Robust Certified Numerical Homotopy Tracking

We describe, for the first time, a completely rigorous homotopy (path-following) algorithm (in the Turing machine model) to find approximate zeros of systems of polynomial equations. If the coordinates of the input systems and the initial zero are rational our algorithm involves only rational comput...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics Jg. 13; H. 2; S. 253 - 295
Hauptverfasser: Beltrán, Carlos, Leykin, Anton
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer-Verlag 01.04.2013
Springer Nature B.V
Schlagworte:
ISSN:1615-3375, 1615-3383
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe, for the first time, a completely rigorous homotopy (path-following) algorithm (in the Turing machine model) to find approximate zeros of systems of polynomial equations. If the coordinates of the input systems and the initial zero are rational our algorithm involves only rational computations, and if the homotopy is well posed an approximate zero with integer coordinates of the target system is obtained. The total bit complexity is linear in the length of the path in the condition metric, and polynomial in the logarithm of the maximum of the condition number along the path, and in the size of the input.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-013-9143-2