Machine Learning Techniques to Predict Soybean Plant Density Using UAV and Satellite-Based Remote Sensing
The plant density of soybean is a critical factor affecting plant canopy structure and yield. Predicting the spatial variability of plant density would be valuable for improving agronomic practices. The objective of this study was to develop a model for plant density measurement using several data s...
Uložené v:
| Vydané v: | Remote Sensing Ročník 13; číslo 13; s. 2548 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
29.06.2021
|
| Predmet: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The plant density of soybean is a critical factor affecting plant canopy structure and yield. Predicting the spatial variability of plant density would be valuable for improving agronomic practices. The objective of this study was to develop a model for plant density measurement using several data sets with different spatial resolutions, including unmanned aerial vehicle (UAV) imagery, PlanetScope satellite imagery, and climate data. The model establishment process includes (1) performing the high-throughput measurement of actual plant density from UAV imagery with the You Only Look Once version 3 (YOLOv3) object detection algorithm, which was further treated as a response variable of the estimation models in the next step, and (2) developing regression models to estimate plant density in the extended areas using various combinations of predictors derived from PlanetScope imagery and climate data. Our results showed that the YOLOv3 model can accurately measure actual soybean plant density from UAV imagery data with a root mean square error (RMSE) value of 0.96 plants m−2. Furthermore, the two regression models, partial least squares and random forest (RF), successfully expanded the plant density prediction areas with RMSE values ranging from 1.78 to 3.67 plant m−2. Model improvement was conducted using the variable importance feature in RF, which improved prediction accuracy with an RMSE value of 1.72 plant m−2. These results demonstrated that the established model had an acceptable prediction accuracy for estimating plant density. Although the model could not often evaluate the within-field spatial variability of soybean plant density, the predicted values were sufficient for informing the field-specific status. |
|---|---|
| AbstractList | The plant density of soybean is a critical factor affecting plant canopy structure and yield. Predicting the spatial variability of plant density would be valuable for improving agronomic practices. The objective of this study was to develop a model for plant density measurement using several data sets with different spatial resolutions, including unmanned aerial vehicle (UAV) imagery, PlanetScope satellite imagery, and climate data. The model establishment process includes (1) performing the high-throughput measurement of actual plant density from UAV imagery with the You Only Look Once version 3 (YOLOv3) object detection algorithm, which was further treated as a response variable of the estimation models in the next step, and (2) developing regression models to estimate plant density in the extended areas using various combinations of predictors derived from PlanetScope imagery and climate data. Our results showed that the YOLOv3 model can accurately measure actual soybean plant density from UAV imagery data with a root mean square error (RMSE) value of 0.96 plants m−2. Furthermore, the two regression models, partial least squares and random forest (RF), successfully expanded the plant density prediction areas with RMSE values ranging from 1.78 to 3.67 plant m−2. Model improvement was conducted using the variable importance feature in RF, which improved prediction accuracy with an RMSE value of 1.72 plant m−2. These results demonstrated that the established model had an acceptable prediction accuracy for estimating plant density. Although the model could not often evaluate the within-field spatial variability of soybean plant density, the predicted values were sufficient for informing the field-specific status. The plant density of soybean is a critical factor affecting plant canopy structure and yield. Predicting the spatial variability of plant density would be valuable for improving agronomic practices. The objective of this study was to develop a model for plant density measurement using several data sets with different spatial resolutions, including unmanned aerial vehicle (UAV) imagery, PlanetScope satellite imagery, and climate data. The model establishment process includes (1) performing the high-throughput measurement of actual plant density from UAV imagery with the You Only Look Once version 3 (YOLOv3) object detection algorithm, which was further treated as a response variable of the estimation models in the next step, and (2) developing regression models to estimate plant density in the extended areas using various combinations of predictors derived from PlanetScope imagery and climate data. Our results showed that the YOLOv3 model can accurately measure actual soybean plant density from UAV imagery data with a root mean square error (RMSE) value of 0.96 plants m⁻². Furthermore, the two regression models, partial least squares and random forest (RF), successfully expanded the plant density prediction areas with RMSE values ranging from 1.78 to 3.67 plant m⁻². Model improvement was conducted using the variable importance feature in RF, which improved prediction accuracy with an RMSE value of 1.72 plant m⁻². These results demonstrated that the established model had an acceptable prediction accuracy for estimating plant density. Although the model could not often evaluate the within-field spatial variability of soybean plant density, the predicted values were sufficient for informing the field-specific status. |
| Author | Takashi S. T. Tanaka Tomoya Watanabe Tsutomu Matsui Luthfan Nur Habibi |
| Author_xml | – sequence: 1 givenname: Luthfan Nur surname: Habibi fullname: Habibi, Luthfan Nur – sequence: 2 givenname: Tomoya surname: Watanabe fullname: Watanabe, Tomoya – sequence: 3 givenname: Tsutomu surname: Matsui fullname: Matsui, Tsutomu – sequence: 4 givenname: Takashi S. T. orcidid: 0000-0001-7116-6962 surname: Tanaka fullname: Tanaka, Takashi S. T. |
| BackLink | https://cir.nii.ac.jp/crid/1871147691475209728$$DView record in CiNii |
| BookMark | eNptkUtvEzEUhUeoSJTSDb_AEiwQUsCvGY-XpbwqBVGRhq11bd-kjiZ2sd1F_j0eAgJVeHF9ZX_nyMf3aXcSU8Sue87oGyE0fZsLE0zwXo6PulNOFV9IrvnJP_2T7ryUHW1LCKapPO3CF3C3ISJZIuQY4pbcoLuN4cc9FlITuc7og6tklQ4WIZLrCWIl7zGWUA9kXWbF-uI7gejJCipOU6i4eAcFPfmG-1SRrGY4bp91jzcwFTz_vZ91648fbi4_L5ZfP11dXiwXTo66tspGa-2ml84rbqlyQg9OA4Dw1NtB-nYhe6kBFQOHdlBD721v1ah7j06cdVdHX59gZ-5y2EM-mATB_DpIeWsg1-AmNEKMXDrr1YYJKVivUapeKTVopbUcZ69XR6-7nOYfqWYfimshIWK6L4YPA6NSKsoa-uIBukv3Obakpk1ED3wUw0zRI-VyKiXjxrhQoYYUa4YwGUbNPErzd5RN8vqB5E-m_8Ivj3AMoVnPlY2KMdkytdJzqlV7yU8nlKks |
| CitedBy_id | crossref_primary_10_1002_agj2_21330 crossref_primary_10_3390_drones8060212 crossref_primary_10_3390_horticulturae11091077 crossref_primary_10_3389_frsen_2025_1622884 crossref_primary_10_3390_agronomy13030863 crossref_primary_10_1016_j_atech_2025_100779 crossref_primary_10_3390_land12122188 crossref_primary_10_1016_j_jafr_2024_101096 crossref_primary_10_3390_s22113990 crossref_primary_10_1007_s11119_025_10229_1 crossref_primary_10_3390_drones5030079 crossref_primary_10_3390_drones8040140 crossref_primary_10_1002_agj2_70004 crossref_primary_10_1002_csc2_21028 crossref_primary_10_1080_01431161_2024_2384099 crossref_primary_10_1016_j_compag_2023_108458 crossref_primary_10_3390_agriculture13010110 crossref_primary_10_3390_agronomy12112700 crossref_primary_10_3390_app14135482 crossref_primary_10_1007_s10812_023_01489_8 |
| Cites_doi | 10.3390/rs12183049 10.1016/S0378-4290(01)00212-X 10.1626/jcs.82.233 10.3389/fpls.2020.00617 10.1016/j.srs.2021.100019 10.2480/cib.J-16-028 10.1080/1343943X.2018.1432981 10.1016/j.rse.2012.08.026 10.1049/iet-gtd.2014.0655 10.1016/S0169-7439(01)00155-1 10.1186/1471-2105-9-307 10.1016/j.isprsjprs.2014.01.001 10.1016/j.saa.2020.118718 10.2135/cropsci2000.403757x 10.1016/j.biosystemseng.2008.10.003 10.1002/jrs.2692 10.1002/agj2.20203 10.2134/agronj2018.04.0239 10.1016/j.rse.2019.111410 10.1016/0003-2670(86)80028-9 10.2135/cropsci1988.0011183X002800060023x 10.2135/cropsci2003.2340 10.1038/nature14542 10.1016/j.rse.2019.111402 10.1186/s13007-019-0528-3 10.1080/01431160902882496 10.1186/1471-2105-8-25 10.1111/ejss.12202 10.1016/j.eja.2019.125972 10.1080/01431161.2018.1541110 10.2134/agronj1985.00021962007700030031x 10.3390/rs11060691 10.2135/cropsci2009.02.0063 10.1080/00103624.2013.790399 10.7717/peerj.6227 10.3390/rs70302971 10.1016/j.isprsjprs.2020.10.017 10.1016/j.rse.2020.111865 10.2134/agronj2018.10.0635 10.1016/j.ecolind.2009.05.001 10.1080/1343943X.2018.1511376 10.3390/agronomy10081108 10.3390/electronics8080825 10.1016/j.rse.2017.06.007 10.1016/j.rse.2020.112004 10.4314/sajg.v6i3.8 10.3390/rs12182981 10.3390/s150305609 10.1016/j.compag.2013.10.010 10.1007/s13595-019-0835-x 10.1016/j.fcr.2015.06.010 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | RYH AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs13132548 |
| DatabaseName | CiNii Complete CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Publicly Available Content Database AGRICOLA CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_33824cbd7f1343159e4757776979948c 10_3390_rs13132548 |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RYH TR2 TUS AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 |
| ID | FETCH-LOGICAL-c489t-c418bbbf54cd72b07c396c9aaa3d0db64d4cd4549ae71aceb6765db5b7895dec3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000671034300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Tue Oct 14 18:42:38 EDT 2025 Sun Nov 09 10:03:52 EST 2025 Sat Nov 01 15:15:24 EDT 2025 Sat Nov 29 07:13:20 EST 2025 Tue Nov 18 22:33:25 EST 2025 Mon Nov 10 09:13:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c489t-c418bbbf54cd72b07c396c9aaa3d0db64d4cd4549ae71aceb6765db5b7895dec3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0005-3777-5867 0000-0001-7116-6962 |
| OpenAccessLink | https://doaj.org/article/33824cbd7f1343159e4757776979948c |
| PQID | 2549628361 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_33824cbd7f1343159e4757776979948c proquest_miscellaneous_2661044701 proquest_journals_2549628361 crossref_citationtrail_10_3390_rs13132548 crossref_primary_10_3390_rs13132548 nii_cinii_1871147691475209728 |
| PublicationCentury | 2000 |
| PublicationDate | 20210629 |
| PublicationDateYYYYMMDD | 2021-06-29 |
| PublicationDate_xml | – month: 06 year: 2021 text: 20210629 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote Sensing |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Mutanga (ref_58) 2004; 5 Matsuo (ref_38) 2018; 21 ref_14 Cheng (ref_29) 2020; 248 Rowlands (ref_44) 2011; 42 ref_53 Wang (ref_15) 2020; 246 ref_52 ref_51 Takeda (ref_5) 2013; 82 ref_19 Jiang (ref_27) 2019; 15 ref_17 Saeys (ref_20) 2009; 102 Castaldi (ref_48) 2014; 65 Bajgain (ref_31) 2015; 180 Mutanga (ref_59) 2012; 18 Geladi (ref_49) 1986; 185 ref_61 Kawasaki (ref_62) 2018; 21 Chen (ref_34) 2014; 89 Zhou (ref_60) 2020; 24 Ball (ref_1) 2000; 40 Carciochi (ref_6) 2019; 111 ref_25 ref_23 ref_22 Wold (ref_47) 2001; 58 Rigsby (ref_7) 2003; 43 Jin (ref_24) 2017; 198 Summers (ref_46) 2011; 11 Khaliliaqdam (ref_30) 2013; 44 Gaspar (ref_10) 2020; 112 Hunt (ref_12) 2019; 233 Pedersen (ref_3) 2009; 49 (ref_54) 2015; 9 Fu (ref_55) 2014; 100 Corassa (ref_9) 2018; 110 Floreano (ref_21) 2015; 521 Egli (ref_8) 1988; 28 Wu (ref_16) 2021; 171 Otgonbayar (ref_35) 2019; 40 ref_39 Testa (ref_57) 2018; 64 Hodges (ref_63) 1985; 77 Lamichhane (ref_4) 2020; 113 (ref_28) 2015; 15 Reddy (ref_36) 2017; 6 Emilien (ref_18) 2021; 3 Gan (ref_2) 2002; 74 Liu (ref_32) 2020; 242 Chen (ref_37) 2009; 30 Weiss (ref_11) 2020; 236 ref_45 ref_43 ref_42 ref_41 Matese (ref_13) 2015; 7 Zhang (ref_26) 2020; 11 Ohno (ref_40) 2016; 16 Cho (ref_56) 2007; 9 Inoue (ref_33) 2012; 126 |
| References_xml | – ident: ref_25 doi: 10.3390/rs12183049 – volume: 74 start-page: 231 year: 2002 ident: ref_2 article-title: Physiological response of soybean genotypes to plant density publication-title: Field Crops Res. doi: 10.1016/S0378-4290(01)00212-X – volume: 82 start-page: 233 year: 2013 ident: ref_5 article-title: Effects of Ground Water Level Control on the Establishment, Growth and Yield of Soybeans Seeded during and after the Rainy Season publication-title: Jpn. J. Crop Sci. doi: 10.1626/jcs.82.233 – volume: 11 start-page: 617 year: 2020 ident: ref_26 article-title: Rapeseed Stand Count Estimation at Leaf Development Stages with UAV Imagery and Convolutional Neural Networks publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00617 – volume: 3 start-page: 100019 year: 2021 ident: ref_18 article-title: UAV & satellite synergies for optical remote sensing applications: A literature review publication-title: Sci. Remote Sens. doi: 10.1016/j.srs.2021.100019 – ident: ref_51 – volume: 16 start-page: 71 year: 2016 ident: ref_40 article-title: Development of grid square air temperature and precipitation data compiled from observed, forecasted, and climatic normal data publication-title: Clim. Biosph. doi: 10.2480/cib.J-16-028 – volume: 21 start-page: 16 year: 2018 ident: ref_38 article-title: Effect of plant density on growth and yield of new soybean genotypes grown under early planting condition in southwestern Japan publication-title: Plant Prod. Sci. doi: 10.1080/1343943X.2018.1432981 – ident: ref_39 – volume: 126 start-page: 210 year: 2012 ident: ref_33 article-title: Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.08.026 – volume: 9 start-page: 1120 year: 2015 ident: ref_54 article-title: Important variable assessment and electricity price forecasting based on regression tree models: Classification and regression trees, Bagging and Random Forests publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2014.0655 – volume: 58 start-page: 109 year: 2001 ident: ref_47 article-title: PLS-regression: A basic tool of chemometrics publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(01)00155-1 – ident: ref_53 doi: 10.1186/1471-2105-9-307 – volume: 89 start-page: 49 year: 2014 ident: ref_34 article-title: Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.01.001 – volume: 242 start-page: 118718 year: 2020 ident: ref_32 article-title: Nondestructive detection of sunset yellow in cream based on near-infrared spectroscopy and interval random forest publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2020.118718 – volume: 40 start-page: 757 year: 2000 ident: ref_1 article-title: Optimizing Soybean Plant Population for a Short-Season Production System in the Southern USA publication-title: Crop Sci. doi: 10.2135/cropsci2000.403757x – volume: 102 start-page: 22 year: 2009 ident: ref_20 article-title: Estimation of the crop density of small grains using LiDAR sensors publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2008.10.003 – volume: 42 start-page: 370 year: 2011 ident: ref_44 article-title: Denoising of spectra with no user input: A spline-smoothing algorithm publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.2692 – ident: ref_52 – volume: 112 start-page: 2103 year: 2020 ident: ref_10 article-title: Defining optimal soybean seeding rates and associated risk across North America publication-title: Agron. J. doi: 10.1002/agj2.20203 – volume: 110 start-page: 2430 year: 2018 ident: ref_9 article-title: Optimum soybean seeding rates by yield environment in southern Brazil publication-title: Agron. J. doi: 10.2134/agronj2018.04.0239 – volume: 233 start-page: 111410 year: 2019 ident: ref_12 article-title: High resolution wheat yield mapping using Sentinel-2 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111410 – volume: 185 start-page: 1 year: 1986 ident: ref_49 article-title: Partial least-squares regression: A tutorial publication-title: Anal. Chim. Acta doi: 10.1016/0003-2670(86)80028-9 – volume: 5 start-page: 87 year: 2004 ident: ref_58 article-title: Hyperspectral band depth analysis for a better estimation of grass biomass (Cenchrus ciliaris) measured under controlled laboratory conditions publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 28 start-page: 977 year: 1988 ident: ref_8 article-title: Plant Density and Soybean Yield publication-title: Crop Sci. doi: 10.2135/cropsci1988.0011183X002800060023x – ident: ref_41 – volume: 43 start-page: 234 year: 2003 ident: ref_7 article-title: Identification of soybean cultivars that yield well at low plant populations publication-title: Crop Sci. doi: 10.2135/cropsci2003.2340 – volume: 521 start-page: 460 year: 2015 ident: ref_21 article-title: Science, technology and the future of small autonomous drones publication-title: Nature doi: 10.1038/nature14542 – volume: 236 start-page: 111402 year: 2020 ident: ref_11 article-title: Remote sensing for agricultural applications: A meta-review publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111402 – ident: ref_45 – volume: 15 start-page: 141 year: 2019 ident: ref_27 article-title: DeepSeedling: Deep convolutional network and Kalman filter for plant seedling detection and counting in the field publication-title: Plant Methods doi: 10.1186/s13007-019-0528-3 – volume: 30 start-page: 6497 year: 2009 ident: ref_37 article-title: Estimating aboveground biomass of grassland having a high canopy cover: An exploratory analysis of in situ hyperspectral data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160902882496 – ident: ref_61 doi: 10.1186/1471-2105-8-25 – volume: 65 start-page: 842 year: 2014 ident: ref_48 article-title: Estimation of soil properties at the field scale from satellite data: A comparison between spatial and non-spatial techniques publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12202 – volume: 113 start-page: 125972 year: 2020 ident: ref_4 article-title: Analysis of soybean germination, emergence, and prediction of a possible northward establishment of the crop under climate change publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2019.125972 – volume: 40 start-page: 3204 year: 2019 ident: ref_35 article-title: Mapping pasture biomass in Mongolia using Partial Least Squares, Random Forest regression and Landsat 8 imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1541110 – volume: 64 start-page: 132 year: 2018 ident: ref_57 article-title: MODIS-derived EVI, NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 18 start-page: 399 year: 2012 ident: ref_59 article-title: High density biomass estimation for wetland vegetation using worldview-2 imagery and random forest regression algorithm publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 77 start-page: 500 year: 1985 ident: ref_63 article-title: Soyphen: Soybean Growth Stages Modeled from Temperature, Daylength, and Water Availability publication-title: Agron. J. doi: 10.2134/agronj1985.00021962007700030031x – volume: 9 start-page: 414 year: 2007 ident: ref_56 article-title: Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_23 doi: 10.3390/rs11060691 – volume: 49 start-page: 2225 year: 2009 ident: ref_3 article-title: New and Old Soybean Cultivar Responses to Plant Density and Intercepted Light publication-title: Crop Sci. doi: 10.2135/cropsci2009.02.0063 – volume: 44 start-page: 1786 year: 2013 ident: ref_30 article-title: Soybean Seed Aging and Environmental Factors on Seedling Growth publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103624.2013.790399 – ident: ref_14 doi: 10.7717/peerj.6227 – volume: 7 start-page: 2971 year: 2015 ident: ref_13 article-title: Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture publication-title: Remote Sens. doi: 10.3390/rs70302971 – volume: 171 start-page: 36 year: 2021 ident: ref_16 article-title: Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.10.017 – volume: 246 start-page: 111865 year: 2020 ident: ref_15 article-title: Multi-scale integration of satellite remote sensing improves characterization of dry-season green-up in an Amazon tropical evergreen forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111865 – volume: 24 start-page: 1 year: 2020 ident: ref_60 article-title: Predicting within-field variability in grain yield and protein content of winter wheat using UAV-based multispectral imagery and machine learning approaches publication-title: Plant Prod. Sci. – volume: 111 start-page: 1923 year: 2019 ident: ref_6 article-title: Soybean Seed Yield Response to Plant Density by Yield Environment in North America publication-title: Agron. J. doi: 10.2134/agronj2018.10.0635 – volume: 11 start-page: 123 year: 2011 ident: ref_46 article-title: Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2009.05.001 – volume: 21 start-page: 339 year: 2018 ident: ref_62 article-title: Effects of late sowing on soybean yields and yield components in southwestern Japan publication-title: Plant Prod. Sci. doi: 10.1080/1343943X.2018.1511376 – ident: ref_50 – ident: ref_22 doi: 10.3390/agronomy10081108 – ident: ref_42 doi: 10.3390/electronics8080825 – volume: 198 start-page: 105 year: 2017 ident: ref_24 article-title: Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.007 – volume: 248 start-page: 112004 year: 2020 ident: ref_29 article-title: Phenology of short vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112004 – volume: 6 start-page: 377 year: 2017 ident: ref_36 article-title: A hybrid partial least squares and random forest approach to modelling forest structural attributes using multispectral remote sensing data publication-title: S. Afr. J. Geomat. doi: 10.4314/sajg.v6i3.8 – ident: ref_17 doi: 10.3390/rs12182981 – volume: 15 start-page: 5609 year: 2015 ident: ref_28 article-title: Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution publication-title: Sensors doi: 10.3390/s150305609 – ident: ref_43 – volume: 100 start-page: 51 year: 2014 ident: ref_55 article-title: Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2013.10.010 – ident: ref_19 doi: 10.1007/s13595-019-0835-x – volume: 180 start-page: 221 year: 2015 ident: ref_31 article-title: Biomass production and yield of soybean grown under converted paddy fields with excess water during the early growth stage publication-title: Field Crops Res. doi: 10.1016/j.fcr.2015.06.010 |
| SSID | ssj0000331904 |
| Score | 2.4208717 |
| Snippet | The plant density of soybean is a critical factor affecting plant canopy structure and yield. Predicting the spatial variability of plant density would be... |
| SourceID | doaj proquest crossref nii |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2548 |
| SubjectTerms | Accuracy Agricultural practices Aircraft Algorithms Biomass canopy Climatic data Density measurement Learning algorithms Machine learning meteorological data Model accuracy Object recognition partial least squares regression Photogrammetry PlanetScope plant density Plant populations prediction Predictions Q random forest Regression analysis Regression models Remote sensing Root-mean-square errors Satellite imagery satellites Science Sensors Soybeans spatial variation spectral reflectance Unmanned aerial vehicles Variability Vegetation YOLOv3 |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMGFN2KhRUZw4RDVThw7OaEWqDhAVbFt1Vvkx2RZCSUlSZH23zPj9W6RQFy4-BBPXpqxZ8bz6RvG3lSF8q0pqcKqykw5C1mV-zrzRe4wXqisjODx88_m-Li6uKhP0oHbmGCVmz0xbtSh93RGvk-JjEZfqOW7yx8ZdY2i6mpqoXGT3SKWBBmhe_PtGYso0MCEWrOSFpjd7w-jJK7Cktr9_OaHIl0_epduufxjT46O5uj-_37iA3YvhZj8YG0TD9kN6B6xO6nb-bfVY7b8EhGUwBO56oKfbphcRz71_GSg6s3E5_3Kge04NTaa-AeCuk8rHkEG_OzgnNsu8LmNlJ4TZIfoDwP_Cqh74HMS7hZP2NnRx9P3n7LUciHzqqonHGXlnGtL5YPJnTC-qLWvrbVFEMFpFXBC4X9aMNJ6cNroMrjSmaouA_jiKdvp-g6eMe5Vbn0tvQTXKufBtjpYqYWFHAQIPWNvNwpofOIjp7YY3xvMS0hZzbWyZuz1VvZyzcLxV6lD0uNWgpiz44V-WDRpIeI9Va68C6aVBQZPZQ3KlMYYTfVNVfkZ20MrwC-iUWI6KRXO4UB4IZPjS3Y3ym_Sch-ba83P2KvtNC5Uqr7YDvorlMFISChlhHz-70e8YHdzAs4IneX1LtuZhivYY7f9z2k5Di-jhf8CSCECyA priority: 102 providerName: ProQuest |
| Title | Machine Learning Techniques to Predict Soybean Plant Density Using UAV and Satellite-Based Remote Sensing |
| URI | https://cir.nii.ac.jp/crid/1871147691475209728 https://www.proquest.com/docview/2549628361 https://www.proquest.com/docview/2661044701 https://doaj.org/article/33824cbd7f1343159e4757776979948c |
| Volume | 13 |
| WOSCitedRecordID | wos000671034300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF5KWmgvIX1Rt4nZ0l56ENmV9qE9xolDC40RcRLSXsS-lBiKHGyl4Et-e2ck2TW00Esvc9AMaJmZ3Zlhhm8I-ZhnwldaYodVyEQ4G5M89SbxWeogX8gtb4fHr77qySS_vjbF1qovnAnr4IE7xR1CCZUK74KueAbBTpootNRaK-xHidzj68u02Sqm2jc4A9diosMjzaCuP1wsOaIUSlz0sxWBWqB-iCv1bPbHa9yGmNM9stvnhvSoO9Nz8ijWL8jTfk357eolmZ21o4-R9qioN_RiDcG6pM2cFgtsuzR0Ol-5aGuKG4kaeoIz6s2KttMB9PLoito60KltsTibmIwgkAV6HsFokU5RuL55RS5PxxfHn5N-V0LiRW4aoDx3zlVS-KBTx7TPjPLGWpsFFpwSARgCikEbNbc-OqWVDE46nRsZos9ek516Xsc3hHqRWm-459FVwvloKxUsV8zGNLLI1IB8Wuuv9D2QOO6z-FFCQYG6Ln_rekA-bGTvOviMv0qN0AwbCYS8bj-AI5S9I5T_coQBOQAjwomQcqgDuQAeEBz00Sn8ZH9t3rK_p8sSy2MFGZbiA_J-w4Ybhm0TW8f5PchACsOE0Iy__R_nfEeepTgXw1SSmn2y0yzu4wF54n82s-ViSB6PxpPifNi68xAnUadIH8ZAC_kd-MWXs-LbL3sb-Ss |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFKlceCMCLSwCDhys7q7Xu_YBoZZSNWoSRaStysnsKyESskvigvKn-I3MOHaKBOLWA5c9eMfrx36emd0Zz0fIqzSWbqITjLDKJJLWhCgVLotcLCz4C6nhdfL4WV8Ph-n5eTbaID_bf2EwrbLVibWi9qXDPfJdXMgosIWKv7v4FiFrFEZXWwqNFSyOw_IHLNkWb3sHML-vhTj8cPL-KGpYBSIn06yClqfW2kkindfCMu3iTLnMGBN75q2SHjokXM0EzY0LVmmVeJtYnWaJDy6GcW-QTYlg75DNUW8w-rTe1WExQJrJVR3UOM7Y7nzBsTpiggRDv1m-miAA7Fkxm_1hBWrTdnjnf3spd8ntxommeyvU3yMbobhPtho-9y_LB2Q2qHNEA23Kx07pSVurdkGrko7mGJ-q6Lhc2mAKitRNFT3AZP5qSes0Cnq6d0ZN4enY1EVLqxDtg8X39GMAdAc6RuFi-pCcXsuTPiKdoizCY0KdFMZl3PFgJ9K6YCbKG66YCSKwwFSXvGknPHdNxXUk_viaw8oLwZFfgaNLXq5lL1Z1Rv4qtY-4WUtgbfD6QDmf5o2qgXNSIZ31esJjcA-TLEidaK0VRnBl6rpkB1AHd4QthwUzl9AHDWZEaQEX2W7BljcKbZFfIa1LXqy7QRVhfMkUobwEGfD1mJSa8Sf_HuI52To6GfTzfm94_JTcEpgmxFQksm3SqeaXYYfcdN-r2WL-rPm-KPl83ej9BWwkZOw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgoALb0SghUXAgYOV3fV61z4g1BIiqpYoIm1V9WL25RAJ2SVxQflr_DpmHDtFAnHrgcsevOP353nsfJ4h5GUaS1foBDOsMomkNSFKhcsiFwsL_kJqeEMePz7Qo1F6cpKNN8jP7l8YpFV2OrFR1L5yuEbex0BGgS1UvF-0tIjxYPj27FuEHaQw09q101hBZD8sf0D4tnizN4B3_UqI4fvDdx-itsNA5GSa1TDy1FpbJNJ5LSzTLs6Uy4wxsWfeKulhQsKZTdDcuGCVVom3idVplvjgYjjuFXJVQ4yJdMJxcrpe32ExgJvJVUXUOM5Yf77gWCcxwVZDv9nAplUAWLZyNvvDHjRGbnj7f348d8it1rWmO6tv4S7ZCOU9cqPt8v5leZ_MPjbM0UDborJTethVsF3QuqLjOWatajqpljaYkmJDp5oOkOJfL2lDrqBHO8fUlJ5OTFPKtA7RLvgBnn4KgPlAJyhcTh-Qo0u504dks6zK8IhQJ4VxGXc82EJaF0yhvOGKmSACC0z1yOvu5eeurcOO7UC-5hCPIVDyC6D0yIu17Nmq-shfpXYRQ2sJrBjebKjm07xVQLBPKqSzXhc8BqcxyYLUidZaYV5Xpq5HtgGBcEU4cgijuYQ5GJAnpQWcZKsDXt6quUV-gboeeb6eBgWFWSdThuocZMADZFJqxh__-xDPyHWAbH6wN9p_Qm4K5A4xFYlsi2zW8_OwTa657_VsMX_afGiUfL5s6P4CHTRsTw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Techniques+to+Predict+Soybean+Plant+Density+Using+UAV+and+Satellite-Based+Remote+Sensing&rft.jtitle=Remote+Sensing&rft.au=Luthfan+Nur+Habibi&rft.au=Tomoya+Watanabe&rft.au=Tsutomu+Matsui&rft.au=Takashi+S.+T.+Tanaka&rft.date=2021-06-29&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.spage=2548&rft_id=info:doi/10.3390%2Frs13132548 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |