Expression of Heterologous OsDHAR Gene Improves Glutathione (GSH)-Dependent Antioxidant System and Maintenance of Cellular Redox Status in Synechococcus elongatus PCC 7942
An excess of reactive oxygen species (ROS) can cause severe oxidative damage to cellular components in photosynthetic cells. Antioxidant systems, such as the glutathione (GSH) pools, regulate redox status in cells to guard against such damage. Dehydroascorbate reductase (DHAR, EC 1.8.5.1) catalyzes...
Uloženo v:
| Vydáno v: | Frontiers in plant science Ročník 11; s. 231 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
Frontiers Media SA
03.03.2020
Frontiers Media S.A |
| Témata: | |
| ISSN: | 1664-462X, 1664-462X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | An excess of reactive oxygen species (ROS) can cause severe oxidative damage to cellular components in photosynthetic cells. Antioxidant systems, such as the glutathione (GSH) pools, regulate redox status in cells to guard against such damage. Dehydroascorbate reductase (DHAR, EC 1.8.5.1) catalyzes the glutathione-dependent reduction of oxidized ascorbate (dehydroascorbate) and contains a redox active site and glutathione binding-site. The
gene is important in biological and abiotic stress responses involving reduction of the oxidative damage caused by ROS. In this study, transgenic
PCC 7942 (TA) was constructed by cloning the
L.
(
) gene controlled by an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible promoter (
) into the cyanobacterium to study the functional activities of
under oxidative stress caused by hydrogen peroxide exposure.
expression increased the growth of
PCC 7942 under oxidative stress by reducing the levels of hydroperoxides and malondialdehyde (MDA) and mitigating the loss of chlorophyll. DHAR and glutathione
-transferase activity were higher than in the wild-type
PCC 7942 (WT). Additionally, overexpression of
in
PCC 7942 greatly increased the glutathione (GSH)/glutathione disulfide (GSSG) ratio in the presence or absence of hydrogen peroxide. These results strongly suggest that
attenuates deleterious oxidative effects via the glutathione (GSH)-dependent antioxidant system in cyanobacterial cells. The expression of heterologous
in
PCC 7942 protected cells from oxidative damage through a GSH-dependent antioxidant system via GSH-dependent reactions at the redox active site and GSH binding site residues during oxidative stress. |
|---|---|
| AbstractList | An excess of reactive oxygen species (ROS) can cause severe oxidative damage to cellular components in photosynthetic cells. Antioxidant systems, such as the glutathione (GSH) pools, regulate redox status in cells to guard against such damage. Dehydroascorbate reductase (DHAR, EC 1.8.5.1) catalyzes the glutathione-dependent reduction of oxidized ascorbate (dehydroascorbate) and contains a redox active site and glutathione binding-site. The DHAR gene is important in biological and abiotic stress responses involving reduction of the oxidative damage caused by ROS. In this study, transgenic Synechococcus elongatus PCC 7942 (TA) was constructed by cloning the Oryza sativa L. japonica DHAR (OsDHAR) gene controlled by an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible promoter (Ptrc) into the cyanobacterium to study the functional activities of OsDHAR under oxidative stress caused by hydrogen peroxide exposure. OsDHAR expression increased the growth of S. elongatus PCC 7942 under oxidative stress by reducing the levels of hydroperoxides and malondialdehyde (MDA) and mitigating the loss of chlorophyll. DHAR and glutathione S-transferase activity were higher than in the wild-type S. elongatus PCC 7942 (WT). Additionally, overexpression of OsDHAR in S. elongatus PCC 7942 greatly increased the glutathione (GSH)/glutathione disulfide (GSSG) ratio in the presence or absence of hydrogen peroxide. These results strongly suggest that DHAR attenuates deleterious oxidative effects via the glutathione (GSH)-dependent antioxidant system in cyanobacterial cells. The expression of heterologous OsDHAR in S. elongatus PCC 7942 protected cells from oxidative damage through a GSH-dependent antioxidant system via GSH-dependent reactions at the redox active site and GSH binding site residues during oxidative stress. An excess of reactive oxygen species (ROS) can cause severe oxidative damage to cellular components in photosynthetic cells. Antioxidant systems, such as the glutathione (GSH) pools, regulate redox status in cells to guard against such damage. Dehydroascorbate reductase (DHAR, EC 1.8.5.1) catalyzes the glutathione-dependent reduction of oxidized ascorbate (dehydroascorbate) and contains a redox active site and glutathione binding-site. The gene is important in biological and abiotic stress responses involving reduction of the oxidative damage caused by ROS. In this study, transgenic PCC 7942 (TA) was constructed by cloning the L. ( ) gene controlled by an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible promoter ( ) into the cyanobacterium to study the functional activities of under oxidative stress caused by hydrogen peroxide exposure. expression increased the growth of PCC 7942 under oxidative stress by reducing the levels of hydroperoxides and malondialdehyde (MDA) and mitigating the loss of chlorophyll. DHAR and glutathione -transferase activity were higher than in the wild-type PCC 7942 (WT). Additionally, overexpression of in PCC 7942 greatly increased the glutathione (GSH)/glutathione disulfide (GSSG) ratio in the presence or absence of hydrogen peroxide. These results strongly suggest that attenuates deleterious oxidative effects via the glutathione (GSH)-dependent antioxidant system in cyanobacterial cells. The expression of heterologous in PCC 7942 protected cells from oxidative damage through a GSH-dependent antioxidant system via GSH-dependent reactions at the redox active site and GSH binding site residues during oxidative stress. An excess of reactive oxygen species (ROS) can cause severe oxidative damage to cellular components in photosynthetic cells. Antioxidant systems, such as the glutathione (GSH) pools, regulate redox status in cells to guard against such damage. Dehydroascorbate reductase (DHAR, EC 1.8.5.1) catalyzes the glutathione-dependent reduction of oxidized ascorbate (dehydroascorbate) and contains a redox active site and glutathione binding-site. The DHAR gene is important in biological and abiotic stress responses involving reduction of the oxidative damage caused by ROS. In this study, transgenic Synechococcus elongatus PCC 7942 (TA) was constructed by cloning the Oryza sativa L. japonica DHAR (OsDHAR) gene controlled by an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible promoter (Ptrc) into the cyanobacterium to study the functional activities of OsDHAR under oxidative stress caused by hydrogen peroxide exposure. OsDHAR expression increased the growth of S. elongatus PCC 7942 under oxidative stress by reducing the levels of hydroperoxides and malondialdehyde (MDA) and mitigating the loss of chlorophyll. DHAR and glutathione S-transferase activity were higher than in the wild-type S. elongatus PCC 7942 (WT). Additionally, overexpression of OsDHAR in S. elongatus PCC 7942 greatly increased the glutathione (GSH)/glutathione disulfide (GSSG) ratio in the presence or absence of hydrogen peroxide. These results strongly suggest that DHAR attenuates deleterious oxidative effects via the glutathione (GSH)-dependent antioxidant system in cyanobacterial cells. The expression of heterologous OsDHAR in S. elongatus PCC 7942 protected cells from oxidative damage through a GSH-dependent antioxidant system via GSH-dependent reactions at the redox active site and GSH binding site residues during oxidative stress.An excess of reactive oxygen species (ROS) can cause severe oxidative damage to cellular components in photosynthetic cells. Antioxidant systems, such as the glutathione (GSH) pools, regulate redox status in cells to guard against such damage. Dehydroascorbate reductase (DHAR, EC 1.8.5.1) catalyzes the glutathione-dependent reduction of oxidized ascorbate (dehydroascorbate) and contains a redox active site and glutathione binding-site. The DHAR gene is important in biological and abiotic stress responses involving reduction of the oxidative damage caused by ROS. In this study, transgenic Synechococcus elongatus PCC 7942 (TA) was constructed by cloning the Oryza sativa L. japonica DHAR (OsDHAR) gene controlled by an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible promoter (Ptrc) into the cyanobacterium to study the functional activities of OsDHAR under oxidative stress caused by hydrogen peroxide exposure. OsDHAR expression increased the growth of S. elongatus PCC 7942 under oxidative stress by reducing the levels of hydroperoxides and malondialdehyde (MDA) and mitigating the loss of chlorophyll. DHAR and glutathione S-transferase activity were higher than in the wild-type S. elongatus PCC 7942 (WT). Additionally, overexpression of OsDHAR in S. elongatus PCC 7942 greatly increased the glutathione (GSH)/glutathione disulfide (GSSG) ratio in the presence or absence of hydrogen peroxide. These results strongly suggest that DHAR attenuates deleterious oxidative effects via the glutathione (GSH)-dependent antioxidant system in cyanobacterial cells. The expression of heterologous OsDHAR in S. elongatus PCC 7942 protected cells from oxidative damage through a GSH-dependent antioxidant system via GSH-dependent reactions at the redox active site and GSH binding site residues during oxidative stress. |
