Robust Certified Numerical Homotopy Tracking
We describe, for the first time, a completely rigorous homotopy (path-following) algorithm (in the Turing machine model) to find approximate zeros of systems of polynomial equations. If the coordinates of the input systems and the initial zero are rational our algorithm involves only rational comput...
Uloženo v:
| Vydáno v: | Foundations of computational mathematics Ročník 13; číslo 2; s. 253 - 295 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer-Verlag
01.04.2013
Springer Nature B.V |
| Témata: | |
| ISSN: | 1615-3375, 1615-3383 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We describe, for the first time, a completely rigorous homotopy (path-following) algorithm (in the Turing machine model) to find approximate zeros of systems of polynomial equations. If the coordinates of the input systems and the initial zero are rational our algorithm involves only rational computations, and if the homotopy is well posed an approximate zero with integer coordinates of the target system is obtained. The total bit complexity is linear in the length of the path in the condition metric, and polynomial in the logarithm of the maximum of the condition number along the path, and in the size of the input. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 1615-3375 1615-3383 |
| DOI: | 10.1007/s10208-013-9143-2 |