3D hybrid just noticeable distortion modeling for depth image-based rendering

The 3D Just Noticeable Distortion (JND) threshold in essence depends on Human Visual Sensitivity (HVS). This paper carves out a Hybrid Just Noticeable Distortion (HJND) model to measure JND threshold in the framework of Depth Image-Based Rendering (DIBR) for 3D video. The critical differences betwee...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multimedia tools and applications Ročník 74; číslo 23; s. 10457 - 10478
Hlavní autoři: Zhong, Rui, Hu, Ruimin, Wang, Zhongyuan, Wang, Shizheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2015
Springer Nature B.V
Témata:
ISSN:1380-7501, 1573-7721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The 3D Just Noticeable Distortion (JND) threshold in essence depends on Human Visual Sensitivity (HVS). This paper carves out a Hybrid Just Noticeable Distortion (HJND) model to measure JND threshold in the framework of Depth Image-Based Rendering (DIBR) for 3D video. The critical differences between 2D and 3D visual perception, depth saliency and geometric distortion, are combined into the HJND model because their significant influence on HVS. To save bit, the HJND model is introduced into the Multi-view Video plus Depth (MVD) encoding framework as a residual filter. After the residue is filtered by HJND and the reference model named Joint Just Noticeable Distortion (JJND), bit saving is achieved up to 28.79% and 23.53%, respectively, and the 3D impaired videos filtered by HJND and JJND have the similar subjective quality. The experiments demonstrate that HJND describes HVS for 3D video more accurately than the state-of-the-art methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-014-2176-y