Machine Learning Techniques to Predict Soybean Plant Density Using UAV and Satellite-Based Remote Sensing

The plant density of soybean is a critical factor affecting plant canopy structure and yield. Predicting the spatial variability of plant density would be valuable for improving agronomic practices. The objective of this study was to develop a model for plant density measurement using several data s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Remote Sensing Ročník 13; číslo 13; s. 2548
Hlavní autori: Habibi, Luthfan Nur, Watanabe, Tomoya, Matsui, Tsutomu, Tanaka, Takashi S. T.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 29.06.2021
Predmet:
ISSN:2072-4292, 2072-4292
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The plant density of soybean is a critical factor affecting plant canopy structure and yield. Predicting the spatial variability of plant density would be valuable for improving agronomic practices. The objective of this study was to develop a model for plant density measurement using several data sets with different spatial resolutions, including unmanned aerial vehicle (UAV) imagery, PlanetScope satellite imagery, and climate data. The model establishment process includes (1) performing the high-throughput measurement of actual plant density from UAV imagery with the You Only Look Once version 3 (YOLOv3) object detection algorithm, which was further treated as a response variable of the estimation models in the next step, and (2) developing regression models to estimate plant density in the extended areas using various combinations of predictors derived from PlanetScope imagery and climate data. Our results showed that the YOLOv3 model can accurately measure actual soybean plant density from UAV imagery data with a root mean square error (RMSE) value of 0.96 plants m−2. Furthermore, the two regression models, partial least squares and random forest (RF), successfully expanded the plant density prediction areas with RMSE values ranging from 1.78 to 3.67 plant m−2. Model improvement was conducted using the variable importance feature in RF, which improved prediction accuracy with an RMSE value of 1.72 plant m−2. These results demonstrated that the established model had an acceptable prediction accuracy for estimating plant density. Although the model could not often evaluate the within-field spatial variability of soybean plant density, the predicted values were sufficient for informing the field-specific status.
AbstractList The plant density of soybean is a critical factor affecting plant canopy structure and yield. Predicting the spatial variability of plant density would be valuable for improving agronomic practices. The objective of this study was to develop a model for plant density measurement using several data sets with different spatial resolutions, including unmanned aerial vehicle (UAV) imagery, PlanetScope satellite imagery, and climate data. The model establishment process includes (1) performing the high-throughput measurement of actual plant density from UAV imagery with the You Only Look Once version 3 (YOLOv3) object detection algorithm, which was further treated as a response variable of the estimation models in the next step, and (2) developing regression models to estimate plant density in the extended areas using various combinations of predictors derived from PlanetScope imagery and climate data. Our results showed that the YOLOv3 model can accurately measure actual soybean plant density from UAV imagery data with a root mean square error (RMSE) value of 0.96 plants m−2. Furthermore, the two regression models, partial least squares and random forest (RF), successfully expanded the plant density prediction areas with RMSE values ranging from 1.78 to 3.67 plant m−2. Model improvement was conducted using the variable importance feature in RF, which improved prediction accuracy with an RMSE value of 1.72 plant m−2. These results demonstrated that the established model had an acceptable prediction accuracy for estimating plant density. Although the model could not often evaluate the within-field spatial variability of soybean plant density, the predicted values were sufficient for informing the field-specific status.
The plant density of soybean is a critical factor affecting plant canopy structure and yield. Predicting the spatial variability of plant density would be valuable for improving agronomic practices. The objective of this study was to develop a model for plant density measurement using several data sets with different spatial resolutions, including unmanned aerial vehicle (UAV) imagery, PlanetScope satellite imagery, and climate data. The model establishment process includes (1) performing the high-throughput measurement of actual plant density from UAV imagery with the You Only Look Once version 3 (YOLOv3) object detection algorithm, which was further treated as a response variable of the estimation models in the next step, and (2) developing regression models to estimate plant density in the extended areas using various combinations of predictors derived from PlanetScope imagery and climate data. Our results showed that the YOLOv3 model can accurately measure actual soybean plant density from UAV imagery data with a root mean square error (RMSE) value of 0.96 plants m⁻². Furthermore, the two regression models, partial least squares and random forest (RF), successfully expanded the plant density prediction areas with RMSE values ranging from 1.78 to 3.67 plant m⁻². Model improvement was conducted using the variable importance feature in RF, which improved prediction accuracy with an RMSE value of 1.72 plant m⁻². These results demonstrated that the established model had an acceptable prediction accuracy for estimating plant density. Although the model could not often evaluate the within-field spatial variability of soybean plant density, the predicted values were sufficient for informing the field-specific status.