| Author | Beld, Joris Kim, Il-Sup Kim, Jin-Ju Taton, Arnaud Boyd, Joseph S. Golden, James W. Kim, Young-Saeng Yoon, Ho-Sung Lee, Kyoung-In Park, Seong-Im |
| AuthorAffiliation | 3 Department of Biology, Kyungpook National University , Daegu , South Korea 2 School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu , South Korea 6 Biotechnology Industrialization Center, Dongshin University , Naju , South Korea 5 Department of Microbiology and Immunology, College of Medicine, Drexel University , Philadelphia, PA , United States 7 Advanced Bio Resource Research Center, Kyungpook National University , Daegu , South Korea 4 Division of Biological Sciences, University of California , San Diego, La Jolla, CA , United States 1 Research Institute for Dok-do and Ulleung-do, Kyungpook National University , Daegu , South Korea |
| AuthorAffiliation_xml | – name: 2 School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu , South Korea – name: 3 Department of Biology, Kyungpook National University , Daegu , South Korea – name: 5 Department of Microbiology and Immunology, College of Medicine, Drexel University , Philadelphia, PA , United States – name: 7 Advanced Bio Resource Research Center, Kyungpook National University , Daegu , South Korea – name: 1 Research Institute for Dok-do and Ulleung-do, Kyungpook National University , Daegu , South Korea – name: 4 Division of Biological Sciences, University of California , San Diego, La Jolla, CA , United States – name: 6 Biotechnology Industrialization Center, Dongshin University , Naju , South Korea |
| Author_xml | – sequence: 1 givenname: Young-Saeng surname: Kim fullname: Kim, Young-Saeng – sequence: 2 givenname: Seong-Im surname: Park fullname: Park, Seong-Im – sequence: 3 givenname: Jin-Ju surname: Kim fullname: Kim, Jin-Ju – sequence: 4 givenname: Joseph S. surname: Boyd fullname: Boyd, Joseph S. – sequence: 5 givenname: Joris surname: Beld fullname: Beld, Joris – sequence: 6 givenname: Arnaud surname: Taton fullname: Taton, Arnaud – sequence: 7 givenname: Kyoung-In surname: Lee fullname: Lee, Kyoung-In – sequence: 8 givenname: Il-Sup surname: Kim fullname: Kim, Il-Sup – sequence: 9 givenname: James W. surname: Golden fullname: Golden, James W. – sequence: 10 givenname: Ho-Sung surname: Yoon fullname: Yoon, Ho-Sung |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32194605$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ksFqGzEQhpeS0qRpzr0VQS_pwY5W0kqrS8E4qW1ISYlb6E1otbO2zFpypN3gPFNfsrKdlCRQXSRG_3wzzPzvsyPnHWTZxxwPKS3lRbNp45BggocYE5q_yU5yztmAcfL76Nn7ODuLcYXTKTCWUrzLjinJJeO4OMn-XG03AWK03iHfoCl0EHzrF76P6CZeTke3aAIO0Gy9Cf4eIpq0fae7ZdIDOp_Mp18Gl7ABV4Pr0Mh11m9trdN7_hA7WCPtavRdW9eB087ArsYY2rZvdUC3UPstmidcKmZdSnFglt54Y1IAWu8W-68f4zESkpEP2dtGtxHOHu_T7Ne3q5_j6eD6ZjIbj64HhpWiG5SYUVPhhleMs5IUEoDljWGikiC4bDTLKyiMoUZWJdQ50aIpc6ZNUQtuWEVPs9mBW3u9Uptg1zo8KK-t2gd8WCgdOmtaULwoG6iFoSIVSQBJKZOYpX3kVBNDE-vrgbXpqzXUJo0p6PYF9OWPs0u18PdKYE4xZQlw_ggI_q6H2Km1jSaNUDtIS1KEljknjJUyST-_kq58H1walaJEMCm4oDvVp-cd_WvlyRNJUBwEJvgYAzTK2LSjtPHUoG1VjtXOfmpnP7Wzn9rbL-VdvMp7Qv8v4y8-ht7o |
| CitedBy_id | crossref_primary_10_3389_fgene_2021_669702 crossref_primary_10_3390_metabo12090867 crossref_primary_10_1177_09603271211069982 crossref_primary_10_1021_acsbiomaterials_4c02259 crossref_primary_10_1016_j_jbc_2024_108086 crossref_primary_10_3389_fpls_2024_1439747 crossref_primary_10_1177_07487304241228333 crossref_primary_10_1016_j_lssr_2025_06_007 |
| Cites_doi | 10.1074/jbc.M110.164806 10.1002/pmic.201100169 10.1016/j.sbi.2005.10.005 10.1016/j.aquatox.2010.05.018 10.1186/s12870-015-0444-2 10.1046/j.1365-313x.2003.01656.x 10.3389/fpls.2018.01848 10.1016/s0981-9428(00)00782-8 10.1016/j.bbabio.2012.02.035 10.1016/j.plaphy.2010.08.016 10.1146/annurev.arplant.59.032607.092811 10.1074/jbc.m202919200 10.1104/pp.120.1.275 10.1111/jac.12078 10.1006/meth.2001.1262 10.1016/s0981-9428(02)01414-6 10.1104/pp.105.062000 10.1093/jexbot/51.352.1867 10.1007/s00425-006-0417-7 10.1078/0176-1617-00926 10.1038/srep19498 10.1016/0076-6879(87)53055-5 10.1016/s0891-5849(99)00107-0 10.1016/j.jplph.2013.04.005 10.1111/j.1744-7909.2010.00921.x 10.1007/s12192-010-0215-9 10.1016/j.jaridenv.2007.05.004 10.1007/s10529-017-2382-6 10.1186/1471-2164-11-73 10.1007/s11099-007-0062-9 10.1016/j.bbrc.2005.04.130 10.1007/s11033-013-2612-5 10.1105/tpc.12.10.1939 10.1016/j.jbiotec.2010.07.011 10.1093/embo-reports/kve219 10.1089/ars.2011.4327 10.1093/pcp/pcd035 10.1007/s10059-013-0071-4 10.1016/j.envexpbot.2005.01.005 10.1007/s00425-013-1862-8 10.1105/tpc.109.070219 10.4161/psb.6.8.16253 10.1111/j.1399-3054.2006.00624.x 10.1016/S1016-8478(23)14045-3 10.1021/pr900460x 10.1093/jxb/erq218 10.1093/jxb/erf090 10.1111/jpy.12111 10.1186/s12870-017-1179-z 10.1128/AEM.02694-13 10.1016/j.bbamem.2004.08.002 10.1021/bi015964x 10.1111/j.1574-6976.2008.00134.x 10.3390/genes9020084 10.1126/science.218.4571.443 10.1016/j.jhazmat.2015.06.008 10.1016/j.jplph.2005.10.002 10.1093/pcp/pce162 10.1146/annurev.arplant.49.1.249 10.1016/j.carbpol.2012.03.079 10.1080/09593330.2013.812668 10.1104/pp.112.205815 10.1016/s0014-5793(99)01768-8 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 Kim, Park, Kim, Boyd, Beld, Taton, Lee, Kim, Golden and Yoon. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2020 Kim, Park, Kim, Boyd, Beld, Taton, Lee, Kim, Golden and Yoon. 2020 Kim, Park, Kim, Boyd, Beld, Taton, Lee, Kim, Golden and Yoon |
| Copyright_xml | – notice: Copyright © 2020 Kim, Park, Kim, Boyd, Beld, Taton, Lee, Kim, Golden and Yoon. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2020 Kim, Park, Kim, Boyd, Beld, Taton, Lee, Kim, Golden and Yoon. 2020 Kim, Park, Kim, Boyd, Beld, Taton, Lee, Kim, Golden and Yoon |
| DBID | AAYXX CITATION NPM 3V. 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M0K M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3389/fpls.2020.00231 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Agricultural Science ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Biological Sciences Agriculture Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1664-462X |
| ExternalDocumentID | oai_doaj_org_article_658fed7c37ee4c5d933490400213a2c3 PMC7063034 32194605 10_3389_fpls_2020_00231 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM118815 |
| GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM ACXDI IAO IEA IGS IPNFZ ISR NPM RIG 3V. 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M0K M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c487t-8043cb0f6b4648259ee41fc47b9e769fa41be5cc3c9b8ed12a7f814ac5d76c4b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524769900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-462X |
| IngestDate | Fri Oct 03 12:41:17 EDT 2025 Tue Sep 30 16:39:10 EDT 2025 Wed Oct 01 14:01:28 EDT 2025 Mon Nov 24 22:10:57 EST 2025 Thu Jan 02 22:59:29 EST 2025 Sat Nov 29 03:19:36 EST 2025 Tue Nov 18 22:31:00 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | antioxidant-related enzymes cyanobacterium antioxidants dehydroascorbate reductase oxidative stress |
| Language | English |
| License | Copyright © 2020 Kim, Park, Kim, Boyd, Beld, Taton, Lee, Kim, Golden and Yoon. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c487t-8043cb0f6b4648259ee41fc47b9e769fa41be5cc3c9b8ed12a7f814ac5d76c4b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Dimitris Petroutsos, UMR 5168 Laboratoire de Physiologie Cellulaire Vegetale (LPCV), France Reviewed by: Corinne Cassier-Chauvat, UMR 9198 Institut de Biologie Intégrative de la Cellule (I2BC), France; Sang-Soo Kwak, Korea Research Institute of Bioscience and Biotechnology (KRIBB), South Korea; Muriel Gugger, Institut Pasteur, France This article was submitted to Plant Biotechnology, a section of the journal Frontiers in Plant Science |
| OpenAccessLink | https://doaj.org/article/658fed7c37ee4c5d933490400213a2c3 |
| PMID | 32194605 |
| PQID | 3274976739 |
| PQPubID | 7426805 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_658fed7c37ee4c5d933490400213a2c3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7063034 proquest_miscellaneous_2381624489 proquest_journals_3274976739 pubmed_primary_32194605 crossref_citationtrail_10_3389_fpls_2020_00231 crossref_primary_10_3389_fpls_2020_00231 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-03 |
| PublicationDateYYYYMMDD | 2020-03-03 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in plant science |
| PublicationTitleAlternate | Front Plant Sci |
| PublicationYear | 2020 |
| Publisher | Frontiers Media SA Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media SA – name: Frontiers Media S.A |
| References | Abdul Kayum (B1) 2018; 9 Dixit (B10) 2015; 298 Huang (B24) 2012; 89 Eltayeb (B17) 2007; 225 Komatsu (B35) 2009; 8 Jain (B25) 2010; 11 Qian (B50) 2010; 99 Kingston-Smith (B33) 2000; 51 Banerjee (B3) 2015; 15 Kim (B31) 2014; 200 Gorain (B21) 2013; 34 Livak (B40) 2001; 25 Urano (B61) 2000; 466 Kwon (B36) 2003; 160 Potters (B48) 2002; 40 Koksharova (B34) 2006; 75 Fryer (B18) 2003; 33 Kim (B29) 2013; 237 Rezaei (B51) 2013; 170 Shin (B54) 2008; 26 Thomas (B60) 1999; 120 Wang (B63) 1999; 27 Golden (B20) 1987; 153 Chen (B7) 2005; 138 Eltayeb (B16) 2006; 127 Rouhier (B52) 2008; 59 Jiang (B27) 2002; 53 Dixon (B11) 2002; 277 Oakley (B45) 2005; 15 Peng (B47) 2011; 11 Liu (B39) 2013; 161 Thom (B59) 2002; 41 Kim (B32) 2018; 9 Blank (B5) 2013; 49 Ding (B9) 2017; 17 Boyer (B6) 1982; 218 Jiang (B26) 2001; 42 Drabkova (B15) 2007; 45 Shimaoka (B53) 2000; 41 Shin (B55) 2013; 36 Tang (B58) 2013; 40 Tahara (B56) 2012; 1817 Owens (B46) 2001; 2 Ushimaru (B62) 2006; 163 Dixon (B13) 2011; 6 Latifi (B38) 2009; 33 Do (B14) 2016; 6 Horemans (B23) 2000; 38 Pulido (B49) 2010; 61 Los (B41) 2004; 1666 Noctor (B44) 1998; 49 Anfelt (B2) 2013; 79 Dixon (B12) 2010; 285 Meyer (B43) 2012; 17 Kim (B28) 2011; 16 Demiral (B8) 2006; 56 Wang (B64) 2010; 52 Kim (B30) 2017; 39 Tang (B57) 2007; 71 Benekos (B4) 2010; 150 Gill (B19) 2010; 48 Loyall (B42) 2000; 12 Hamnell-Pamment (B22) 2005; 332 Lan (B37) 2009; 21 |
