An Immunologic Mode of Multigenerational Transmission Governs a Gut Treg Setpoint

At the species level, immunity depends on the selection and transmission of protective components of the immune system. A microbe-induced population of RORγ-expressing regulatory T cells (Tregs) is essential in controlling gut inflammation. We uncovered a non-genetic, non-epigenetic, non-microbial m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cell Ročník 181; číslo 6; s. 1276
Hlavní autoři: Ramanan, Deepshika, Sefik, Esen, Galván-Peña, Silvia, Wu, Meng, Yang, Liang, Yang, Zhen, Kostic, Aleksandar, Golovkina, Tatyana V, Kasper, Dennis L, Mathis, Diane, Benoist, Christophe
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 11.06.2020
Témata:
ISSN:1097-4172, 1097-4172
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract At the species level, immunity depends on the selection and transmission of protective components of the immune system. A microbe-induced population of RORγ-expressing regulatory T cells (Tregs) is essential in controlling gut inflammation. We uncovered a non-genetic, non-epigenetic, non-microbial mode of transmission of their homeostatic setpoint. RORγ Treg proportions varied between inbred mouse strains, a trait transmitted by the mother during a tight age window after birth but stable for life, resistant to many microbial or cellular perturbations, then further transferred by females for multiple generations. RORγ Treg proportions negatively correlated with IgA production and coating of gut commensals, traits also subject to maternal transmission, in an immunoglobulin- and RORγ Treg-dependent manner. We propose a model based on a double-negative feedback loop, vertically transmitted via the entero-mammary axis. This immunologic mode of multi-generational transmission may provide adaptability and modulate the genetic tuning of gut immune responses and inflammatory disease susceptibility.
AbstractList At the species level, immunity depends on the selection and transmission of protective components of the immune system. A microbe-induced population of RORγ-expressing regulatory T cells (Tregs) is essential in controlling gut inflammation. We uncovered a non-genetic, non-epigenetic, non-microbial mode of transmission of their homeostatic setpoint. RORγ Treg proportions varied between inbred mouse strains, a trait transmitted by the mother during a tight age window after birth but stable for life, resistant to many microbial or cellular perturbations, then further transferred by females for multiple generations. RORγ Treg proportions negatively correlated with IgA production and coating of gut commensals, traits also subject to maternal transmission, in an immunoglobulin- and RORγ Treg-dependent manner. We propose a model based on a double-negative feedback loop, vertically transmitted via the entero-mammary axis. This immunologic mode of multi-generational transmission may provide adaptability and modulate the genetic tuning of gut immune responses and inflammatory disease susceptibility.
At the species level, immunity depends on the selection and transmission of protective components of the immune system. A microbe-induced population of RORγ-expressing regulatory T cells (Tregs) is essential in controlling gut inflammation. We uncovered a non-genetic, non-epigenetic, non-microbial mode of transmission of their homeostatic setpoint. RORγ+ Treg proportions varied between inbred mouse strains, a trait transmitted by the mother during a tight age window after birth but stable for life, resistant to many microbial or cellular perturbations, then further transferred by females for multiple generations. RORγ+ Treg proportions negatively correlated with IgA production and coating of gut commensals, traits also subject to maternal transmission, in an immunoglobulin- and RORγ+ Treg-dependent manner. We propose a model based on a double-negative feedback loop, vertically transmitted via the entero-mammary axis. This immunologic mode of multi-generational transmission may provide adaptability and modulate the genetic tuning of gut immune responses and inflammatory disease susceptibility.At the species level, immunity depends on the selection and transmission of protective components of the immune system. A microbe-induced population of RORγ-expressing regulatory T cells (Tregs) is essential in controlling gut inflammation. We uncovered a non-genetic, non-epigenetic, non-microbial mode of transmission of their homeostatic setpoint. RORγ+ Treg proportions varied between inbred mouse strains, a trait transmitted by the mother during a tight age window after birth but stable for life, resistant to many microbial or cellular perturbations, then further transferred by females for multiple generations. RORγ+ Treg proportions negatively correlated with IgA production and coating of gut commensals, traits also subject to maternal transmission, in an immunoglobulin- and RORγ+ Treg-dependent manner. We propose a model based on a double-negative feedback loop, vertically transmitted via the entero-mammary axis. This immunologic mode of multi-generational transmission may provide adaptability and modulate the genetic tuning of gut immune responses and inflammatory disease susceptibility.
