Robust minimum cost flow problem under consistent flow constraints

The robust minimum cost flow problem under consistent flow constraints (RobMCF≡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{do...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Annals of operations research Ročník 312; číslo 2; s. 691 - 722
Hlavní autoři: Büsing, Christina, Koster, Arie M. C. A, Schmitz, Sabrina
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Springer US 01.05.2022
Springer
Springer Nature B.V
Témata:
ISSN:1572-9338, 0254-5330, 1572-9338
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The robust minimum cost flow problem under consistent flow constraints (RobMCF≡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\equiv $$\end{document}) is a new extension of the minimum cost flow (MCF) problem. In the RobMCF≡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\equiv $$\end{document} problem, we consider demand and supply that are subject to uncertainty. For all demand realizations, however, we require that the flow value on an arc needs to be equal if it is included in the predetermined arc set given. The objective is to find feasible flows that satisfy the equal flow requirements while minimizing the maximum occurring cost among all demand realizations. In the case of a finite discrete set of scenarios, we derive structural results which point out the differences with the polynomial time solvable MCF problem in networks with integral demands, supplies, and capacities. In particular, the Integral Flow Theorem of Dantzig and Fulkerson does not hold. For this reason, we require integral flows in the entire paper. We show that the RobMCF≡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\equiv $$\end{document} problem is strongly NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {NP}$$\end{document}-hard on acyclic digraphs by a reduction from the (3, B2)-Sat problem. Further, we demonstrate that the RobMCF≡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\equiv $$\end{document} problem is weakly NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {NP}$$\end{document}-hard on series-parallel digraphs by providing a reduction from Partition. If in addition the number of scenarios is constant, we propose a pseudo-polynomial algorithm based on dynamic programming. Finally, we present a special case on series-parallel digraphs for which we can solve the RobMCF≡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\equiv $$\end{document} problem in polynomial time.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1572-9338
0254-5330
1572-9338
DOI:10.1007/s10479-021-04426-0