AI-READI: rethinking AI data collection, preparation and sharing in diabetes research and beyond

Here, we introduce Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI), a multidisciplinary data-generation project designed to create and share a multimodal dataset optimized for artificial intelligence research in type 2 diabetes mellitus.

Saved in:
Bibliographic Details
Published in:Nature metabolism Vol. 6; no. 12; pp. 2210 - 2212
Main Authors: Baxter, Sally L., de Sa, Virginia R., Ferryman, Kadija, Jain, Prachee, Lee, Cecilia S., Li-Pook-Than, Jennifer, Liu, T. Y. Alvin, Owen, Julia P., Patel, Bhavesh, Yu, Qilu, Zangwill, Linda M., Bahmani, Amir, Chute, Christopher G., Edberg, Jeffrey C., Hurst, Samantha, Ishikawa, Hiroshi, Lee, Aaron Y., McGwin, Gerald, McWeeney, Shannon, Nebeker, Camille, Owsley, Cynthia, Singer, Sara J., Adib, Riddhiman, Adibuzzaman, Mohammad, Alavi, Arash, Ashley, Catherine, Baer, Adrienne, Benton, Erik, Blazes, Marian, Cohen, Aaron, Cordier, Benjamin, Crist, Katie, Cuddy, Colleen, Gasimova, Aydan, Gim, Nayoon, Hong, Stephanie, Kim, Trina, Lin, Wei-Chun, Mitchell, Jessica, Ngadisastra, Caitlyn, Patronilo, Victoria, Shaffer, Jamie, Soundarajan, Sanjay, Zhao, Kevin, Drolet, Caroline, Lucero, Abigail, Matthies, Dawn, Pittock, Hanna, Watkins, Kate, York, Brittany, Amankwa, Charles E., Bangudi, Monique, Haboudal, Nada, Hallaj, Shahin, Heinke, Anna, Huang, Lingling, Kalaw, Fritz Gerald P., Karsolia, Apoorva, Khazaei, Hadi, Mohammed, Muna, Simpkins, Kyongmi, Wang, Xujing
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01.12.2024
Nature Publishing Group
Subjects:
ISSN:2522-5812, 2522-5812
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Here, we introduce Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI), a multidisciplinary data-generation project designed to create and share a multimodal dataset optimized for artificial intelligence research in type 2 diabetes mellitus.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Commentary-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:2522-5812
2522-5812
DOI:10.1038/s42255-024-01165-x