| References_xml | – volume: 285 start-page: 36322 year: 2010 ident: B12 article-title: Roles for stress-inducible lambda glutathione transferases in flavonoid metabolism in plants as identified by ligand fishing. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.164806 – volume: 11 start-page: 4376 year: 2011 ident: B47 article-title: Characterization of the asia oceania human proteome organisation membrane proteomics initiative standard using SDS-PAGE shotgun proteomics. publication-title: Proteomics doi: 10.1002/pmic.201100169 – volume: 15 start-page: 716 year: 2005 ident: B45 article-title: Glutathione transferases: new functions. publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2005.10.005 – volume: 99 start-page: 405 year: 2010 ident: B50 article-title: Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa. publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2010.05.018 – volume: 15 year: 2015 ident: B3 article-title: Redox-dependent chaperone/peroxidase function of 2-Cys-Prx from the cyanobacterium Anabaena PCC7120: role in oxidative stress tolerance. publication-title: BMC Plant Biol. doi: 10.1186/s12870-015-0444-2 – volume: 33 start-page: 691 year: 2003 ident: B18 article-title: Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. publication-title: Plant J. doi: 10.1046/j.1365-313x.2003.01656.x – volume: 9 year: 2018 ident: B32 article-title: Expression of OsTPX gene improves cellular redox homeostasis and photosynthesis efficiency in Synechococcus elongatus PCC 7942. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01848 – volume: 38 start-page: 531 year: 2000 ident: B23 article-title: Ascorbate function and associated transport systems in plants. publication-title: Plant Physiol. Biochem. doi: 10.1016/s0981-9428(00)00782-8 – volume: 1817 start-page: 1360 year: 2012 ident: B56 article-title: Role of Slr1045 in environmental stress tolerance and lipid transport in the cyanobacterium Synechocystis sp. PCC6803. publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2012.02.035 – volume: 48 start-page: 909 year: 2010 ident: B19 article-title: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2010.08.016 – volume: 59 start-page: 143 year: 2008 ident: B52 article-title: The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092811 – volume: 277 start-page: 30859 year: 2002 ident: B11 article-title: Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. publication-title: J. Biol. Chem. doi: 10.1074/jbc.m202919200 – volume: 120 start-page: 275 year: 1999 ident: B60 article-title: Iron superoxide dismutase protects against chilling damage in the cyanobacterium Synechococcus species PCC7942. publication-title: Plant Physiol. doi: 10.1104/pp.120.1.275 – volume: 200 start-page: 444 year: 2014 ident: B31 article-title: Overexpression of dehydroascorbate reductase confers enhanced tolerance to salt stress in rice plants (Oryza sativa L. japonica). publication-title: J. Agron. Crop Sci. doi: 10.1111/jac.12078 – volume: 25 start-page: 402 year: 2001 ident: B40 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 40 start-page: 537 year: 2002 ident: B48 article-title: Ascorbate and glutathione: guardians of the cell cycle, partners in crime? publication-title: Plant Physiol. Biochem. doi: 10.1016/s0981-9428(02)01414-6 – volume: 138 start-page: 1673 year: 2005 ident: B7 article-title: Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. publication-title: Plant Physiol. doi: 10.1104/pp.105.062000 – volume: 51 start-page: 1867 year: 2000 ident: B33 article-title: Overexpression of Mn-superoxide dismutase in maize leaves leads to increased monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase activities. publication-title: J. Exp. Bot. doi: 10.1093/jexbot/51.352.1867 – volume: 225 start-page: 1255 year: 2007 ident: B17 article-title: Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. publication-title: Planta doi: 10.1007/s00425-006-0417-7 – volume: 160 start-page: 347 year: 2003 ident: B36 article-title: Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-00926 – volume: 6 year: 2016 ident: B14 