Author Yang, Zhen
Sefik, Esen
Kasper, Dennis L
Benoist, Christophe
Mathis, Diane
Ramanan, Deepshika
Yang, Liang
Kostic, Aleksandar
Golovkina, Tatyana V
Galván-Peña, Silvia
Wu, Meng
Author_xml – sequence: 1
  givenname: Deepshika
  surname: Ramanan
  fullname: Ramanan, Deepshika
  organization: Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
– sequence: 2
  givenname: Esen
  surname: Sefik
  fullname: Sefik, Esen
  organization: Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
– sequence: 3
  givenname: Silvia
  surname: Galván-Peña
  fullname: Galván-Peña, Silvia
  organization: Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
– sequence: 4
  givenname: Meng
  surname: Wu
  fullname: Wu, Meng
  organization: Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
– sequence: 5
  givenname: Liang
  surname: Yang
  fullname: Yang, Liang
  organization: Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
– sequence: 6
  givenname: Zhen
  surname: Yang
  fullname: Yang, Zhen
  organization: Joslin Diabetes Center and Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
– sequence: 7
  givenname: Aleksandar
  surname: Kostic
  fullname: Kostic, Aleksandar
  organization: Joslin Diabetes Center and Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
– sequence: 8
  givenname: Tatyana V
  surname: Golovkina
  fullname: Golovkina, Tatyana V
  organization: Department of Microbiology, Committee on Microbiology and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
– sequence: 9
  givenname: Dennis L
  surname: Kasper
  fullname: Kasper, Dennis L
  organization: Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
– sequence: 10
  givenname: Diane
  surname: Mathis
  fullname: Mathis, Diane
  email: cbdm@hms.harvard.edu
  organization: Department of Immunology, Harvard Medical School, Boston, MA 02115, USA. Electronic address: cbdm@hms.harvard.edu
– sequence: 11
  givenname: Christophe
  surname: Benoist
  fullname: Benoist, Christophe
  email: cbdm@hms.harvard.edu
  organization: Department of Immunology, Harvard Medical School, Boston, MA 02115, USA. Electronic address: cbdm@hms.harvard.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32402238$$D View this record in MEDLINE/PubMed
BookMark eNpNkM1Lw0AQxRep2A_9BzzIHr0kzn4l22MpGgstItZzmCS7JSXZrdlE8L83YgVPbx7vxzDz5mTivDOE3DKIGbDk4RiXpmliDhxikDEIuCAzBss0kizlk3_zlMxDOAKAVkpdkangEjgXekZeV45u2nZwvvGHuqQ7XxnqLd0NTV8fjDMd9rV32NB9hy60dQijpZn_NJ0LFGk29GNkDvTN9Cdfu_6aXFpsgrk564K8Pz3u18_R9iXbrFfbqJRa95FiKXBhiwILq1RVVNKWvBQpatTWynRp0RZJmaRcGdQJ12i55ksmLRQVYskX5P5376nzH4MJfT4e91MIOuOHkI8vChBMMDaid2d0KFpT5aeubrH7yv9q4N-fk2L-
CitedBy_id crossref_primary_10_1038_s41575_022_00714_7
crossref_primary_10_1136_bmjopen_2024_091323
crossref_primary_10_1172_JCI148826
crossref_primary_10_3390_ijms241310663
crossref_primary_10_3389_fimmu_2022_1026994
crossref_primary_10_3390_toxics12040237
crossref_primary_10_1016_j_semcdb_2021_03_015
crossref_primary_10_3389_fimmu_2020_01853
crossref_primary_10_1016_j_ajcnut_2022_11_027
crossref_primary_10_1080_10408398_2022_2031097
crossref_primary_10_1111_imr_13315
crossref_primary_10_3389_fcell_2021_715901
crossref_primary_10_1038_s41590_023_01712_w
crossref_primary_10_1126_sciimmunol_adi0672
crossref_primary_10_1038_s41467_021_21408_9
crossref_primary_10_1038_s41385_021_00471_x
crossref_primary_10_1016_j_mucimm_2024_11_006
crossref_primary_10_1111_imr_12980
crossref_primary_10_1038_s41390_025_03992_4
crossref_primary_10_1038_s41586_022_05309_5
crossref_primary_10_1016_j_coi_2024_102505
crossref_primary_10_1016_j_it_2023_09_004
crossref_primary_10_1016_j_clinthera_2021_11_005
crossref_primary_10_1016_j_cell_2020_05_030
crossref_primary_10_3390_microorganisms9102117
crossref_primary_10_1126_science_adg6425
crossref_primary_10_1016_j_coi_2023_102297
crossref_primary_10_1093_jleuko_qiae049
crossref_primary_10_1007_s00441_020_03359_7
crossref_primary_10_1038_s41385_021_00420_8
crossref_primary_10_1002_imt2_270
crossref_primary_10_3389_fimmu_2020_600973
crossref_primary_10_1016_j_immuni_2021_02_002
crossref_primary_10_3390_biomedicines11020294
crossref_primary_10_1016_j_immuni_2021_11_005
crossref_primary_10_1073_pnas_2501030122
crossref_primary_10_1111_imr_13411
crossref_primary_10_1038_s41598_022_14095_z
crossref_primary_10_1073_pnas_2311566120
crossref_primary_10_1016_j_mib_2020_07_008
crossref_primary_10_1111_imr_13376
crossref_primary_10_1016_j_it_2022_08_002
crossref_primary_10_1007_s11033_025_10829_0
crossref_primary_10_1016_j_chom_2022_02_005
crossref_primary_10_1016_j_jaci_2020_12_624
crossref_primary_10_1080_19490976_2021_1908101
crossref_primary_10_3389_fimmu_2020_603059
crossref_primary_10_1016_j_mib_2023_102421
crossref_primary_10_1038_s41590_025_02218_3
crossref_primary_10_3389_fped_2021_744104
crossref_primary_10_1016_j_chom_2022_09_011
crossref_primary_10_1371_journal_pntd_0012456
crossref_primary_10_1111_cea_13823
crossref_primary_10_1016_j_mucimm_2023_01_003
crossref_primary_10_1111_imr_13366
crossref_primary_10_3389_fimmu_2021_660974
crossref_primary_10_1080_10408398_2022_2053058
crossref_primary_10_1084_jem_20220839
crossref_primary_10_4049_jimmunol_2100215
crossref_primary_10_3390_nu13020606
crossref_primary_10_1093_intimm_dxab049
crossref_primary_10_1016_j_celrep_2025_115857
crossref_primary_10_3389_fimmu_2021_620124
crossref_primary_10_1016_j_mucimm_2024_04_002
crossref_primary_10_1002_eji_202250299
crossref_primary_10_1073_pnas_2221255120
crossref_primary_10_1126_science_adz8687
crossref_primary_10_1038_s41590_021_01052_7
crossref_primary_10_1016_j_chom_2022_04_007
crossref_primary_10_3390_biom14010078
crossref_primary_10_33549_physiolres_935296
crossref_primary_10_1097_MOG_0000000000000778
crossref_primary_10_1016_j_immuni_2023_02_013
crossref_primary_10_1038_s41568_023_00584_4
crossref_primary_10_3390_nu17061009
crossref_primary_10_3390_ijms26052130
crossref_primary_10_1126_science_ado5294
crossref_primary_10_1016_j_biopha_2022_113810
crossref_primary_10_1111_all_14736
crossref_primary_10_3390_foods13193102
crossref_primary_10_1016_j_immuni_2023_03_002
crossref_primary_10_1631_jzus_B2200047
crossref_primary_10_1111_febs_16047
crossref_primary_10_3389_fimmu_2022_822324
crossref_primary_10_1073_pnas_2209624119
crossref_primary_10_1038_s41577_020_0344_z
crossref_primary_10_1016_j_immuni_2024_04_014
crossref_primary_10_1016_j_immuni_2020_07_025
crossref_primary_10_1073_pnas_2411301121
crossref_primary_10_1126_science_ady9543
crossref_primary_10_3390_foods11091229
crossref_primary_10_1016_j_immuni_2024_07_020
crossref_primary_10_1016_j_bbi_2025_07_025
crossref_primary_10_1016_j_jaci_2021_07_012
crossref_primary_10_3389_fmicb_2024_1480811
crossref_primary_10_3390_nu16121808
crossref_primary_10_1371_journal_pbio_3003263
crossref_primary_10_1016_j_jaci_2022_07_014
crossref_primary_10_3390_v16060818
crossref_primary_10_1016_j_mib_2020_08_003
crossref_primary_10_1111_all_14908
crossref_primary_10_1038_s41385_022_00491_1
crossref_primary_10_3389_fimmu_2023_1294292
crossref_primary_10_3390_biomedicines11041200
crossref_primary_10_1038_s41577_023_00890_w
crossref_primary_10_1016_j_mce_2023_111956
crossref_primary_10_1016_j_mucimm_2025_01_006
crossref_primary_10_1146_annurev_immunol_093019_112348
crossref_primary_10_1146_annurev_immunol_102119_074236
crossref_primary_10_1172_JCI184319
crossref_primary_10_2147_IMCRJ_S512859
crossref_primary_10_1111_imr_13321
crossref_primary_10_1038_s41385_022_00484_0
crossref_primary_10_3389_fimmu_2024_1446072
ContentType Journal Article
Copyright Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cell.2020.04.030
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
ExternalDocumentID 32402238
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: P30 DK036836
– fundername: NIAID NIH HHS
  grantid: R37 AI051530
– fundername: NIAID NIH HHS
  grantid: R01 AI125603
– fundername: NIAID NIH HHS
  grantid: R01 AI051530
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6J9
7-5
85S
AACTN
AAEDT
AAEDW
AAFWJ
AAHBH
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
ABCQX
ABJNI
ABMAC
ABOCM
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NPM
O-L
O9-
OK1
P2P
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
WH7
YZZ
ZCA
7X8
AAYWO
ABDGV
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
EFKBS
ID FETCH-LOGICAL-c488t-517023fbbabf55dbd4fc2c37a8a8ff479fafb6c6725ea8628af282914f0bdaac2
IEDL.DBID 7X8
ISICitedReferencesCount 128
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000540869600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-4172
IngestDate Thu Oct 02 12:00:15 EDT 2025
Thu Apr 03 07:00:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Rorγ
entero-mammary axis
IgA
maternal transmission
colonic Tregs
Tregs
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-517023fbbabf55dbd4fc2c37a8a8ff479fafb6c6725ea8628af282914f0bdaac2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.cell.com/article/S0092867420304931/pdf
PMID 32402238
PQID 2403031311
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2403031311
pubmed_primary_32402238
PublicationCentury 2000
PublicationDate 2020-06-11
PublicationDateYYYYMMDD 2020-06-11
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-11
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2020
References 32424243 - Nat Rev Immunol. 2020 Jul;20(7):405
32497500 - Cell. 2020 Jun 11;181(6):1202-1204
References_xml – reference: 32497500 - Cell. 2020 Jun 11;181(6):1202-1204
– reference: 32424243 - Nat Rev Immunol. 2020 Jul;20(7):405
SSID ssj0008555
Score 2.6336339
Snippet At the species level, immunity depends on the selection and transmission of protective components of the immune system. A microbe-induced population of...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1276
SubjectTerms Animals
Digestive System - immunology
Disease Susceptibility - immunology
Female
Gastrointestinal Microbiome - immunology
Homeostasis - immunology
Immunoglobulin A - immunology
Inflammation - immunology
Male
Mice
Mice, Inbred BALB C
Mice, Inbred C57BL
Mice, Inbred CBA
Mice, Inbred NOD
Nuclear Receptor Subfamily 1, Group F, Member 3 - immunology
T-Lymphocytes, Regulatory - immunology
Title An Immunologic Mode of Multigenerational Transmission Governs a Gut Treg Setpoint
URI https://www.ncbi.nlm.nih.gov/pubmed/32402238
https://www.proquest.com/docview/2403031311
Volume 181
WOSCitedRecordID wos000540869600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA5qFby4L3UjgtfgbJlkTlLEqqCl4kJvJWvpZaY6U8F_b14yxZMgeJlLmCG8eXnv5S3fh9CF762wVpFCspxkmjIitEqJcz55HqksMp7O5-2BDQZ8NCqGbcKtbtsqFzbRG2pdKciRXwJuHOAMxvHV7J0AaxRUV1sKjWXUcUsFtHSx0Q9aOKee9RSKrCRznrodmgn9XZAYd_fDJPJQp2n0e4jpXU1_87-b3EIbbZCJe0ErttGSKXfQWqCd_NpFT70S38NcSDB8GPjQcGWxH8adeBzqkCHE3pM5TYCUGg60vDUW-HbeuCUzwc-mmVXTstlDr_2bl-s70lIrEOVObENozJyztlIKaSnVUmdWJSplggtubcYKK6zMVc4SaoS79HBhoeQaZzaSWgiV7KOVsirNIcI6j1IXlVEqFM1y4T6vXRAYxSqVPJGad9H5QlZjt2EQuyhNNa_HP9LqooMg8PEsYGyMASfQRS786A9vH6N1-I_QwBXHJ6hj3cE1p2hVfTbT-uPM64R7DoaP3zUvwI0
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Immunologic+Mode+of+Multigenerational+Transmission+Governs+a+Gut+Treg+Setpoint&rft.jtitle=Cell&rft.au=Ramanan%2C+Deepshika&rft.au=Sefik%2C+Esen&rft.au=Galv%C3%A1n-Pe%C3%B1a%2C+Silvia&rft.au=Wu%2C+Meng&rft.date=2020-06-11&rft.eissn=1097-4172&rft.volume=181&rft.issue=6&rft.spage=1276&rft_id=info:doi/10.1016%2Fj.cell.2020.04.030&rft_id=info%3Apmid%2F32402238&rft_id=info%3Apmid%2F32402238&rft.externalDocID=32402238
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4172&client=summon