary_10_1002_hipo_23140 crossref_primary_10_1093_cercor_bhaf135 crossref_primary_10_1152_jn_00013_2019 crossref_primary_10_3390_cells11010106 crossref_primary_10_7554_eLife_73155 crossref_primary_10_7554_eLife_76544 crossref_primary_10_1186_s42234_021_00078_4 crossref_primary_10_3389_fnins_2020_00763 crossref_primary_10_1007_s10548_021_00853_1 crossref_primary_10_1111_ejn_14750 crossref_primary_10_1016_j_bpsc_2020_08_013 crossref_primary_10_1523_JNEUROSCI_2151_21_2022 crossref_primary_10_1523_JNEUROSCI_1161_23_2024 crossref_primary_10_1038_s42003_023_04696_3 crossref_primary_10_1016_j_actbio_2023_05_004 crossref_primary_10_12688_f1000research_16451_1 crossref_primary_10_3390_ma12030542 crossref_primary_10_1016_j_heares_2021_108229 crossref_primary_10_1093_cercor_bhad114 crossref_primary_10_1016_j_celrep_2025_115685 crossref_primary_10_1016_j_neuroscience_2025_03_021 crossref_primary_10_1016_j_neubiorev_2024_105886 crossref_primary_10_1523_JNEUROSCI_0571_20_2020 crossref_primary_10_7554_eLife_57313 crossref_primary_10_1007_s00424_022_02753_0 crossref_primary_10_3389_fpsyt_2023_1080260 crossref_primary_10_1016_j_expneurol_2025_115241 crossref_primary_10_1038_s41563_018_0249_4 crossref_primary_10_3389_fbioe_2020_622923 crossref_primary_10_1016_j_biopha_2023_115259 crossref_primary_10_1016_j_jneumeth_2021_109140 crossref_primary_10_1016_j_neuroimage_2023_119905 crossref_primary_10_1038_s41598_019_53453_2 crossref_primary_10_3389_fnhum_2021_788167 crossref_primary_10_3389_fnsys_2022_995375 crossref_primary_10_1016_j_yebeh_2019_106838 crossref_primary_10_3233_JPD_181480 crossref_primary_10_1016_j_sna_2021_112983 crossref_primary_10_1038_s41598_021_03414_5 crossref_primary_10_1038_s42003_021_02751_5 crossref_primary_10_1016_j_biocel_2024_106663 crossref_primary_10_1097_FBP_0000000000000620 crossref_primary_10_1155_2022_8998150 crossref_primary_10_3389_fnins_2021_704834 crossref_primary_10_1038_s41583_024_00830_0 crossref_primary_10_1111_epi_18462 crossref_primary_10_3389_fnsys_2020_00055 crossref_primary_10_1088_1741_2552_ac86a3 crossref_primary_10_1111_ejn_13840 crossref_primary_10_1177_0271678X20935998 crossref_primary_10_1016_j_neuroscience_2019_06_019 crossref_primary_10_1371_journal_pcbi_1006769 crossref_primary_10_1371_journal_pcbi_1007858 crossref_primary_10_1016_j_brainresbull_2021_05_028 crossref_primary_10_1038_s41583_022_00659_5 crossref_primary_10_1038_s41593_023_01455_9 crossref_primary_10_1371_journal_pcbi_1010983 crossref_primary_10_1016_j_bbr_2018_11_038 crossref_primary_10_1016_j_brainresbull_2021_05_025 crossref_primary_10_1523_JNEUROSCI_0695_24_2024 crossref_primary_10_3389_fnins_2018_00385 crossref_primary_10_1016_j_jdbs_2024_03_003 crossref_primary_10_1371_journal_pcbi_1012926 crossref_primary_10_1093_cercor_bhaa022 crossref_primary_10_1186_s13195_020_00632_3 crossref_primary_10_1016_j_neuroimage_2022_119050 |
| Cites_doi | 10.1371/journal.pcbi.1005132 10.1371/journal.pcbi.1002809 10.1016/j.neuroscience.2015.09.054 10.1523/JNEUROSCI.2273-06.2006 10.1152/jn.00919.2007 10.1146/annurev-neuro-062111-150444 10.1152/physrev.00027.2007 10.3389/fnmol.2013.00048 10.1371/journal.pcbi.1005193 10.1016/bs.pbr.2015.04.002 10.1016/0013-4694(69)90092-3 10.3389/fnsys.2011.00077 10.1523/JNEUROSCI.1413-04.2004 10.1152/jn.1968.31.6.884 10.1038/nature02907 10.1016/S0014-4886(63)80006-0 10.1016/j.neuron.2008.11.016 10.1152/physrev.1985.65.1.37 10.7554/eLife.16658 10.1016/j.jneumeth.2014.07.025 10.1002/hipo.20974 10.1016/j.neuron.2014.08.051 10.1002/hipo.1073 10.1016/0013-4694(57)90088-3 10.1371/journal.pone.0105071 10.1093/acprof:oso/9780195050387.001.0001 10.1016/j.jneumeth.2007.12.010 10.1146/annurev-neuro-062012-170330 10.7554/eLife.04006 10.1152/jn.1990.64.5.1429 10.1523/JNEUROSCI.1401-06.2006 10.3389/fncom.2013.00005 10.1371/journal.pone.0020046 10.1007/s10827-010-0245-4 10.1016/S0306-4522(01)00417-1 10.1152/jn.00183.2002 10.1152/jn.00098.2011 10.1126/science.1217139 10.1152/jn.00297.2010 10.1016/B978-0-444-53839-0.00009-0 10.1093/cercor/bhg129 10.1152/jn.1994.72.2.742 10.1093/cercor/bht022 10.1093/cercor/bhv211 10.1016/0165-0173(80)90004-1 10.1016/0006-8993(93)90043-M 10.1111/j.1460-9568.2008.06358.x 10.1152/jn.1979.42.6.1557 10.1111/ejn.13003 10.1523/JNEUROSCI.2573-09.2009 10.1007/s10827-009-0206-y 10.1152/ajplegacy.1956.187.1.180 10.1016/0014-4886(70)90107-X 10.3389/fnsys.2016.00007 10.1113/jphysiol.2004.078915 10.1038/nrn3241 10.1523/JNEUROSCI.0338-13.2013 10.1016/j.neuron.2011.09.029 10.1016/j.neuron.2007.07.027 10.1016/0013-4694(84)90061-0 10.3389/fnsys.2014.00066 10.1152/jn.01047.2012 10.1111/ejn.12091 10.1152/jn.00157.2010 10.1016/0013-4694(76)90057-2 10.1152/jn.00040.2012 10.1016/0006-8993(88)90259-4 10.1016/j.neuron.2011.11.006 10.1093/cercor/bhr040 10.1152/jn.1998.79.1.159 10.1016/0014-4886(73)90290-2 10.1523/JNEUROSCI.4499-11.2012 10.1152/jn.00345.2009 10.1016/S0306-4522(03)00208-2 10.3389/neuro.01.037.2008 10.1523/JNEUROSCI.2113-04.2004 10.1016/j.neuron.2013.05.023 10.1016/S0006-3495(04)74250-2 10.1016/j.jphysparis.2011.09.006 10.1016/0014-4886(68)90108-8 10.1016/j.bpj.2015.11.019 10.1097/00004691-198510000-00002 10.1371/journal.pone.0075499 10.1126/science.273.5283.1868 10.1038/nn.2440 10.1016/s0013-4694(97)00066-7 10.1152/jn.2000.83.4.2192 |
| ContentType | Journal Article |
| Copyright | 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2016 Herreras. 2016 Herreras |
| Copyright_xml | – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2016 Herreras. 2016 Herreras |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.3389/fncir.2016.00101 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1662-5110 |
| ExternalDocumentID | oai_doaj_org_article_0caf41feb4654a7f844ab43328a7f201 PMC5156830 28018180 10_3389_fncir_2016_00101 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: Ministerio de Economía y Competitividad grantid: BFU2013-41533R |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFS ADBBV ADRAZ AEGXH AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE INR KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNS RPM TR2 ACXDI C1A CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c490t-74cfc78fbb19996a7e4abb180831b2b9ad8dcf7077c4c622bd0b66ad0d2752a43 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 229 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411896600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1662-5110 |
| IngestDate | Tue Oct 14 15:06:45 EDT 2025 Tue Nov 04 01:56:14 EST 2025 Fri Sep 05 11:22:15 EDT 2025 Fri Jul 25 11:51:44 EDT 2025 Mon Jul 21 06:09:10 EDT 2025 Tue Nov 18 21:25:54 EST 2025 Sat Nov 29 02:24:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | cell assembly EEG volume-conduction spatial discrimination spontaneous activity network oscillations local field potentials neuronal circuits |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c490t-74cfc78fbb19996a7e4abb180831b2b9ad8dcf7077c4c622bd0b66ad0d2752a43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Reviewed by: Alain Destexhe, Unité de Neurosciences, Information and Complexité, Centre National de la Recherche Scientifique, France; Vikaas Singh Sohal, University of California, San Francisco, USA Edited by: Michael M. Halassa, New York University, USA |
| OpenAccessLink | https://www.proquest.com/docview/2296210135?pq-origsite=%requestingapplication% |
| PMID | 28018180 |
| PQID | 2296210135 |
| PQPubID | 4424406 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0caf41feb4654a7f844ab43328a7f201 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5156830 proquest_miscellaneous_1853350030 proquest_journals_2296210135 pubmed_primary_28018180 crossref_citationtrail_10_3389_fncir_2016_00101 crossref_primary_10_3389_fncir_2016_00101 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-12-15 |
| PublicationDateYYYYMMDD | 2016-12-15 |
| PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in neural circuits |
| PublicationTitleAlternate | Front Neural Circuits |
| PublicationYear | 2016 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Vinogradova (B90) 2001; 11 Buzsáki (B10) 2012; 13 Reimann (B75) 2013; 79 Ranck (B72) 1970; 27 Brankačk (B8) 1993; 615 Benito (B4) 2016; 5 Halnes (B36) 2016; 12 Vanderwolf (B86) 1969; 26 Martín-Vázquez (B61) 2013; 8 Bullock (B9) 2003; 121 Gomes (B31) 2016; 110 Riera (B76) 2012; 108 Seo (B79) 2015; 244 Simon (B80) 2006; 26 Gloor (B30) 1985; 2 Takács (B83) 2012; 22 Canolty (B12) 2012; 8 Goutagny (B33) 2009; 12 Nelson (B64) 2010; 103 Eggermont (B19) 2011; 5 Herreras (B41) 1988; 451 Kowalczyk (B46) 2013; 37 Gail (B26) 2004; 14 Varga (B88) 2014; 3 Bos (B7) 2016; 12 Herreras (B39) 1990; 64 Melzer (B62) 2012; 335 Okada (B69) 1994; 72 Varona (B89) 2000; 83 Borhegyi (B6) 2004; 24 Lindén (B49) 2010; 29 Rall (B70) 1968; 31 Leung (B47) 1979; 42 Elul (B20) 1971; 15 Fernández-Ruiz (B23) 2013; 33 Hartings (B37) 2009; 102 Mitzdorf (B63) 1985; 65 Gratiy (B34) 2013; 109 de Cheveigné (B15) 2013; 109 Kajikawa (B42) 2011; 72 Bédard (B2) 2004; 86 Xing (B92) 2009; 29 Rasch (B74) 2008; 99 Gorostiza (B32) 2013; 6 Nunez (B68) 1997; 103 Colgin (B13) 2013; 36 Lopes da Silva (B53) 1982 Kimura (B44) 1984; 58 Nelson (B65) 2008; 169 Hájos (B35) 2004; 24 Ranck (B71) 1963; 7 Somogyi (B81) 2005; 562 Głąbska (B29) 2014; 9 Korovaichuk (B45) 2010; 104 Herreras (B40) 2015; 310 López-Aguado (B54) 2001; 108 Logothetis (B52) 2007; 55 Lindén (B50) 2011; 72 Lorente de Nó (B56) 1947 Syková (B82) 2008; 88 López-Aguado (B55) 2002; 88 Schomburg (B78) 2014; 84 Nunez (B67) 2006 Berens (B5) 2008; 2 Foster (B25) 2016; 10 Katzner (B43) 2009; 61 Martín-Vázquez (B60) 2016; 26 Ranck (B73) 1973; 41 Denker (B17) 2011; 21 Gaucher (B27) 2012; 106 Woodbury (B91) 1960 Robinson (B77) 1980; 2 Buzsáki (B11) 2012; 35 Liu (B51) 2015; 42 Cracco (B14) 1976; 41 Fernández-Ruiz (B21) 2013; 7 Benito (B3) 2014; 24 Gieselmann (B28) 2008; 28 Nielsen (B66) 2006; 26 Makarova (B59) 2014; 8 Arieli (B1) 1996; 273 Herreras (B38) 1986 Dement (B16) 1957; 9 Fernández-Ruiz (B22) 2012; 32 Li (B48) 1968; 20 Makarov (B57) 2010; 29 Donoghue (B18) 1998; 79 Makarova (B58) 2011; 5 Timofeev (B84) 2011; 193 Tsanov (B85) 2015; 219 Fiser (B24) 2004; 431 van Harreveld (B87) 1956; 187 |
| References_xml | – volume: 12 start-page: e1005132 year: 2016 ident: B7 article-title: Identifying anatomical origins of coexisting oscillations in the cortical microcircuit publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005132 – volume: 8 start-page: e1002809 year: 2012 ident: B12 article-title: Task-dependent changes in cross-level coupling between single neurons and oscillatory activity in multiscale networks publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002809 – volume-title: Modulation of Hippocampal Excitability by Sensory Stimuli year: 1986 ident: B38 – volume: 310 start-page: 486 year: 2015 ident: B40 article-title: New uses for LFPs: pathway-specific threads obtained through spatial discrimination publication-title: Neuroscience doi: 10.1016/j.neuroscience.2015.09.054 – volume: 26 start-page: 9639 year: 2006 ident: B66 article-title: Dissociation between local field potentials and spiking activity in macaque inferior temporal cortex reveals diagnosticity-based encoding of complex objects publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2273-06.2006 – volume: 99 start-page: 1461 year: 2008 ident: B74 article-title: Inferring spike trains from local field potentials publication-title: J. Neurophysiol. doi: 10.1152/jn.00919.2007 – volume: 35 start-page: 203 year: 2012 ident: B11 article-title: Mechanisms of gamma oscillations publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-062111-150444 – volume: 88 start-page: 1277 year: 2008 ident: B82 article-title: Diffusion in brain extracellular space publication-title: Physiol. Rev. doi: 10.1152/physrev.00027.2007 – volume: 6 start-page: 48 year: 2013 ident: B32 article-title: Molecular probes and switches for functional analysis of receptors, ion channels and synaptic networks publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2013.00048 – volume: 12 start-page: e1005193 year: 2016 ident: B36 article-title: Effect of ionic diffusion on extracellular potentials in neural tissue publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005193 – volume: 219 start-page: 103 year: 2015 ident: B85 article-title: Septo-hippocampal signal processing: breaking the code publication-title: Prog. Brain Res. doi: 10.1016/bs.pbr.2015.04.002 – volume: 26 start-page: 407 year: 1969 ident: B86 article-title: Hippocampal electrical activity and voluntary movement in the rat publication-title: Electroencephalogr. Clin. Neurophysyiol. doi: 10.1016/0013-4694(69)90092-3 – volume: 5 start-page: 77 year: 2011 ident: B58 article-title: Parallel readout of pathway-specific inputs to laminated brain structures publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2011.00077 – volume: 24 start-page: 8470 year: 2004 ident: B6 article-title: Phase segregation of medial septal GABAergic neurons during hippocampal theta activity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1413-04.2004 – volume: 31 start-page: 884 year: 1968 ident: B70 article-title: Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb publication-title: J. Neurophysiol. doi: 10.1152/jn.1968.31.6.884 – volume: 431 start-page: 573 year: 2004 ident: B24 article-title: Small modulation of ongoing cortical dynamics by sensory input during natural vision publication-title: Nature doi: 10.1038/nature02907 – volume: 7 start-page: 153 year: 1963 ident: B71 article-title: Analysis of specific impedance of rabbit cerebral cortex publication-title: Exp. Neurol. doi: 10.1016/S0014-4886(63)80006-0 – volume: 61 start-page: 35 year: 2009 ident: B43 article-title: Local origin of field potentials in visual cortex publication-title: Neuron doi: 10.1016/j.neuron.2008.11.016 – volume: 65 start-page: 37 year: 1985 ident: B63 article-title: Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena publication-title: Physiol. Rev. doi: 10.1152/physrev.1985.65.1.37 – volume: 5 start-page: e16658 year: 2016 ident: B4 article-title: The right hippocampus leads the bilateral integration of gamma-parsed lateralized information publication-title: eLife doi: 10.7554/eLife.16658 – volume: 244 start-page: 114 year: 2015 ident: B79 article-title: Model validation of untethered, ultrasonic neural dust motes for cortical recording publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2014.07.025 – start-page: 384 volume-title: A Study of Nerve Physiology year: 1947 ident: B56 article-title: Analysis of the distribution of action currents of nerves in volume conductors – volume: 22 start-page: 1379 year: 2012 ident: B83 article-title: Extrinsic and local glutamatergic inputs of the rat hippocampal CA1 area differentially innervate pyramidal cells and interneurons publication-title: Hippocampus doi: 10.1002/hipo.20974 – volume: 84 start-page: 470 year: 2014 ident: B78 article-title: Theta phase segregation of input-specific gamma patterns in entorhinal-hippocampal networks publication-title: Neuron doi: 10.1016/j.neuron.2014.08.051 – volume: 11 start-page: 578 year: 2001 ident: B90 article-title: Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information publication-title: Hippocampus doi: 10.1002/hipo.1073 – volume: 9 start-page: 673 year: 1957 ident: B16 article-title: Cyclic variations in EEG during sleep and their relation to eye movements, body motility and dreaming publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(57)90088-3 – volume: 9 start-page: e105071 year: 2014 ident: B29 article-title: Independent components of neural activity carry information on individual populations publication-title: PLoS ONE doi: 10.1371/journal.pone.0105071 – volume-title: Electric Fields of the Brain. The Neurophysics of EEG. year: 2006 ident: B67 doi: 10.1093/acprof:oso/9780195050387.001.0001 – volume: 169 start-page: 141 year: 2008 ident: B65 article-title: Review of signal distortion through metal microelectrode recording circuits and filters publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.12.010 – volume: 36 start-page: 295 year: 2013 ident: B13 article-title: Mechanisms and functions of theta rhythms publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-062012-170330 – volume: 3 start-page: 04006 year: 2014 ident: B88 article-title: Functional fission of parvalbumin interneuron classes during fast network events publication-title: Elife doi: 10.7554/eLife.04006 – volume: 64 start-page: 1429 year: 1990 ident: B39 article-title: Propagating dendritic action potential mediates synaptic transmission in CA1 pyramidal cells in situ publication-title: J. Neurophysiol. doi: 10.1152/jn.1990.64.5.1429 – volume: 26 start-page: 9038 year: 2006 ident: B80 article-title: Firing properties of anatomically identified neurons in the medial septum of anesthetized and unanesthetized restrained rats publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1401-06.2006 – volume: 7 start-page: 5 year: 2013 ident: B21 article-title: Identifying the synaptic origin of ongoing neuronal oscillations through spatial discrimination of electric fields publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2013.00005 – volume: 5 start-page: e20046 year: 2011 ident: B19 article-title: Comparison of LFP-based and spike-based spectro-temporal receptive fields and cross-correlation in cat primary auditory cortex publication-title: PLoS ONE doi: 10.1371/journal.pone.0020046 – volume: 29 start-page: 423 year: 2010 ident: B49 article-title: Intrinsic dendritic filtering gives low-pass power spectra of local field potentials publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-010-0245-4 – volume: 108 start-page: 249 year: 2001 ident: B54 article-title: Activity-dependent changes of tissue resistivity in the CA1 region in vivo are layer-specific: modulation of evoked potentials publication-title: Neuroscience doi: 10.1016/S0306-4522(01)00417-1 – volume: 88 start-page: 2809 year: 2002 ident: B55 article-title: Structural inhomogeneities differentially modulate action currents and population spikes initiated in the axon or dendrites publication-title: J. Neurophysiol. doi: 10.1152/jn.00183.2002 – volume: 108 start-page: 956 year: 2012 ident: B76 article-title: Pitfalls in the dipolar model for the neocortical EEG sources publication-title: J. Neurophysiol. doi: 10.1152/jn.00098.2011 – volume: 335 start-page: 1506 year: 2012 ident: B62 article-title: Long-range-projecting GABAergic neurons modulate inhibition in hippocampus and entorhinal cortex publication-title: Science doi: 10.1126/science.1217139 – volume: 104 start-page: 484 year: 2010 ident: B45 article-title: Minor contribution of principal excitatory pathways to hippocampal LFPs in the anesthetized rat: a combined independent component and current source density study publication-title: J. Neurophysiol. doi: 10.1152/jn.00297.2010 – volume: 193 start-page: 121 year: 2011 ident: B84 article-title: Neuronal plasticity and thalamocortical sleep and waking oscillations publication-title: Prog. Brain Res. doi: 10.1016/B978-0-444-53839-0.00009-0 – volume: 14 start-page: 300 year: 2004 ident: B26 article-title: Perception-related modulations of local field potential power and coherence in primary visual cortex of awake monkey during binocular rivalry publication-title: Cereb. Cortex doi: 10.1093/cercor/bhg129 – volume: 72 start-page: 742 year: 1994 ident: B69 article-title: Origin of the apparent tissue conductivity in the molecular and granular layers of the in vitro turtle cerebellum and the interpretation of current source-density analysis publication-title: J. Neurophysiol. doi: 10.1152/jn.1994.72.2.742 – volume: 24 start-page: 1738 year: 2014 ident: B3 article-title: Spatial modules of coherent activity in pathway-specific LFPs in the hippocampus reflect topology and different modes of presynaptic synchronization publication-title: Cereb. Cortex doi: 10.1093/cercor/bht022 – volume: 26 start-page: 4082 year: 2016 ident: B60 article-title: Diversity of LFPs activated in different target regions by a common CA3 input publication-title: Cereb. Cortex doi: 10.1093/cercor/bhv211 – volume: 2 start-page: 65 year: 1980 ident: B77 article-title: Hippocampal rhythmical slow activity (RASA; Theta): a critical analysis of selected studies and discussion of possible species-differences publication-title: Brain Res. Rev. doi: 10.1016/0165-0173(80)90004-1 – start-page: 83 volume-title: Medical Physiology and Biophysics year: 1960 ident: B91 article-title: Potentials in a volume conductor – volume: 615 start-page: 310 year: 1993 ident: B8 article-title: Current source density analysis of the hippocampal theta rhythm: associated sustained potentials and candidate synaptic generators publication-title: Brain Res. doi: 10.1016/0006-8993(93)90043-M – volume: 28 start-page: 447 year: 2008 ident: B28 article-title: Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1 publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2008.06358.x – volume: 42 start-page: 1557 year: 1979 ident: B47 article-title: Potentials evoked by alvear tract in hippocampal CA1 region of rats. II. Spatial field analysis publication-title: J. Neurophysiol. doi: 10.1152/jn.1979.42.6.1557 – volume: 42 start-page: 2289 year: 2015 ident: B51 article-title: Local field potentials are local events in the mouse auditory cortex publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.13003 – volume: 29 start-page: 11540 year: 2009 ident: B92 article-title: Spatial spread of the local field potential and its laminar variation in visual cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2573-09.2009 – volume: 29 start-page: 445 year: 2010 ident: B57 article-title: Disentanglement of local field potential sources by independent component analysis publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-009-0206-y – volume: 187 start-page: 180 year: 1956 ident: B87 article-title: Cerebral impedance changes after circulatory arrest publication-title: Am. J. Physiol. doi: 10.1152/ajplegacy.1956.187.1.180 – volume: 27 start-page: 454 year: 1970 ident: B72 article-title: Electrical impedance changes in many sites of brain in paradoxical sleep, anesthesia, and activity publication-title: Exp. Neurol. doi: 10.1016/0014-4886(70)90107-X – volume: 10 start-page: 7 year: 2016 ident: B25 article-title: Spontaneous neural dynamics and multi-scale network organization publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2016.00007 – volume: 562 start-page: 9 year: 2005 ident: B81 article-title: Defined types of cortical interneurone structure space and spike timing in the hippocampus publication-title: J. Physiol. doi: 10.1113/jphysiol.2004.078915 – volume: 13 start-page: 407 year: 2012 ident: B10 article-title: The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3241 – volume: 33 start-page: 15518 year: 2013 ident: B23 article-title: Cytoarchitectonic and dynamic origins of giant positive LFPs in the Dentate Gyrus publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0338-13.2013 – volume: 72 start-page: 847 year: 2011 ident: B42 article-title: How local is the local field potential? publication-title: Neuron doi: 10.1016/j.neuron.2011.09.029 – volume: 55 start-page: 809 year: 2007 ident: B52 article-title: In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation publication-title: Neuron doi: 10.1016/j.neuron.2007.07.027 – volume: 58 start-page: 351 year: 1984 ident: B44 article-title: Stationary peaks from a moving source in far-field recording publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(84)90061-0 – volume: 8 start-page: 66 year: 2014 ident: B59 article-title: Can pathway-specific LFPs be obtained in cytoarchitectonically complex structures? publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2014.00066 – volume: 109 start-page: 1681 year: 2013 ident: B34 article-title: Pitfalls in the interpretation of multielectrode data: on the infeasibility of the neuronal current-source monopoles publication-title: J. Neurophysiol. doi: 10.1152/jn.01047.2012 – volume: 37 start-page: 679 year: 2013 ident: B46 article-title: The generation of theta rhythm in hippocampal formation maintained in vitro publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.12091 – volume: 103 start-page: 2315 year: 2010 ident: B64 article-title: Do electrode properties create a problem in interpreting local field potential recordings? publication-title: J. Neurophysiol. doi: 10.1152/jn.00157.2010 – volume: 41 start-page: 460 year: 1976 ident: B14 article-title: Somatosensory evoked potential in man: far field potentials publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(76)90057-2 – volume: 109 start-page: 261 year: 2013 ident: B15 article-title: Component analysis reveals sharp tuning of the local field potential in the guinea pig auditory cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.00040.2012 – volume: 15 start-page: 228 year: 1971 ident: B20 article-title: The genesis of the EEG publication-title: Int. Rev. Neurobiol. – volume: 451 start-page: 290 year: 1988 ident: B41 article-title: Sensory modulation of hippocampal transmission. I. Opposite effects on CA1 and dentate gyrus synapsis publication-title: Brain Res. doi: 10.1016/0006-8993(88)90259-4 – volume: 72 start-page: 859 year: 2011 ident: B50 article-title: Modeling the spatial reach of the LFP publication-title: Neuron doi: 10.1016/j.neuron.2011.11.006 – volume: 21 start-page: 2681 year: 2011 ident: B17 article-title: The local field potential reflects surplus spike synchrony publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr040 – volume: 79 start-page: 159 year: 1998 ident: B18 article-title: Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements publication-title: J. Neurophysiol. doi: 10.1152/jn.1998.79.1.159 – volume: 41 start-page: 461 year: 1973 ident: B73 article-title: Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires publication-title: Exp. Neurol. doi: 10.1016/0014-4886(73)90290-2 – volume: 32 start-page: 5165 year: 2012 ident: B22 article-title: Schaffer-specific local field potentials reflect discrete excitatory events at gamma-frequency that may fire postsynaptic hippocampal CA1 units publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4499-11.2012 – volume: 102 start-page: 2563 year: 2009 ident: B37 article-title: Recovery of slow potentials in AC-coupled electrocorticography: application to spreading depolarizations in rat and human cerebral cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.00345.2009 – volume: 121 start-page: 233 year: 2003 ident: B9 article-title: Are the electroencephalograms mainly rhythmic? Assessment of periodicity in wide-band time series publication-title: Neuroscience doi: 10.1016/S0306-4522(03)00208-2 – start-page: 15 volume-title: Electroencephalography: Basic Principles, Clinical applications, and Related Fields year: 1982 ident: B53 article-title: Biophysical aspects of EEG and EMG generation – volume: 2 start-page: 199 year: 2008 ident: B5 article-title: Feature selectivity of the gamma-band of the local field potential in primate primary visual cortex publication-title: Front. Neurosci. doi: 10.3389/neuro.01.037.2008 – volume: 24 start-page: 9127 year: 2004 ident: B35 article-title: Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2113-04.2004 – volume: 79 start-page: 375 year: 2013 ident: B75 article-title: A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents publication-title: Neuron doi: 10.1016/j.neuron.2013.05.023 – volume: 86 start-page: 1829 year: 2004 ident: B2 article-title: Modeling extracellular field potentials and the frequency-filtering properties of extracellular space publication-title: Biophys. J. doi: 10.1016/S0006-3495(04)74250-2 – volume: 106 start-page: 93 year: 2012 ident: B27 article-title: How different are the local field potentials and spiking activities? Insights from multielectrodes arrays. J. Physiol publication-title: Paris doi: 10.1016/j.jphysparis.2011.09.006 – volume: 20 start-page: 544 year: 1968 ident: B48 article-title: Specific resistivity of the cerebral cortex and white matter publication-title: Exp. Neurol. doi: 10.1016/0014-4886(68)90108-8 – volume: 110 start-page: 234 year: 2016 ident: B31 article-title: Intracellular impedance measurements reveal non-ohmic properties of the extracellular medium around neurons publication-title: Biophys. J. doi: 10.1016/j.bpj.2015.11.019 – volume: 2 start-page: 327 year: 1985 ident: B30 article-title: Neuronal generators and the problem of localization in electroencephalography: application of volume conductor theory to electroencephalography publication-title: J. Clin. Neurophysiol. doi: 10.1097/00004691-198510000-00002 – volume: 8 start-page: e75499 year: 2013 ident: B61 article-title: Determining the true polarity and amplitude of synaptic currents underlying gamma oscillations of local field potentials publication-title: PLoS ONE doi: 10.1371/journal.pone.0075499 – volume: 273 start-page: 1868 year: 1996 ident: B1 article-title: Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses publication-title: Science doi: 10.1126/science.273.5283.1868 – volume: 12 start-page: 1491 year: 2009 ident: B33 article-title: Self-generated theta oscillations in the hippocampus publication-title: Nat. Neurosci. doi: 10.1038/nn.2440 – volume: 103 start-page: 499 year: 1997 ident: B68 article-title: EEG coherency. I: statistics, reference electrode, volume conduction, laplacians, cortical imaging, and interpretation at multiple scales publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/s0013-4694(97)00066-7 – volume: 83 start-page: 2192 year: 2000 ident: B89 article-title: Macroscopic and subcellular factors shaping CA1 population spikes publication-title: J. Neurophysiol. doi: 10.1152/jn.2000.83.4.2192 |
| SSID | ssj0062654 |
| Score | 2.5391488 |
| SecondaryResourceType | review_article |
| Snippet | The intracerebral local field potential (LFP) is a measure of brain activity that reflects the highly dynamic flow of information across neural networks. This... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 101 |
| SubjectTerms | Animals Biophysics Biophysics - standards Brain - physiology cell assembly EEG Electric currents Electroencephalography Electrophysiological Phenomena Electrophysiological recording Geometry Humans Independent Component Analysis Local Field Potentials Nerve Net - physiology Neural networks Neurons Neuroscience Neurosciences Neurosciences - standards Polarity Recording equipment Researchers Spatial Discrimination spontaneous activity Synchronization |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1CyCGX0iZp6zYNKpRAD2ZtWbbk3tKSJYck5JBCbkKfZKH1ltgp5N93RvZusqW0lx5tySC_kTQzmtEbgA-oxblyNXonTphchBBzE2LMK6HQPva4bUaXik3Iy0t1c9NePSn1RTlhIz3wCNyscCaKMgZLxF9GRiWEsUS6pfCBjze3CtmunKlxD0YrvRZjUBJdsHYWO7cg8s8yRR6mAjArJZS4-v9kYP6eJ_lE8cyfw7PJYmQn40hfwFbo9mD_pENv-fsDO2YphzMdju9DdU6qic0pLY1dLQdKBcL59YldPAy3PTOdZxcLupP3eKGlP4Cv89PrL2f5VBYhd6IthlwKF51U0VqiEGiMDIiILRXVDLPctsYr76IspHTCNZxbX9imMb7wXNbciOolbHfLLrwG5tF94caZVlE0UkUTS29CJUxTx9b6JoPZCiftJs5wKl3xTaPvQMjqhKwmZHVCNoOP6y9-jHwZf-n7maBf9yOm6_QC5a8n-et_yT-Dw5Xg9LT8es1526AvW1Z1Bu_XzbhwKBpiurC87zUZKlVNm1wGr0Y5r0fCFfGYKWyRGzNgY6ibLd3iNpFzo33YqKp48z_-7S3sElqUPVPWh7A93N2Hd7Djfg6L_u4ozfhfEFwHGA priority: 102 providerName: Directory of Open Access Journals |
| Title | Local Field Potentials: Myths and Misunderstandings |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28018180 https://www.proquest.com/docview/2296210135 https://www.proquest.com/docview/1853350030 https://pubmed.ncbi.nlm.nih.gov/PMC5156830 https://doaj.org/article/0caf41feb4654a7f844ab43328a7f201 |
| Volume | 10 |
| WOSCitedRecordID | wos000411896600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-5110 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062654 issn: 1662-5110 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1662-5110 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062654 issn: 1662-5110 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1662-5110 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062654 issn: 1662-5110 databaseCode: M7P dateStart: 20071102 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1662-5110 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062654 issn: 1662-5110 databaseCode: BENPR dateStart: 20071102 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1662-5110 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062654 issn: 1662-5110 databaseCode: PIMPY dateStart: 20071102 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1662-5110 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062654 issn: 1662-5110 databaseCode: M2P dateStart: 20071102 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH9iGwcu42PACqMKEkLiEDVxnNjhgjbUCiRaRQikcrIcf7BKkIwmQ9qFvx0_1-koQrtwsZLYiRw_-334Pf8ewAsnxQlXubNOFJUxNcbG0lgbZ5Q7_Vg7tmmVTzbBFgu-XJZV2HDrQljlwBM9o9atwj3yCSFl4cyTNMvfXPyIMWsUeldDCo09OHCaTYohXXNSDZzY6eo53bgmnSFWTmyjVggBmnr_Q0gDM4gij9j_LzXz72jJP8TP7O7_dvweHAbFMzrdzJT7cMs0D-DotHFG9_er6GXkQ0H9HvsRZB9QwkUzjG6LqrbHiCI3TV9H86v-vItko6P5Co_2XZ-L6R7C59n009t3cciuECtaJn3MqLKKcVvXiERQSGaodNccU4_VpC6l5lpZljCmqCoIqXVSF4XUiSYsJ5Jmj2C_aRtzDJF2VhCRSpYcnZrcSptqaTIqi9yWtS5GMBkGWqgAPY4ZML4JZ4IgaYQnjUDSCE-aEbzavnGxgd24oe0Z0m7bDgGz_YN2_VWE9ScSJS1NrakRP04yy6n7W8Ru4-6G4EdOBuqJsIo7cU26ETzfVrv1h04V2Zj2shOo72Q58soRPN5MlG1PCEc4NO5q2M4U2unqbk2zOvcY307NLHiWPLm5W0_hDo4Dhtek-Qns9-tL8wxuq5_9qluPYY8t-RgOzqaL6uPY7zaM_QLBkvny19TVV-_n1ZffJBscUw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJceJXHQgEjARKHaBPHSRwkhMpj1VV3V3soUjm5jh90JUjKJgXtn-I34vEmWxah3nrglsSONbE_zyMzngF47qQ45Spx1oliMmDG2EAaa4OYcacfa8c2rfLFJrLplB8d5bMt-NWdhcGwyo4nekatK4X_yAeU5qkzT6I4eXv6PcCqUehd7UporGBxYJY_nclWvxl9cOv7gtLhx8P3-0FbVSBQLA-bIGPKqozbosAT-KnMDJPummPJrYIWudRcK5uFWaaYSiktdFikqdShpllCJYvduFdgmzmwhz3Yno0ms88d73fWQcJWzlBn-uUDW6o5Jh2NvMejLTzTCT9fI-Bfiu3f8Zl_CLzhzf9tqm7BjVa1JnurvXAbtkx5B3b2StlU35bkJfHBrt6LsAPxGGU4GWL8HplVDcZMuY34mkyWzUlNZKnJZI6HF89P_tR34dOlkH8PemVVmgdAtLPzqFQy5-i25VbaSEsTM5kmNi902odBt7BCtcnVscbHV-GMLISC8FAQCAXhodCHV-s3TleJRS7o-w6xsu6HKcH9g2rxRbQcRoRKWhZZU2CGPJlZztzXYnY67m4oDrLboUW0fKoW51Dpw7N1s-Mw6DaSpanOaoEaXZygNOjD_RUw15RQjgnfuGvJNiC7QepmSzk_8VnMnSKd8jh8eDFZT-Ha_uFkLMaj6cEjuI5zgsFEUbILvWZxZh7DVfWjmdeLJ-1WJHB82ZD-DVG_dMc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJceJXHQoEgARKHaLOOEztICLW0K6q2qxUCqTfj-NGuVJKySUH71_h1zGSTLYtQbz1wS2LHmtif55EZzwC8RCnOpEnQOjFch9w5H2rnfRhzifqxRbbpTVNsQozH8ugom6zBr-4sDIVVdjyxYdS2NPSPfMBYlqJ5MoyTgW_DIiY7o_dn30OqIEWe1q6cxgIi-27-E8236t3eDq71K8ZGu58_fAzbCgOh4VlUh4Ibb4T0eU6n8VMtHNd4Lan8Vs7yTFtpjReREIablLHcRnmaahtZJhKmeYzjXoN1EaPR04P17d3x5FMnB9BSSPjCMYpmYDbwhZlSAtJh4_1oi9B0grCpF_AvJffvWM0_hN_o9v88bXfgVqtyB1uLPXIX1lxxDza2Cl2X3-bB66AJgm28CxsQH5BsD0YU1xdMyppiqXCDvg0O5_VJFejCBodTOtR4cSKoug9froT8B9ArysI9gsCi_ce00Zkkd6702g-tdjHXaeKz3KZ9GHSLrEybdJ1qf5wqNL4IFqqBhSJYqAYWfXizfONskXDkkr7bhJtlP0oV3jwoZ8eq5TwqMtrzoXc5Zc7TwkuOX0tZ6yTeMBpks0OOavlXpS5g04cXy2bkPORO0oUrzytFml6ckJTow8MFSJeUMEmJ4CS2iBX4rpC62lJMT5rs5qhgpzKOHl9O1nO4gThWB3vj_Sdwk6aEYoyGySb06tm5ewrXzY96Ws2etbsygK9XjejfQxl9YQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+Field+Potentials%3A+Myths+and+Misunderstandings&rft.jtitle=Frontiers+in+neural+circuits&rft.au=Herreras%2C+Oscar&rft.date=2016-12-15&rft.eissn=1662-5110&rft.volume=10&rft.spage=101&rft_id=info:doi/10.3389%2Ffncir.2016.00101&rft_id=info%3Apmid%2F28018180&rft.externalDocID=28018180 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5110&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5110&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5110&client=summon |