article-title: Structural understanding of the recycling of oxidized ascorbate by dehydroascorbate reductase (OsDHAR) from Oryza sativa L. japonica. publication-title: Sci. Rep. doi: 10.1038/srep19498 – volume: 153 start-page: 215 year: 1987 ident: B20 article-title: Genetic engineering of the cyanobacterial chromosome. publication-title: Methods Enzymol. doi: 10.1016/0076-6879(87)53055-5 – volume: 27 start-page: 612 year: 1999 ident: B63 article-title: Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. publication-title: Free Radic. Biol. Med. doi: 10.1016/s0891-5849(99)00107-0 – volume: 170 start-page: 1277 year: 2013 ident: B51 article-title: Glutathione S-transferase (GST) family in barley: identification of members, enzyme activity, and gene expression pattern. publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2013.04.005 – volume: 52 start-page: 400 year: 2010 ident: B64 article-title: Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. publication-title: J. Integr. Plant Biol. doi: 10.1111/j.1744-7909.2010.00921.x – volume: 16 start-page: 1 year: 2011 ident: B28 article-title: Decarbonylated cyclophilin A Cpr1 protein protects Saccharomyces cerevisiae KNU5377Y when exposed to stress induced by menadione. publication-title: Cell Stress Chaperones doi: 10.1007/s12192-010-0215-9 – volume: 71 start-page: 312 year: 2007 ident: B57 article-title: Physiological and biochemical responses of Scytonema javanicum (cyanobacterium) to salt stress. publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2007.05.004 – volume: 39 start-page: 1499 year: 2017 ident: B30 article-title: Enhanced biomass and oxidative stress tolerance of Synechococcus elongatus PCC 7942 overexpressing the DHAR gene from Brassica juncea. publication-title: Biotechnol. Lett. doi: 10.1007/s10529-017-2382-6 – volume: 11 year: 2010 ident: B25 article-title: Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses. publication-title: BMC Genomics doi: 10.1186/1471-2164-11-73 – volume: 45 start-page: 363 year: 2007 ident: B15 article-title: Selective effects of H2O2 on cyanobacterial photosynthesis. publication-title: Photosynthetica doi: 10.1007/s11099-007-0062-9 – volume: 332 start-page: 362 year: 2005 ident: B22 article-title: Determination of site-specificity of S-glutathionylated cellular proteins. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2005.04.130 – volume: 40 start-page: 5105 year: 2013 ident: B58 article-title: Functional divergence and catalytic properties of dehydroascorbate reductase family proteins from Populus tomentosa. publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-013-2612-5 – volume: 12 start-page: 1939 year: 2000 ident: B42 article-title: Glutathione and a UV light-induced glutathione S-transferase are involved in signaling to chalcone synthase in cell cultures. publication-title: Plant Cell doi: 10.1105/tpc.12.10.1939 – volume: 150 start-page: 195 year: 2010 ident: B4 article-title: Overexpression of a specific soybean GmGSTU4 isoenzyme improves diphenyl ether and chloroacetanilide herbicide tolerance of transgenic tobacco plants. publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2010.07.011 – volume: 2 start-page: 877 year: 2001 ident: B46 article-title: Salt of the earth: genetic engineering may help to reclaim agricultural land lost due to salinisation. publication-title: EMBO Rep. doi: 10.1093/embo-reports/kve219 – volume: 17 start-page: 1124 year: 2012 ident: B43 article-title: Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2011.4327 – volume: 41 start-page: 1110 year: 2000 ident: B53 article-title: Purification and characterization of chloroplast dehydroascorbate reductase from spinach leaves. publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcd035 – volume: 36 start-page: 304 year: 2013 ident: B55 article-title: Co-expression of monodehydroascorbate reductase and dehydroascorbate reductase from Brassica rapa effectively confers tolerance to freezing-induced oxidative stress. publication-title: Mol. Cells doi: 10.1007/s10059-013-0071-4 – volume: 56 start-page: 72 year: 2006 ident: B8 article-title: Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2005.01.005 – volume: 237 start-page: 1613 year: 2013 ident: B29 article-title: Homologous expression of cytosolic dehydroascorbate reductase increases grain yield and biomass under paddy field conditions in transgenic rice (Oryza sativa L. japonica). publication-title: Planta doi: 10.1007/s00425-013-1862-8 – volume: 21 start-page: 3749 year: 2009 ident: B37 article-title: Extensive functional diversification of the Populus glutathione S-transferase supergene family. publication-title: Plant Cell doi: 10.1105/tpc.109.070219 – volume: 6 start-page: 1223 year: 2011 ident: B13 article-title: Roles for glutathione transferases in antioxidant recycling. publication-title: Plant Signal. Behav. doi: 10.4161/psb.6.8.16253 – volume: 127 start-page: 57 year: 2006 ident: B16 article-title: Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. publication-title: Physiol. Plantarum doi: 10.1111/j.1399-3054.2006.00624.x – volume: 26 start-page: 616 year: 2008 ident: B54 article-title: Scavenging reactive oxygen species by rice dehydroascorbate reductase alleviates oxidative stresses in Escherichia coli. publication-title: Mol. Cells doi: 10.1016/S1016-8478(23)14045-3 – volume: 8 start-page: 4766 year: 2009 ident: B35 article-title: A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques. publication-title: J. Proteome Res. doi: 10.1021/pr900460x – volume: 61 start-page: 4043 year: 2010 ident: B49 article-title: Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq218 – volume: 53 start-page: 2401 year: 2002 ident: B27 article-title: Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erf090 – volume: 49 start-page: 1040 year: 2013 ident: B5 article-title: Origin and early evolution of photosynthetic eukaryotes in freshwater environments: reinterpreting proterozoic paleobiology and biogeochemical processes in light of trait evolution. publication-title: J. Phycol. doi: 10.1111/jpy.12111 – volume: 17 year: 2017 ident: B9 article-title: Identification and analysis of glutathione S-transferase gene family in sweet potato reveal divergent GST-mediated networks in aboveground and underground tissues in response to abiotic stresses. publication-title: BMC Plant Biol. doi: 10.1186/s12870-017-1179-z – volume: 79 start-page: 7419 year: 2013 ident: B2 article-title: Using transcriptomics to improve butanol tolerance of Synechocystis sp. strain PCC 6803. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02694-13 – volume: 1666 start-page: 142 year: 2004 ident: B41 article-title: Membrane fluidity and its roles in the perception of environmental signals. publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2004.08.002 – volume: 41 start-page: 7008 year: 2002 ident: B59 article-title: Structure of a tau class glutathione S-transferase from wheat active in herbicide detoxification. publication-title: Biochemistry doi: 10.1021/bi015964x – volume: 33 start-page: 258 year: 2009 ident: B38 article-title: Oxidative stress in cyanobacteria. publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2008.00134.x – volume: 9 year: 2018 ident: B1 article-title: Genome-wide identification, characterization, and expression profiling of glutathione S-transferase (GST) family in pumpkin reveals likely role in cold-stress tolerance. publication-title: Genes (Basel) doi: 10.3390/genes9020084 – volume: 75 start-page: 765 year: 2006 ident: B34 article-title: The first protein map of Synechococcus sp. strain PCC 7942. publication-title: Mikrobiologiia – volume: 218 start-page: 443 year: 1982 ident: B6 article-title: Plant productivity and environment. publication-title: Science doi: 10.1126/science.218.4571.443 – volume: 298 start-page: 241 year: 2015 ident: B10 article-title: Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.06.008 – volume: 163 start-page: 1179 year: 2006 ident: B62 article-title: Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2005.10.002 – volume: 42 start-page: 1265 year: 2001 ident: B26 article-title: Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pce162 – volume: 49 start-page: 249 year: 1998 ident: B44 article-title: Ascorbate and glutathione: keeping active oxygen under control. publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol. doi: 10.1146/annurev.arplant.49.1.249 – volume: 89 start-page: 701 year: 2012 ident: B24 article-title: An exopolysaccharide from Trichoderma pseudokoningii and its apoptotic activity on human leukemia K562 cells. publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2012.03.079 – volume: 34 start-page: 1887 year: 2013 ident: B21 article-title: Effects of calcium, magnesium and sodium chloride in enhancing lipid accumulation in two green microalgae. publication-title: Environ. Technol. doi: 10.1080/09593330.2013.812668 – volume: 161 start-page: 773 year: 2013 ident: B39 article-title: Functional divergence of the glutathione S-transferase supergene family in Physcomitrella patens reveals complex patterns of large gene family evolution in land plants. publication-title: Plant Physiol. doi: 10.1104/pp.112.205815 – volume: 466 start-page: 107 year: 2000 ident: B61 article-title: Molecular cloning and characterization of a rice dehydroascorbate reductase. publication-title: FEBS Lett. doi: 10.1016/s0014-5793(99)01768-8 |
| SSID | ssj0000500997 |
| Score | 2.2823563 |
| Snippet | An excess of reactive oxygen species (ROS) can cause severe oxidative damage to cellular components in photosynthetic cells. Antioxidant systems, such as the... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 231 |
| SubjectTerms | Abiotic stress antioxidant-related enzymes Antioxidants Ascorbic acid Binding sites Cloning Cyanobacteria cyanobacterium Damage dehydroascorbate reductase Elongation Enzymes Glutathione Homeostasis Hydrogen peroxide Oxidative stress Physiology Plant Science Plasmids Proteins Reactive oxygen species Reductases Synechococcus elongatus Tobacco |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jj9MwFLZgmAMX9iUwICNxGA5hGtuN4xPqdJYeYKgGkOZmObYzVKqS0nRQ-U38Sd5z3EARcOHqRbHj72320_cIecnKqqgsyDeTRZmKvOSpGULUmjHwbQ1SqvtAmf9Wnp0VFxdqGi_c2phWudGJQVG7xuId-QGH8AlMp-TqzeJLilWj8HU1ltC4Tm4gSwILqXvT_o5lMEQHSHaMPhCLqYNqMUeObob5XIxnW8YocPb_ydH8PV_yFwN0cvt_l36H3IquJx11WLlLrvn6Htk9bMA9_HaffD9ex5zYmjYVnWCaDCrG5qql79ujyeicIkU17W4hfEtPAbOYuthA4_7ph8mr9CgW1F3REeZQrmcOjo12nOjU1I6-M8hOgRQfHr8x9vM5ZsHSc--aNUW_Fz42q2FK7UEtg6620ODnTX0ZuqbjMQXJZg_Ip5Pjj-NJGis5pBYCohWYQcFtOajyUuQCYlLlvcgqK2SpvMxVZURW-qG13Kqy8C5jRlZFJowdOplbUfKHZKeG7TwmVBmfF44jD6oXPFdmkDPhTG6lBP3jXUJeb45U20hzjtU25hrCHcSARgxoxIAOGEjIfj9h0TF8_H3oIWKkH4bU3KGhWV7qKOkaXLrKO2m5hE3CBhTnQqGqZBk3zPKE7G1QoqO-aPVPiCTkRd8Nko7PN6b2cNYanSvYqyhgzKMOkP1KOBgefOFOiNyC6tZSt3vq2efAJi6RdY2LJ_9e1lNyE_9DyL7je2Rntbzyz8iu_bqatcvnQex-ABQUOPE priority: 102 providerName: ProQuest |
| Title | Expression of Heterologous OsDHAR Gene Improves Glutathione (GSH)-Dependent Antioxidant System and Maintenance of Cellular Redox Status in Synechococcus elongatus PCC 7942 |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32194605 https://www.proquest.com/docview/3274976739 https://www.proquest.com/docview/2381624489 https://pubmed.ncbi.nlm.nih.gov/PMC7063034 https://doaj.org/article/658fed7c37ee4c5d933490400213a2c3 |
| Volume | 11 |
| WOSCitedRecordID | wos000524769900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Agriculture Science Database customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: M0K dateStart: 20110301 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: M7P dateStart: 20110301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: BENPR dateStart: 20110301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1664-462X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000500997 issn: 1664-462X databaseCode: PIMPY dateStart: 20110301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BsgcuiPcGlspIHJZD2MZ24_jYdrtbBC1RAamcLMdxoFKVrLYFlQt_iD_JTJKtWgTiwsUHPxTbM-OZiT99BnjBsyIpHNo3V0kWyjgToe1h1hpxjG0tUar7mjL_rZpOk_lcpztPfREmrKEHbjbuFD1k4XPlhPJeul6OCbjUpHk8Epa7muezq_ROMtWwelPooxouH8zC9GlxuSR2bk5ILi6iPTdUs_X_KcT8HSm543rO78KdNmZk_Wau9-CGL-_D4aDCuO77A_g52rRg1pJVBRsTvoVONEzp2bvV2bg_Y8QtzZrfB37FLlDZCHNYYeXJxfvxy_CsfQl3zfoEftwsctxv1pCZM1vmbGKJVoK4OTx9Y-iXS4KvspnPqw2jgBU_tihxSOnxPMVD1mGFX1bl57opHQ4ZmiR_CB_PRx-G47B9giF0mMms0X9J4bJuEWcylphMahRCVDipMu1VrAsro8z3nBNOZ4nPI25VkUTSoqBU7GQmHsFBics5Aqatj5NcEIGplyLWthtzmdvYKYUHh88DeHUtEeNafnJ6JmNpME8hERoSoSERmlqEAZxsB1w21Bx_7zogEW-7Ead2XYGaZlpNM__StACOrxXEtIa-MgKzeozolNABPN82o4nSvYstPcraUFSEa5UJ9nnc6NN2JgI9Bl1NB6D2NG1vqvst5eJLTQOuiC5NyCf_Y21P4TbtVg2uE8dwsL766p_Bofu2XqyuOnBTzZMO3BqMpumsU1salpPuGypVSuWPEbanryfpp1930zFJ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGNwleuF8KA4wE0ngIa2w3jh8Q6tptrdaWagxpPBnHcUalKilNB91vQuI3ck6SFoqAtz3wajuN7XznZp9-h5DnLErCxIJ8MxlGnggi7pkmRK0-A9_WIKW6Kyjz-3I4DE9P1WiDfF_-FwbTKpc6sVDUcWbxjHyXQ_gEplNy9Wb62cOqUXi7uiyhUcLiyF18hZAtf93rwPd9wdjB_km761VVBTwLzvkcVLLgNmokQSQCAfGRck74iRUyUk4GKjHCj1zTWm5VFLrYZ0YmoS-MbcYysCLi8LtXyKZAsNfI5qg3GH1Yneo0muhyyZJDCKI_tZtMJ8gKzjCDjHF_zfwVVQL-5Nr-nqH5i8k7uPG_bdZNcr1yrmmrlIZbZMOlt8nWXgYO8MUd8m1_UWX9pjRLaBcTgVD1Z-c5fZt3uq1jiiTctDxncTk9BKnE5MwMGncO33Vfep2qZPCctjBLdDGOAZi0ZH2nJo3pwCD_BpKYOHxH200mmOdLj12cLSh69vCycQqPpA4MD1gjCw1ukqVnRdeo3aagu9hd8v5SNuoeqaWwnAeEKuOCMObI9OoED5RpBEzEJrBSgoZ1cZ28WkJI24rIHeuJTDQEdIg5jZjTiDldYK5OdlYPTEsOk78P3UNMroYh-XjRkM3OdKXLNDitiYul5RIWCQtQnAuFxoD53DDL62R7iUpdacRc_4RknTxbdYMuwwsqkzr41hrdR1irCGHM_VIAVjPhYFrxDr9O5JporE11vScdfyr40iXyynHx8N_Tekqudk8Gfd3vDY8ekWu4J0WuId8mtfns3D0mW_bLfJzPnlRCT8nHyxadH_xLmPs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expression+of+Heterologous+OsDHAR+Gene+Improves+Glutathione+%28GSH%29-Dependent+Antioxidant+System+and+Maintenance+of+Cellular+Redox+Status+in+Synechococcus+elongatus+PCC+7942&rft.jtitle=Frontiers+in+plant+science&rft.au=Kim%2C+Young-Saeng&rft.au=Park%2C+Seong-Im&rft.au=Kim%2C+Jin-Ju&rft.au=Boyd%2C+Joseph+S.&rft.date=2020-03-03&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=11&rft_id=info:doi/10.3389%2Ffpls.2020.00231&rft_id=info%3Apmid%2F32194605&rft.externalDocID=PMC7063034 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |