Revisiting astrocyte to neuron conversion with lineage tracing in vivo

In vivo cell fate conversions have emerged as potential regeneration-based therapeutics for injury and disease. Recent studies reported that ectopic expression or knockdown of certain factors can convert resident astrocytes into functional neurons with high efficiency, region specificity, and precis...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cell Ročník 184; číslo 21; s. 5465
Hlavní autoři: Wang, Lei-Lei, Serrano, Carolina, Zhong, Xiaoling, Ma, Shuaipeng, Zou, Yuhua, Zhang, Chun-Li
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 14.10.2021
Témata:
ISSN:1097-4172, 1097-4172
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In vivo cell fate conversions have emerged as potential regeneration-based therapeutics for injury and disease. Recent studies reported that ectopic expression or knockdown of certain factors can convert resident astrocytes into functional neurons with high efficiency, region specificity, and precise connectivity. However, using stringent lineage tracing in the mouse brain, we show that the presumed astrocyte-converted neurons are actually endogenous neurons. AAV-mediated co-expression of NEUROD1 and a reporter specifically and efficiently induces reporter-labeled neurons. However, these neurons cannot be traced retrospectively to quiescent or reactive astrocytes using lineage-mapping strategies. Instead, through a retrograde labeling approach, our results reveal that endogenous neurons are the source for these viral-reporter-labeled neurons. Similarly, despite efficient knockdown of PTBP1 in vivo, genetically traced resident astrocytes were not converted into neurons. Together, our results highlight the requirement of lineage-tracing strategies, which should be broadly applied to studies of cell fate conversions in vivo.
AbstractList In vivo cell fate conversions have emerged as potential regeneration-based therapeutics for injury and disease. Recent studies reported that ectopic expression or knockdown of certain factors can convert resident astrocytes into functional neurons with high efficiency, region specificity, and precise connectivity. However, using stringent lineage tracing in the mouse brain, we show that the presumed astrocyte-converted neurons are actually endogenous neurons. AAV-mediated co-expression of NEUROD1 and a reporter specifically and efficiently induces reporter-labeled neurons. However, these neurons cannot be traced retrospectively to quiescent or reactive astrocytes using lineage-mapping strategies. Instead, through a retrograde labeling approach, our results reveal that endogenous neurons are the source for these viral-reporter-labeled neurons. Similarly, despite efficient knockdown of PTBP1 in vivo, genetically traced resident astrocytes were not converted into neurons. Together, our results highlight the requirement of lineage-tracing strategies, which should be broadly applied to studies of cell fate conversions in vivo.
In vivo cell fate conversions have emerged as potential regeneration-based therapeutics for injury and disease. Recent studies reported that ectopic expression or knockdown of certain factors can convert resident astrocytes into functional neurons with high efficiency, region specificity, and precise connectivity. However, using stringent lineage tracing in the mouse brain, we show that the presumed astrocyte-converted neurons are actually endogenous neurons. AAV-mediated co-expression of NEUROD1 and a reporter specifically and efficiently induces reporter-labeled neurons. However, these neurons cannot be traced retrospectively to quiescent or reactive astrocytes using lineage-mapping strategies. Instead, through a retrograde labeling approach, our results reveal that endogenous neurons are the source for these viral-reporter-labeled neurons. Similarly, despite efficient knockdown of PTBP1 in vivo, genetically traced resident astrocytes were not converted into neurons. Together, our results highlight the requirement of lineage-tracing strategies, which should be broadly applied to studies of cell fate conversions in vivo.In vivo cell fate conversions have emerged as potential regeneration-based therapeutics for injury and disease. Recent studies reported that ectopic expression or knockdown of certain factors can convert resident astrocytes into functional neurons with high efficiency, region specificity, and precise connectivity. However, using stringent lineage tracing in the mouse brain, we show that the presumed astrocyte-converted neurons are actually endogenous neurons. AAV-mediated co-expression of NEUROD1 and a reporter specifically and efficiently induces reporter-labeled neurons. However, these neurons cannot be traced retrospectively to quiescent or reactive astrocytes using lineage-mapping strategies. Instead, through a retrograde labeling approach, our results reveal that endogenous neurons are the source for these viral-reporter-labeled neurons. Similarly, despite efficient knockdown of PTBP1 in vivo, genetically traced resident astrocytes were not converted into neurons. Together, our results highlight the requirement of lineage-tracing strategies, which should be broadly applied to studies of cell fate conversions in vivo.
Author Serrano, Carolina
Ma, Shuaipeng
Zou, Yuhua
Wang, Lei-Lei
Zhong, Xiaoling
Zhang, Chun-Li
Author_xml – sequence: 1
  givenname: Lei-Lei
  surname: Wang
  fullname: Wang, Lei-Lei
  email: leilei.wang@utsouthwestern.edu
  organization: Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Electronic address: leilei.wang@utsouthwestern.edu
– sequence: 2
  givenname: Carolina
  surname: Serrano
  fullname: Serrano, Carolina
  organization: Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
– sequence: 3
  givenname: Xiaoling
  surname: Zhong
  fullname: Zhong, Xiaoling
  organization: Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
– sequence: 4
  givenname: Shuaipeng
  surname: Ma
  fullname: Ma, Shuaipeng
  organization: Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
– sequence: 5
  givenname: Yuhua
  surname: Zou
  fullname: Zou, Yuhua
  organization: Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
– sequence: 6
  givenname: Chun-Li
  surname: Zhang
  fullname: Zhang, Chun-Li
  email: chun-li.zhang@utsouthwestern.edu
  organization: Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Electronic address: chun-li.zhang@utsouthwestern.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34582787$$D View this record in MEDLINE/PubMed
BookMark eNpNkM1KxDAURoMozo--gAvp0k1rkjZNs5RBR2FAEF2XNLkZM3SSMWkr8zY-i09mB0dw9R34zr1w7wydOu8AoSuCM4JJebvJFLRtRjElGRYZxuwETQkWPC0Ip6f_eIJmMW4wxhVj7BxN8oJVlFd8ipYvMNhoO-vWiYxd8GrfQdL5xEEfvEuUdwOEaEf8tN170loHcj0aQarDjHXfX4Md_AU6M7KNcHnMOXp7uH9dPKar5-XT4m6VqqKqutTInEiscmMAQ85Vo4TSvOC5kY0sQRGpS2Uo11RzXYJpxFiaQhje6IoLQefo5nfvLviPHmJXb208vEE68H2sKeOc55jRclSvj2rfbEHXu2C3Muzrv-PpDwqYYbs
CitedBy_id crossref_primary_10_1016_j_jgg_2024_07_006
crossref_primary_10_3389_fcell_2024_1510897
crossref_primary_10_1016_j_neuron_2021_11_023
crossref_primary_10_3389_fncel_2021_767457
crossref_primary_10_1089_cell_2022_0065
crossref_primary_10_1002_glia_24521
crossref_primary_10_1038_s41419_023_06003_8
crossref_primary_10_15252_emmm_202114797
crossref_primary_10_1016_j_omtm_2023_08_021
crossref_primary_10_4103_1673_5374_386400
crossref_primary_10_4103_1673_5374_386401
crossref_primary_10_3390_biomedicines10102598
crossref_primary_10_1073_pnas_2417228122
crossref_primary_10_1007_s12975_024_01244_x
crossref_primary_10_1002_glia_24635
crossref_primary_10_1016_j_isci_2024_111173
crossref_primary_10_1038_s41467_022_35498_6
crossref_primary_10_1007_s00018_022_04324_z
crossref_primary_10_1111_nyas_15004
crossref_primary_10_1007_s12033_023_00769_0
crossref_primary_10_1038_s41586_023_06067_8
crossref_primary_10_1111_gtc_13033
crossref_primary_10_1016_j_gde_2023_102090
crossref_primary_10_1016_j_neuron_2021_11_008
crossref_primary_10_1007_s11010_022_04442_z
crossref_primary_10_1186_s40659_024_00534_w
crossref_primary_10_1093_procel_pwae042
crossref_primary_10_1111_cns_70448
crossref_primary_10_4103_NRR_NRR_D_24_01337
crossref_primary_10_1146_annurev_neuro_092822_083410
crossref_primary_10_3390_cells12040618
crossref_primary_10_1038_s41467_023_42746_w
crossref_primary_10_1016_j_biomaterials_2024_122707
crossref_primary_10_1186_s13619_024_00211_z
crossref_primary_10_1002_wrna_1740
crossref_primary_10_1111_imm_13479
crossref_primary_10_1159_000530329
crossref_primary_10_7554_eLife_106450
crossref_primary_10_1038_s44321_024_00156_5
crossref_primary_10_1111_nyas_14977
crossref_primary_10_1016_j_expneurol_2021_113943
crossref_primary_10_1016_j_neuron_2022_09_025
crossref_primary_10_1038_s41593_025_01981_8
crossref_primary_10_1016_j_stemcr_2025_102600
crossref_primary_10_1038_s41598_024_79124_5
crossref_primary_10_4103_NRR_NRR_D_24_00113
crossref_primary_10_1016_j_visres_2023_108260
crossref_primary_10_3389_fmicb_2023_1229506
crossref_primary_10_4103_1673_5374_382251
crossref_primary_10_1089_cell_2025_0008
crossref_primary_10_4103_NRR_NRR_D_23_01612
crossref_primary_10_3389_fcell_2024_1435546
crossref_primary_10_1016_j_neuron_2025_03_036
crossref_primary_10_7717_peerj_18151
crossref_primary_10_1038_s42003_022_03944_2
crossref_primary_10_1016_j_ebiom_2023_104531
crossref_primary_10_1016_j_neuron_2025_04_033
crossref_primary_10_7554_eLife_80232
crossref_primary_10_1007_s12264_022_00829_6
crossref_primary_10_1016_j_stemcr_2025_102636
crossref_primary_10_3390_cells12202499
crossref_primary_10_3390_ijms232213936
crossref_primary_10_3389_fnins_2022_919462
crossref_primary_10_3389_fcell_2022_927555
crossref_primary_10_1126_sciadv_adw9296
crossref_primary_10_3389_fnins_2023_1237176
crossref_primary_10_1016_j_cell_2021_09_027
crossref_primary_10_1038_s41434_023_00382_5
crossref_primary_10_1002_ame2_12212
crossref_primary_10_3892_etm_2023_12360
crossref_primary_10_1007_s12264_022_00981_z
crossref_primary_10_1038_s41467_024_46412_7
crossref_primary_10_3390_cells12040528
crossref_primary_10_1016_j_expneurol_2022_114102
crossref_primary_10_3389_fnagi_2022_885707
crossref_primary_10_1007_s12975_025_01331_7
crossref_primary_10_1038_s44321_025_00209_3
crossref_primary_10_1002_dneu_22951
crossref_primary_10_3389_fncel_2022_898546
crossref_primary_10_1134_S000629792460426X
crossref_primary_10_4103_1673_5374_360278
crossref_primary_10_1093_carcin_bgac028
crossref_primary_10_1186_s13041_022_00912_z
crossref_primary_10_3390_biomedicines12030663
crossref_primary_10_1111_cns_70531
crossref_primary_10_3390_cells11193146
crossref_primary_10_1016_j_brainresbull_2023_110661
crossref_primary_10_1038_s41536_023_00310_6
crossref_primary_10_1016_j_arr_2025_102808
crossref_primary_10_4103_NRR_NRR_D_23_01897
crossref_primary_10_1007_s10072_023_07175_z
crossref_primary_10_1016_j_bbi_2024_02_005
crossref_primary_10_3390_cells12172202
crossref_primary_10_1146_annurev_neuro_083022_113120
crossref_primary_10_1146_annurev_neuro_112723_035356
crossref_primary_10_3390_cells11060940
crossref_primary_10_3389_fnagi_2025_1644532
crossref_primary_10_4103_1673_5374_346463
crossref_primary_10_1002_glia_24361
crossref_primary_10_1016_j_ejphar_2024_176930
crossref_primary_10_4103_NRR_NRR_D_24_00545
crossref_primary_10_1016_j_brs_2022_09_002
crossref_primary_10_3390_biology14070817
crossref_primary_10_1016_j_neuron_2025_08_009
crossref_primary_10_1111_cns_14000
crossref_primary_10_1016_j_mcn_2024_103947
crossref_primary_10_1016_j_expneurol_2024_114817
crossref_primary_10_1042_BSR20231717
crossref_primary_10_3390_cells13141223
crossref_primary_10_3389_fcell_2022_914386
crossref_primary_10_1002_dneu_22862
crossref_primary_10_1002_dneu_22863
crossref_primary_10_1016_j_biopha_2022_113500
crossref_primary_10_1016_j_stem_2021_09_002
crossref_primary_10_3389_fncel_2023_1237641
crossref_primary_10_4103_1673_5374_390976
crossref_primary_10_3389_fncel_2022_1005399
crossref_primary_10_1038_s41536_022_00248_1
crossref_primary_10_1002_advs_202410080
crossref_primary_10_7554_eLife_106450_3
crossref_primary_10_3390_ijms222212141
crossref_primary_10_1038_s41598_024_71212_w
crossref_primary_10_1186_s12974_024_03171_y
crossref_primary_10_3389_fnagi_2023_1126273
crossref_primary_10_7554_eLife_97180_3
crossref_primary_10_1007_s12035_025_04991_6
crossref_primary_10_1016_j_phymed_2022_154583
crossref_primary_10_3389_fnins_2024_1435212
crossref_primary_10_1016_j_ymthe_2022_01_027
crossref_primary_10_1177_20417314241235527
crossref_primary_10_1016_j_ymthe_2022_01_029
crossref_primary_10_1016_j_ymthe_2022_01_028
crossref_primary_10_4103_1673_5374_390965
crossref_primary_10_1242_dev_200433
crossref_primary_10_3389_fcell_2022_830382
crossref_primary_10_4103_1673_5374_373710
crossref_primary_10_4103_1673_5374_380907
crossref_primary_10_7554_eLife_79994
crossref_primary_10_1002_dneu_22882
crossref_primary_10_1089_cell_2022_0110
crossref_primary_10_3389_fnins_2022_917071
crossref_primary_10_1002_dneu_22880
crossref_primary_10_1038_s41583_022_00641_1
crossref_primary_10_4103_1673_5374_390957
crossref_primary_10_3389_fbioe_2022_799152
crossref_primary_10_3389_fendo_2024_1393253
crossref_primary_10_3389_fncel_2022_850866
crossref_primary_10_1016_j_isci_2024_110706
crossref_primary_10_1038_s41380_023_02339_x
crossref_primary_10_3389_fncel_2022_1077441
crossref_primary_10_1111_cpr_13422
crossref_primary_10_3390_brainsci12091175
crossref_primary_10_1016_j_ymthe_2024_10_005
crossref_primary_10_1016_j_expneurol_2023_114571
crossref_primary_10_3390_cells13171408
crossref_primary_10_1080_21507740_2023_2257159
crossref_primary_10_1016_j_omtm_2024_101288
crossref_primary_10_1186_s40035_024_00450_9
crossref_primary_10_1007_s11064_024_04241_6
crossref_primary_10_1016_j_cmet_2024_05_016
crossref_primary_10_1101_cshperspect_a041611
crossref_primary_10_3389_fnins_2024_1210447
crossref_primary_10_7554_eLife_97180
crossref_primary_10_1073_pnas_2107339119
crossref_primary_10_3390_biomedicines10020399
crossref_primary_10_1016_j_omtn_2025_102704
crossref_primary_10_3389_fnins_2025_1589790
crossref_primary_10_1016_j_ymthe_2021_10_017
crossref_primary_10_1016_j_biopha_2024_116806
crossref_primary_10_1038_s41598_022_27013_0
crossref_primary_10_1038_s41573_022_00390_x
crossref_primary_10_3389_fnmol_2024_1483901
crossref_primary_10_4103_1673_5374_385869
crossref_primary_10_1016_j_pharmr_2025_100077
crossref_primary_10_3390_brainsci14111101
crossref_primary_10_4103_NRR_NRR_D_24_00281
crossref_primary_10_1016_j_conb_2025_102976
crossref_primary_10_1016_j_nbd_2023_106224
crossref_primary_10_1073_pnas_2122168120
crossref_primary_10_1016_j_gde_2023_102128
crossref_primary_10_4103_1673_5374_382224
crossref_primary_10_1016_j_stem_2023_08_001
crossref_primary_10_1016_j_exer_2025_110420
crossref_primary_10_3389_fnagi_2023_1174341
crossref_primary_10_1073_pnas_2307972120
crossref_primary_10_1111_ejn_15742
crossref_primary_10_4103_NRR_NRR_D_23_01802
crossref_primary_10_1038_s41586_023_06066_9
crossref_primary_10_1002_jcp_30716
crossref_primary_10_4103_1673_5374_353482
crossref_primary_10_1016_j_pneurobio_2021_102198
crossref_primary_10_1016_j_bbamcr_2023_119506
crossref_primary_10_7554_eLife_75636
ContentType Journal Article
Copyright Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cell.2021.09.005
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
ExternalDocumentID 34582787
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS111776
– fundername: NINDS NIH HHS
  grantid: R01 NS092616
– fundername: NINDS NIH HHS
  grantid: R01 NS117065
– fundername: NINDS NIH HHS
  grantid: R01 NS099073
– fundername: NINDS NIH HHS
  grantid: R01 NS088095
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6J9
7-5
85S
AACTN
AAEDT
AAEDW
AAFWJ
AAHBH
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
ABCQX
ABJNI
ABMAC
ABOCM
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NPM
O-L
O9-
OK1
P2P
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
WH7
YZZ
ZCA
7X8
AAYWO
ABDGV
ABUFD
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
EFKBS
ID FETCH-LOGICAL-c488t-fa31a0c3ffe0e37cbc9cd7473faba6ec1ad6cf27d2d7d6efb9747f49f7bd87992
IEDL.DBID 7X8
ISICitedReferencesCount 219
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000714065000022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-4172
IngestDate Sun Nov 09 11:40:01 EST 2025
Thu Apr 03 07:00:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords NEUROD1
in vivo reprogramming
PTBP1
DLX2
astrocyte-to-neuron conversion
shRNA
AAV
PAX6
lineage tracing
CRISPR-CasRx
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-fa31a0c3ffe0e37cbc9cd7473faba6ec1ad6cf27d2d7d6efb9747f49f7bd87992
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8526404
PMID 34582787
PQID 2577730526
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2577730526
pubmed_primary_34582787
PublicationCentury 2000
PublicationDate 2021-10-14
PublicationDateYYYYMMDD 2021-10-14
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2021
References 34653366 - Cell. 2021 Oct 14;184(21):5303-5305
34699780 - Mol Ther. 2021 Nov 3;29(11):3097-3098
35108505 - Mol Ther. 2022 Mar 2;30(3):986-987
35123657 - Mol Ther. 2022 Mar 2;30(3):982-986
References_xml – reference: 34699780 - Mol Ther. 2021 Nov 3;29(11):3097-3098
– reference: 34653366 - Cell. 2021 Oct 14;184(21):5303-5305
– reference: 35123657 - Mol Ther. 2022 Mar 2;30(3):982-986
– reference: 35108505 - Mol Ther. 2022 Mar 2;30(3):986-987
SSID ssj0008555
Score 2.7001376
Snippet In vivo cell fate conversions have emerged as potential regeneration-based therapeutics for injury and disease. Recent studies reported that ectopic expression...
In vivo cell fate conversions have emerged as potential regeneration-based therapeutics for injury and disease. Recent studies reported that ectopic expression...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 5465
SubjectTerms Animals
Astrocytes - cytology
Astrocytes - metabolism
Basic Helix-Loop-Helix Transcription Factors - metabolism
Brain - pathology
Brain Injuries - pathology
Cell Differentiation
Cell Line, Tumor
Cell Lineage
Cellular Reprogramming
Dependovirus - metabolism
Down-Regulation
Gene Expression Regulation
Genes, Reporter
Glial Fibrillary Acidic Protein - genetics
Heterogeneous-Nuclear Ribonucleoproteins - metabolism
Homeodomain Proteins - metabolism
Humans
Integrases - metabolism
Mice
Mice, Inbred C57BL
Mice, Transgenic
Neurons - cytology
Neurons - metabolism
Polypyrimidine Tract-Binding Protein - metabolism
Promoter Regions, Genetic - genetics
Transcription Factors - metabolism
Title Revisiting astrocyte to neuron conversion with lineage tracing in vivo
URI https://www.ncbi.nlm.nih.gov/pubmed/34582787
https://www.proquest.com/docview/2577730526
Volume 184
WOSCitedRecordID wos000714065000022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qFbz4ftQXEbwG081mkz2JiMWDliIKvS15Qi-7tbsW-u-dZLf0JAhecguEyZf55pUZhO4ywbQEO5vo3HCScqsJ0IIhivsk01S71Mbu-q9iNJKTST7uAm51V1a50olRUdvKhBj5PUBLABp5kj3MvkiYGhWyq90IjU3UY2DKBFSLybpbuORx6mlIspIUmLr7NNPWd4XAOPiHySD2OaX8dxMzUs1w_7-HPEB7nZGJH1tUHKINVx6hnXbs5PIYDd_jl_JQ8IxV3QCFLRuHmwrH5pYljpXoMYyGQ5gWB0sU1A5u5sqEPdMSL6aL6gR9Dp8_nl5IN0-BGHimDfGKDRQ1zHtHHRNGm9xYcCeYV1plzgyUzYxPhE2ssJnzOvgaPs290FaKPE9O0VZZle4c4YRrZqmnjqfgv2VOUuGlyqmT0tJcuz66XQmoALwGWavSVd91sRZRH521Ui5mbWONgoUkHmiQiz_svkS74fICjQzSK9Tz8FrdNdo2i2Zaz28iEGAdjd9-ADtPvyE
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+astrocyte+to+neuron+conversion+with+lineage+tracing+in+vivo&rft.jtitle=Cell&rft.au=Wang%2C+Lei-Lei&rft.au=Serrano%2C+Carolina&rft.au=Zhong%2C+Xiaoling&rft.au=Ma%2C+Shuaipeng&rft.date=2021-10-14&rft.issn=1097-4172&rft.eissn=1097-4172&rft.volume=184&rft.issue=21&rft.spage=5465&rft_id=info:doi/10.1016%2Fj.cell.2021.09.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4172&client=summon