Author Takashi S. T. Tanaka
Tomoya Watanabe
Tsutomu Matsui
Luthfan Nur Habibi
Author_xml – sequence: 1
  givenname: Luthfan Nur
  surname: Habibi
  fullname: Habibi, Luthfan Nur
– sequence: 2
  givenname: Tomoya
  surname: Watanabe
  fullname: Watanabe, Tomoya
– sequence: 3
  givenname: Tsutomu
  surname: Matsui
  fullname: Matsui, Tsutomu
– sequence: 4
  givenname: Takashi S. T.
  orcidid: 0000-0001-7116-6962
  surname: Tanaka
  fullname: Tanaka, Takashi S. T.
BackLink https://cir.nii.ac.jp/crid/1871147691475209728$$DView record in CiNii
BookMark eNptkUtvEzEUhUeoSJTSDb_AEiwQUsCvGY-XpbwqBVGRhq11bd-kjiZ2sd1F_j0eAgJVeHF9ZX_nyMf3aXcSU8Sue87oGyE0fZsLE0zwXo6PulNOFV9IrvnJP_2T7ryUHW1LCKapPO3CF3C3ISJZIuQY4pbcoLuN4cc9FlITuc7og6tklQ4WIZLrCWIl7zGWUA9kXWbF-uI7gejJCipOU6i4eAcFPfmG-1SRrGY4bp91jzcwFTz_vZ91648fbi4_L5ZfP11dXiwXTo66tspGa-2ml84rbqlyQg9OA4Dw1NtB-nYhe6kBFQOHdlBD721v1ah7j06cdVdHX59gZ-5y2EM-mATB_DpIeWsg1-AmNEKMXDrr1YYJKVivUapeKTVopbUcZ69XR6-7nOYfqWYfimshIWK6L4YPA6NSKsoa-uIBukv3Obakpk1ED3wUw0zRI-VyKiXjxrhQoYYUa4YwGUbNPErzd5RN8vqB5E-m_8Ivj3AMoVnPlY2KMdkytdJzqlV7yU8nlKks
CitedBy_id crossref_primary_10_1002_agj2_21330
crossref_primary_10_3390_drones8060212
crossref_primary_10_3390_horticulturae11091077
crossref_primary_10_3389_frsen_2025_1622884
crossref_primary_10_3390_agronomy13030863
crossref_primary_10_1016_j_atech_2025_100779
crossref_primary_10_3390_land12122188
crossref_primary_10_1016_j_jafr_2024_101096
crossref_primary_10_3390_s22113990
crossref_primary_10_1007_s11119_025_10229_1
crossref_primary_10_3390_drones5030079
crossref_primary_10_3390_drones8040140
crossref_primary_10_1002_agj2_70004
crossref_primary_10_1002_csc2_21028
crossref_primary_10_1080_01431161_2024_2384099
crossref_primary_10_1016_j_compag_2023_108458
crossref_primary_10_3390_agriculture13010110
crossref_primary_10_3390_agronomy12112700
crossref_primary_10_3390_app14135482
crossref_primary_10_1007_s10812_023_01489_8
Cites_doi 10.3390/rs12183049
10.1016/S0378-4290(01)00212-X
10.1626/jcs.82.233
10.3389/fpls.2020.00617
10.1016/j.srs.2021.100019
10.2480/cib.J-16-028
10.1080/1343943X.2018.1432981
10.1016/j.rse.2012.08.026
10.1049/iet-gtd.2014.0655
10.1016/S0169-7439(01)00155-1
10.1186/1471-2105-9-307
10.1016/j.isprsjprs.2014.01.001
10.1016/j.saa.2020.118718
10.2135/cropsci2000.403757x
10.1016/j.biosystemseng.2008.10.003
10.1002/jrs.2692
10.1002/agj2.20203
10.2134/agronj2018.04.0239
10.1016/j.rse.2019.111410
10.1016/0003-2670(86)80028-9
10.2135/cropsci1988.0011183X002800060023x
10.2135/cropsci2003.2340
10.1038/nature14542
10.1016/j.rse.2019.111402
10.1186/s13007-019-0528-3
10.1080/01431160902882496
10.1186/1471-2105-8-25
10.1111/ejss.12202
10.1016/j.eja.2019.125972
10.1080/01431161.2018.1541110
10.2134/agronj1985.00021962007700030031x
10.3390/rs11060691
10.2135/cropsci2009.02.0063
10.1080/00103624.2013.790399
10.7717/peerj.6227
10.3390/rs70302971
10.1016/j.isprsjprs.2020.10.017
10.1016/j.rse.2020.111865
10.2134/agronj2018.10.0635
10.1016/j.ecolind.2009.05.001
10.1080/1343943X.2018.1511376
10.3390/agronomy10081108
10.3390/electronics8080825
10.1016/j.rse.2017.06.007
10.1016/j.rse.2020.112004
10.4314/sajg.v6i3.8
10.3390/rs12182981
10.3390/s150305609
10.1016/j.compag.2013.10.010
10.1007/s13595-019-0835-x
10.1016/j.fcr.2015.06.010
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RYH
AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs13132548
DatabaseName CiNii Complete
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
AGRICOLA

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_33824cbd7f1343159e4757776979948c
10_3390_rs13132548
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RYH
TR2
TUS
AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c489t-c418bbbf54cd72b07c396c9aaa3d0db64d4cd4549ae71aceb6765db5b7895dec3
IEDL.DBID M7S
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000671034300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Tue Oct 14 18:42:38 EDT 2025
Sun Nov 09 10:03:52 EST 2025
Sat Nov 01 15:15:24 EDT 2025
Sat Nov 29 07:13:20 EST 2025
Tue Nov 18 22:33:25 EST 2025
Mon Nov 10 09:13:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-c418bbbf54cd72b07c396c9aaa3d0db64d4cd4549ae71aceb6765db5b7895dec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0005-3777-5867
0000-0001-7116-6962
OpenAccessLink https://www.proquest.com/docview/2549628361?pq-origsite=%requestingapplication%
PQID 2549628361
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_33824cbd7f1343159e4757776979948c
proquest_miscellaneous_2661044701
proquest_journals_2549628361
crossref_citationtrail_10_3390_rs13132548
crossref_primary_10_3390_rs13132548
nii_cinii_1871147691475209728
PublicationCentury 2000
PublicationDate 20210629
PublicationDateYYYYMMDD 2021-06-29
PublicationDate_xml – month: 06
  year: 2021
  text: 20210629
  day: 29
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote Sensing
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Mutanga (ref_58) 2004; 5
Matsuo (ref_38) 2018; 21
ref_14
Cheng (ref_29) 2020; 248
Rowlands (ref_44) 2011; 42
ref_53
Wang (ref_15) 2020; 246
ref_52
ref_51
Takeda (ref_5) 2013; 82
ref_19
Jiang (ref_27) 2019; 15
ref_17
Saeys (ref_20) 2009; 102
Castaldi (ref_48) 2014; 65
Bajgain (ref_31) 2015; 180
Mutanga (ref_59) 2012; 18
Geladi (ref_49) 1986; 185
ref_61
Kawasaki (ref_62) 2018; 21
Chen (ref_34) 2014; 89
Zhou (ref_60) 2020; 24
Ball (ref_1) 2000; 40
Carciochi (ref_6) 2019; 111
ref_25
ref_23
ref_22
Wold (ref_47) 2001; 58
Rigsby (ref_7) 2003; 43
Jin (ref_24) 2017; 198
Summers (ref_46) 2011; 11
Khaliliaqdam (ref_30) 2013; 44
Gaspar (ref_10) 2020; 112
Hunt (ref_12) 2019; 233
Pedersen (ref_3) 2009; 49
(ref_54) 2015; 9
Fu (ref_55) 2014; 100
Corassa (ref_9) 2018; 110
Floreano (ref_21) 2015; 521
Egli (ref_8) 1988; 28
Wu (ref_16) 2021; 171
Otgonbayar (ref_35) 2019; 40
ref_39
Testa (ref_57) 2018; 64
Hodges (ref_63) 1985; 77
Lamichhane (ref_4) 2020; 113
(ref_28) 2015; 15
Reddy (ref_36) 2017; 6
Emilien (ref_18) 2021; 3
Gan (ref_2) 2002; 74
Liu (ref_32) 2020; 242
Chen (ref_37) 2009; 30
Weiss (ref_11) 2020; 236
ref_45
ref_43
ref_42
ref_41
Matese (ref_13) 2015; 7
Zhang (ref_26) 2020; 11
Ohno (ref_40) 2016; 16
Cho (ref_56) 2007; 9
Inoue (ref_33) 2012; 126
References_xml – ident: ref_25
  doi: 10.3390/rs12183049
– volume: 74
  start-page: 231
  year: 2002
  ident: ref_2
  article-title: Physiological response of soybean genotypes to plant density
  publication-title: Field Crops Res.
  doi: 10.1016/S0378-4290(01)00212-X
– volume: 82
  start-page: 233
  year: 2013
  ident: ref_5
  article-title: Effects of Ground Water Level Control on the Establishment, Growth and Yield of Soybeans Seeded during and after the Rainy Season
  publication-title: Jpn. J. Crop Sci.
  doi: 10.1626/jcs.82.233
– volume: 11
  start-page: 617
  year: 2020
  ident: ref_26
  article-title: Rapeseed Stand Count Estimation at Leaf Development Stages with UAV Imagery and Convolutional Neural Networks
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00617
– volume: 3
  start-page: 100019
  year: 2021
  ident: ref_18
  article-title: UAV & satellite synergies for optical remote sensing applications: A literature review
  publication-title: Sci. Remote Sens.
  doi: 10.1016/j.srs.2021.100019
– ident: ref_51
– volume: 16
  start-page: 71
  year: 2016
  ident: ref_40
  article-title: Development of grid square air temperature and precipitation data compiled from observed, forecasted, and climatic normal data
  publication-title: Clim. Biosph.
  doi: 10.2480/cib.J-16-028
– volume: 21
  start-page: 16
  year: 2018
  ident: ref_38
  article-title: Effect of plant density on growth and yield of new soybean genotypes grown under early planting condition in southwestern Japan
  publication-title: Plant Prod. Sci.
  doi: 10.1080/1343943X.2018.1432981
– ident: ref_39
– volume: 126
  start-page: 210
  year: 2012
  ident: ref_33
  article-title: Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.08.026
– volume: 9
  start-page: 1120
  year: 2015
  ident: ref_54
  article-title: Important variable assessment and electricity price forecasting based on regression tree models: Classification and regression trees, Bagging and Random Forests
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2014.0655
– volume: 58
  start-page: 109
  year: 2001
  ident: ref_47
  article-title: PLS-regression: A basic tool of chemometrics
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(01)00155-1
– ident: ref_53
  doi: 10.1186/1471-2105-9-307
– volume: 89
  start-page: 49
  year: 2014
  ident: ref_34
  article-title: Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.01.001
– volume: 242
  start-page: 118718
  year: 2020
  ident: ref_32
  article-title: Nondestructive detection of sunset yellow in cream based on near-infrared spectroscopy and interval random forest
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2020.118718
– volume: 40
  start-page: 757
  year: 2000
  ident: ref_1
  article-title: Optimizing Soybean Plant Population for a Short-Season Production System in the Southern USA
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2000.403757x
– volume: 102
  start-page: 22
  year: 2009
  ident: ref_20
  article-title: Estimation of the crop density of small grains using LiDAR sensors
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2008.10.003
– volume: 42
  start-page: 370
  year: 2011
  ident: ref_44
  article-title: Denoising of spectra with no user input: A spline-smoothing algorithm
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.2692
– ident: ref_52
– volume: 112
  start-page: 2103
  year: 2020
  ident: ref_10
  article-title: Defining optimal soybean seeding rates and associated risk across North America
  publication-title: Agron. J.
  doi: 10.1002/agj2.20203
– volume: 110
  start-page: 2430
  year: 2018
  ident: ref_9
  article-title: Optimum soybean seeding rates by yield environment in southern Brazil
  publication-title: Agron. J.
  doi: 10.2134/agronj2018.04.0239
– volume: 233
  start-page: 111410
  year: 2019
  ident: ref_12
  article-title: High resolution wheat yield mapping using Sentinel-2
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111410
– volume: 185
  start-page: 1
  year: 1986
  ident: ref_49
  article-title: Partial least-squares regression: A tutorial
  publication-title: Anal. Chim. Acta
  doi: 10.1016/0003-2670(86)80028-9
– volume: 5
  start-page: 87
  year: 2004
  ident: ref_58
  article-title: Hyperspectral band depth analysis for a better estimation of grass biomass (Cenchrus ciliaris) measured under controlled laboratory conditions
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 28
  start-page: 977
  year: 1988
  ident: ref_8
  article-title: Plant Density and Soybean Yield
  publication-title: Crop Sci.
  doi: 10.2135/cropsci1988.0011183X002800060023x
– ident: ref_41
– volume: 43
  start-page: 234
  year: 2003
  ident: ref_7
  article-title: Identification of soybean cultivars that yield well at low plant populations
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2003.2340
– volume: 521
  start-page: 460
  year: 2015
  ident: ref_21
  article-title: Science, technology and the future of small autonomous drones
  publication-title: Nature
  doi: 10.1038/nature14542
– volume: 236
  start-page: 111402
  year: 2020
  ident: ref_11
  article-title: Remote sensing for agricultural applications: A meta-review
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111402
– ident: ref_45
– volume: 15
  start-page: 141
  year: 2019
  ident: ref_27
  article-title: DeepSeedling: Deep convolutional network and Kalman filter for plant seedling detection and counting in the field
  publication-title: Plant Methods
  doi: 10.1186/s13007-019-0528-3
– volume: 30
  start-page: 6497
  year: 2009
  ident: ref_37
  article-title: Estimating aboveground biomass of grassland having a high canopy cover: An exploratory analysis of in situ hyperspectral data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160902882496
– ident: ref_61
  doi: 10.1186/1471-2105-8-25
– volume: 65
  start-page: 842
  year: 2014
  ident: ref_48
  article-title: Estimation of soil properties at the field scale from satellite data: A comparison between spatial and non-spatial techniques
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12202
– volume: 113
  start-page: 125972
  year: 2020
  ident: ref_4
  article-title: Analysis of soybean germination, emergence, and prediction of a possible northward establishment of the crop under climate change
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2019.125972
– volume: 40
  start-page: 3204
  year: 2019
  ident: ref_35
  article-title: Mapping pasture biomass in Mongolia using Partial Least Squares, Random Forest regression and Landsat 8 imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1541110
– volume: 64
  start-page: 132
  year: 2018
  ident: ref_57
  article-title: MODIS-derived EVI, NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 18
  start-page: 399
  year: 2012
  ident: ref_59
  article-title: High density biomass estimation for wetland vegetation using worldview-2 imagery and random forest regression algorithm
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 77
  start-page: 500
  year: 1985
  ident: ref_63
  article-title: Soyphen: Soybean Growth Stages Modeled from Temperature, Daylength, and Water Availability
  publication-title: Agron. J.
  doi: 10.2134/agronj1985.00021962007700030031x
– volume: 9
  start-page: 414
  year: 2007
  ident: ref_56
  article-title: Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_23
  doi: 10.3390/rs11060691
– volume: 49
  start-page: 2225
  year: 2009
  ident: ref_3
  article-title: New and Old Soybean Cultivar Responses to Plant Density and Intercepted Light
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2009.02.0063
– volume: 44
  start-page: 1786
  year: 2013
  ident: ref_30
  article-title: Soybean Seed Aging and Environmental Factors on Seedling Growth
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103624.2013.790399
– ident: ref_14
  doi: 10.7717/peerj.6227
– volume: 7
  start-page: 2971
  year: 2015
  ident: ref_13
  article-title: Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture
  publication-title: Remote Sens.
  doi: 10.3390/rs70302971
– volume: 171
  start-page: 36
  year: 2021
  ident: ref_16
  article-title: Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.10.017
– volume: 246
  start-page: 111865
  year: 2020
  ident: ref_15
  article-title: Multi-scale integration of satellite remote sensing improves characterization of dry-season green-up in an Amazon tropical evergreen forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111865
– volume: 24
  start-page: 1
  year: 2020
  ident: ref_60
  article-title: Predicting within-field variability in grain yield and protein content of winter wheat using UAV-based multispectral imagery and machine learning approaches
  publication-title: Plant Prod. Sci.
– volume: 111
  start-page: 1923
  year: 2019
  ident: ref_6
  article-title: Soybean Seed Yield Response to Plant Density by Yield Environment in North America
  publication-title: Agron. J.
  doi: 10.2134/agronj2018.10.0635
– volume: 11
  start-page: 123
  year: 2011
  ident: ref_46
  article-title: Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2009.05.001
– volume: 21
  start-page: 339
  year: 2018
  ident: ref_62
  article-title: Effects of late sowing on soybean yields and yield components in southwestern Japan
  publication-title: Plant Prod. Sci.
  doi: 10.1080/1343943X.2018.1511376
– ident: ref_50
– ident: ref_22
  doi: 10.3390/agronomy10081108
– ident: ref_42
  doi: 10.3390/electronics8080825
– volume: 198
  start-page: 105
  year: 2017
  ident: ref_24
  article-title: Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.007
– volume: 248
  start-page: 112004
  year: 2020
  ident: ref_29
  article-title: Phenology of short vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112004
– volume: 6
  start-page: 377
  year: 2017
  ident: ref_36
  article-title: A hybrid partial least squares and random forest approach to modelling forest structural attributes using multispectral remote sensing data
  publication-title: S. Afr. J. Geomat.
  doi: 10.4314/sajg.v6i3.8
– ident: ref_17
  doi: 10.3390/rs12182981
– volume: 15
  start-page: 5609
  year: 2015
  ident: ref_28
  article-title: Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution
  publication-title: Sensors
  doi: 10.3390/s150305609
– ident: ref_43
– volume: 100
  start-page: 51
  year: 2014
  ident: ref_55
  article-title: Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2013.10.010
– ident: ref_19
  doi: 10.1007/s13595-019-0835-x
– volume: 180
  start-page: 221
  year: 2015
  ident: ref_31
  article-title: Biomass production and yield of soybean grown under converted paddy fields with excess water during the early growth stage
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2015.06.010
SSID ssj0000331904
Score 2.4208717
Snippet The plant density of soybean is a critical factor affecting plant canopy structure and yield. Predicting the spatial variability of plant density would be...
SourceID doaj
proquest
crossref
nii
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2548
SubjectTerms Accuracy
Agricultural practices
Aircraft
Algorithms
Biomass
canopy
Climatic data
Density measurement
Learning algorithms
Machine learning
meteorological data
Model accuracy
Object recognition
partial least squares regression
Photogrammetry
PlanetScope
plant density
Plant populations
prediction
Predictions
Q
random forest
Regression analysis
Regression models
Remote sensing
Root-mean-square errors
Satellite imagery
satellites
Science
Sensors
Soybeans
spatial variation
spectral reflectance
Unmanned aerial vehicles
Variability
Vegetation
YOLOv3
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQhQQXxFMstMgILhyi2okf8bEFKi5UFdui3iI_xmUllEW7KdL-e2ac7LISSFy4-BCPEmtm7PFnT75h7G2EmHMifjsov-SkVAVhoRIp52iMiCmrUmzCnp-319fuYq_UF-WEjfTAo-KOEULVKoZks2ww2GkHymprraH7KNVGWn2FdXtgqqzBDbqWUCMfaYO4_ni1lsRSqKnQz14EKkT9GFf6xeKP1biEmLOH7MG0N-Qn45gesTvQP2b3pjLl3zZP2OJzSX0EPrGi3vDLLQXrmg9LfrGia5eBz5ebAL7nVJFo4B8oR33Y8JIdwK9OvnLfJz73hYtzgOoUA1niXwCNBnxOwv3NU3Z19vHy_adqqpVQRdW6AVvZhhCyVjHZGtUdG2ei8943SaRgVMIOhWDQg5U-QjDW6BR0sK3TCWLzjB30yx6eM66NT0HFFuicsQ7ZQ62zwfc56XTt6hl7t9VfFycicapn8b1DQEG67n7resbe7GR_jPQZf5U6JTPsJIjyujxAR-gmR-j-5QgzdoRGxBFRKxEHSoV92FCij63xI4db83bTPF13BI8N7rCMnLHXu26cYXRt4ntY3qIMbmGEUlbIF_9jnC_Z_ZryYoSpanfIDobVLRyxu_HnsFivXhU3_gWX-vNC
  priority: 102
  providerName: Directory of Open Access Journals
Title Machine Learning Techniques to Predict Soybean Plant Density Using UAV and Satellite-Based Remote Sensing
URI https://cir.nii.ac.jp/crid/1871147691475209728
https://www.proquest.com/docview/2549628361
https://www.proquest.com/docview/2661044701
https://doaj.org/article/33824cbd7f1343159e4757776979948c
Volume 13
WOSCitedRecordID wos000671034300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BiwSX8qwItNEiuHCw6rX3YZ9QA6ng0MhqWlS4WPtyiITsYruVcuG3M7NxUiQQFy5z8I7ttWZ2Z-fhbwh5Y72tKof4dj78kuNcZGLlo9hVlZUytq7iodmEms2yy8u8GAJu3VBWudkTw0btGosx8iN0ZCTYQsneXf2IsGsUZleHFhp3yS6iJLBQujffxljiFBQs5mtU0hS8-6O2Y4hVKLDdz292KMD1g3Wpl8s_9uRgaE4e_u8UH5G94YhJj9c68Zjc8fUTcn_odv5t9ZQsT0MFpacDuOqCnm-QXDvaN7RoMXvT03mzMl7XFBsb9fQDlrr3KxqKDOjF8Weqa0fnOkB69j6agD109MyD7D2dI3O9eEYuTqbn7z9GQ8uFyPIs74GyzBhTCW6dSkBqNs2lzbXWqYudkdzBAIfv1F4xbb2RSgpnhFFZLpy36T7ZqZvaPydUSO0Mt5nHcGViKu0TUUl4Xs5ykeTJiLzdCKC0Ax45tsX4XoJfgsIqb4U1Iq-3vFdrFI6_ck1QjlsORM4OF5p2UQ4LEe7JEm6NUxVL4fAkcs-VUEpJzG_yzI7IIWgBzAgpA3eScRgDgvVCKoGXHGyEXw7LvStvJT8ir7bDsFAx-6Jr31wDD5yEYs5VzF78-xEvyYMEC2diGSX5Adnp22t_SO7Zm37ZtWOyO5nOirNxCB6Mg74j_TkFWoivMF58Oi2-_AJMdAnG
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFKlceCMCLSwCDhys2uv1rveAUEupGrWJIpKi9mT25RAJ2cVxQflT_EZmHDtFAnHrgcsevOP12v48s4_x9xHyynqb5w757XzzS45zgQmlD0KX51aI0LqcN2ITcjRKz87UeIP87P6FwbTKzic2jtqVFtfId3EiIyAWiujdxbcAVaNwd7WT0FjB4tgvf8CUbfF2cADv9zVjhx-m74-CVlUgsDxVNZRRaozJE26dZNAxGythldY6dqEzgjuo4HA17WWkrTdCisSZxMhUJc7bGNq9QTY5gr1HNseD4fh8vaoTxgDpkK94UONYhbvVIkJ2xAQFhn6LfI1AAMSzYj7_Iwo0oe3wzv_2UO6S2-0gmu6tUH-PbPjiPtlq9dy_LB-Q-bDJEfW0pY-d0WnHVbugdUnHFe5P1XRSLo3XBUXpppoeYDJ_vaRNGgU93ftEdeHoRDekpbUP9iHiO_rRA7o9naBxMXtITq_lTh-RXlEW_jGhidDOcJt6XJBlJteeJbmA9lSkEqZYn7zpXnhmW8Z1FP74msHMC8GRXYGjT16ubS9WPCN_tdpH3KwtkBu8OVBWs6x1NXBOyrg1TuZRDMPDRHkuEymlwB1cnto-2QHUQY-wjGDCHHGogwIzoiSDi2x3YMtah7bIrpDWJy_W1eCKcH9JF768BBsY64WcyzB68u8mnpOto-nwJDsZjI6fklsM04RCETC1TXp1del3yE37vZ4vqmft90XJ5-tG7y9TP2V4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgoALb9RAC4uAAwcr9nof3gNCLSGiKkQRaVHVi9mX00jILokLyl_j1zHj2CkSiFsPXPbgHa-d-PPMzu74-wh54YIrCo_8dqH5JMf7yMYqRLEvCidl7HzBG7EJNRplx8d6vEF-dt_CYFll5xMbR-0rh2vkfUxkJMRCmfSLtixiPBi-OfsWoYIU7rR2choriByE5Q9I3xav9wfwrF8yNnx3-PZ91CoMRI5nuoY2yay1heDOKwY36VItnTbGpD72VnIPHRyubIJKjAtWKim8FVZlWvjgUhj3CrmqIMfEcsKxOFmv78QpgDvmK0bUNNVxf75IkCdRoNTQbzGwkQqAyFbOZn_EgybIDW__z3_PHXKrnVrT3dW7cJdshPIeudGqvJ8u75PZx6ZyNNCWVHZKDzsG2wWtKzqe465VTSfV0gZTUhR0qukAS_zrJW2KK-jR7mdqSk8npqEyrUO0B_MATz8FwHygEzQupw_I0aX80odks6zKsEWokMZb7rKAy7TMFiYwUUgYTydaMM165FX38HPX8rCjHMjXHPIxBEp-AZQeeb62PVuxj_zVag8xtLZAxvDmQDWf5q0DgnMyxp31qkhSmDQKHbgSSimJ-7o8cz2yAwiEO8I2gTQ64dAHDdZJKQYX2e6Al7dubpFfoK5Hnq27wUHhrpMpQ3UONjADjDlXcfLo30M8JdcBsvmH_dHBY3KTYe1QLCOmt8lmPT8PO-Sa-17PFvMnzYtGyZfLhu4vKA1s2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Techniques+to+Predict+Soybean+Plant+Density+Using+UAV+and+Satellite-Based+Remote+Sensing&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Habibi%2C+Luthfan+Nur&rft.au=Watanabe%2C+Tomoya&rft.au=Matsui%2C+Tsutomu&rft.au=Tanaka%2C+Takashi+S+T&rft.date=2021-06-29&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=13&rft.spage=2548&rft_id=info:doi/10.3390%2Frs13132548&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon