Pattern recognition receptors and signaling in plant–microbe interactions

Summary Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe‐ and host damage‐associated molecular patterns leads to the first layer of inducible defenses, termed pattern‐triggered immunity (PTI)....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Plant journal : for cell and molecular biology Ročník 93; číslo 4; s. 592 - 613
Hlavní autori: Saijo, Yusuke, Loo, Eliza Po‐iian, Yasuda, Shigetaka
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Blackwell Publishing Ltd 01.02.2018
Predmet:
ISSN:0960-7412, 1365-313X, 1365-313X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Summary Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe‐ and host damage‐associated molecular patterns leads to the first layer of inducible defenses, termed pattern‐triggered immunity (PTI). In plants, pattern recognition receptors (PRRs) described to date are all membrane‐associated receptor‐like kinases or receptor‐like proteins, reflecting the prevalence of apoplastic colonization of plant‐infecting microbes. An increasing inventory of elicitor‐active patterns and PRRs indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRRs in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRRs are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR‐mediated pathogen recognition and disease resistance, and also an emerging role for PRRs in homeostatic association with beneficial or commensal microbes. Significance Statement In plants, pattern recognition receptors detect microbe‐associated and host damage‐associated molecular patterns in the extracellular spaces, and thereby trigger intracellular signaling that culminates in an enhanced state of immunity. An increasing inventory of elicitor‐active patterns and their receptors helps us to learn the molecular principles with which plants recognize and deal with a rich diversity of infectious microorganisms, ranging from pathogens, symbionts and commensals, in fluctuating environments.
AbstractList Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe‐ and host damage‐associated molecular patterns leads to the first layer of inducible defenses, termed pattern‐triggered immunity (PTI). In plants, pattern recognition receptors (PRRs) described to date are all membrane‐associated receptor‐like kinases or receptor‐like proteins, reflecting the prevalence of apoplastic colonization of plant‐infecting microbes. An increasing inventory of elicitor‐active patterns and PRRs indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRRs in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRRs are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR‐mediated pathogen recognition and disease resistance, and also an emerging role for PRRs in homeostatic association with beneficial or commensal microbes.
Summary Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe- and host damage-associated molecular patterns leads to the first layer of inducible defenses, termed pattern-triggered immunity (PTI). In plants, pattern recognition receptors (PRRs) described to date are all membrane-associated receptor-like kinases or receptor-like proteins, reflecting the prevalence of apoplastic colonization of plant-infecting microbes. An increasing inventory of elicitor-active patterns and PRRs indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRRs in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRRs are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR-mediated pathogen recognition and disease resistance, and also an emerging role for PRRs in homeostatic association with beneficial or commensal microbes. Significance Statement In plants, pattern recognition receptors detect microbe-associated and host damage-associated molecular patterns in the extracellular spaces, and thereby trigger intracellular signaling that culminates in an enhanced state of immunity. An increasing inventory of elicitor-active patterns and their receptors helps us to learn the molecular principles with which plants recognize and deal with a rich diversity of infectious microorganisms, ranging from pathogens, symbionts and commensals, in fluctuating environments.
Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe‐ and host damage‐associated molecular patterns leads to the first layer of inducible defenses, termed pattern‐triggered immunity ( PTI ). In plants, pattern recognition receptors ( PRR s) described to date are all membrane‐associated receptor‐like kinases or receptor‐like proteins, reflecting the prevalence of apoplastic colonization of plant‐infecting microbes. An increasing inventory of elicitor‐active patterns and PRR s indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRR s in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRR s are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR ‐mediated pathogen recognition and disease resistance, and also an emerging role for PRR s in homeostatic association with beneficial or commensal microbes. In plants, pattern recognition receptors detect microbe‐associated and host damage‐associated molecular patterns in the extracellular spaces, and thereby trigger intracellular signaling that culminates in an enhanced state of immunity. An increasing inventory of elicitor‐active patterns and their receptors helps us to learn the molecular principles with which plants recognize and deal with a rich diversity of infectious microorganisms, ranging from pathogens, symbionts and commensals, in fluctuating environments.
Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe- and host damage-associated molecular patterns leads to the first layer of inducible defenses, termed pattern-triggered immunity (PTI). In plants, pattern recognition receptors (PRRs) described to date are all membrane-associated receptor-like kinases or receptor-like proteins, reflecting the prevalence of apoplastic colonization of plant-infecting microbes. An increasing inventory of elicitor-active patterns and PRRs indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRRs in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRRs are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR-mediated pathogen recognition and disease resistance, and also an emerging role for PRRs in homeostatic association with beneficial or commensal microbes.Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe- and host damage-associated molecular patterns leads to the first layer of inducible defenses, termed pattern-triggered immunity (PTI). In plants, pattern recognition receptors (PRRs) described to date are all membrane-associated receptor-like kinases or receptor-like proteins, reflecting the prevalence of apoplastic colonization of plant-infecting microbes. An increasing inventory of elicitor-active patterns and PRRs indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRRs in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRRs are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR-mediated pathogen recognition and disease resistance, and also an emerging role for PRRs in homeostatic association with beneficial or commensal microbes.
Summary Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe‐ and host damage‐associated molecular patterns leads to the first layer of inducible defenses, termed pattern‐triggered immunity (PTI). In plants, pattern recognition receptors (PRRs) described to date are all membrane‐associated receptor‐like kinases or receptor‐like proteins, reflecting the prevalence of apoplastic colonization of plant‐infecting microbes. An increasing inventory of elicitor‐active patterns and PRRs indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRRs in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRRs are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR‐mediated pathogen recognition and disease resistance, and also an emerging role for PRRs in homeostatic association with beneficial or commensal microbes. Significance Statement In plants, pattern recognition receptors detect microbe‐associated and host damage‐associated molecular patterns in the extracellular spaces, and thereby trigger intracellular signaling that culminates in an enhanced state of immunity. An increasing inventory of elicitor‐active patterns and their receptors helps us to learn the molecular principles with which plants recognize and deal with a rich diversity of infectious microorganisms, ranging from pathogens, symbionts and commensals, in fluctuating environments.
Author Loo, Eliza Po‐iian
Saijo, Yusuke
Yasuda, Shigetaka
Author_xml – sequence: 1
  givenname: Yusuke
  surname: Saijo
  fullname: Saijo, Yusuke
  email: saijo@bs.naist.jp
  organization: Nara Institute of Science and Technology
– sequence: 2
  givenname: Eliza Po‐iian
  surname: Loo
  fullname: Loo, Eliza Po‐iian
  organization: Nara Institute of Science and Technology
– sequence: 3
  givenname: Shigetaka
  surname: Yasuda
  fullname: Yasuda, Shigetaka
  organization: Nara Institute of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29266555$$D View this record in MEDLINE/PubMed
BookMark eNqFkbtKBDEYhYMoul4KX0AGbLQYzXWSlCLeBS0U7EImk1myzGbGJIvY-Q6-oU9i1l0bUUzzh5_vHJJzNsGq770FYBfBI5TPcRomR4gIKFbACJGKlQSRp1UwgrKCJacIb4DNGCcQIk4qug42sMRVxRgbgZt7nZINvgjW9GPvkuu_7nZIfYiF9k0R3djrzvlx4XwxdNqnj7f3qTOhr21eZbU2c1ncBmut7qLdWc4t8Hh-9nB6Wd7eXVydntyWhgouygpJ3AhT1y03VAqqW9w0lGkmam4Eg9DIlmKtM81qzpu6oYYxzaWxEDJLyBY4WPgOoX-e2ZjU1EVju_w028-iwrDiWHBO4b8oklwyBBlGGd3_gU76Wcg_n1OSEsKlwJnaW1KzemobNQQ31eFVfSeageMFkPOJMdhWGZf0PJ8UtOsUgmremcqdqa_OsuLwh-Lb9Dd26f7iOvv6N6ge7q8Xik_aDaZc
CitedBy_id crossref_primary_10_1111_nph_70216
crossref_primary_10_1016_j_molp_2023_04_004
crossref_primary_10_1021_acs_jafc_5c06182
crossref_primary_10_3389_fpls_2024_1305855
crossref_primary_10_3390_ijms232214435
crossref_primary_10_3389_fpls_2021_746586
crossref_primary_10_1093_hr_uhad086
crossref_primary_10_1111_tpj_13812
crossref_primary_10_3389_fpls_2022_1026575
crossref_primary_10_3389_fpls_2022_1105591
crossref_primary_10_1093_plphys_kiab419
crossref_primary_10_3390_plants9040516
crossref_primary_10_1007_s00572_020_00934_2
crossref_primary_10_1093_g3journal_jkab378
crossref_primary_10_1111_jipb_13892
crossref_primary_10_1007_s11104_020_04423_5
crossref_primary_10_3390_plants11182342
crossref_primary_10_3389_fpls_2019_01241
crossref_primary_10_1016_j_ejop_2025_126158
crossref_primary_10_1093_plphys_kiad263
crossref_primary_10_1111_tpj_16895
crossref_primary_10_3389_fpls_2021_780805
crossref_primary_10_1111_nph_19194
crossref_primary_10_3390_plants13101420
crossref_primary_10_3389_fpls_2024_1353024
crossref_primary_10_1016_j_plantsci_2022_111321
crossref_primary_10_1146_annurev_phyto_020620_114826
crossref_primary_10_1094_MPMI_08_21_0211_R
crossref_primary_10_1093_jxb_erab517
crossref_primary_10_3389_fmicb_2022_935675
crossref_primary_10_1016_j_gene_2021_146049
crossref_primary_10_1016_j_pbi_2022_102269
crossref_primary_10_1186_s13227_025_00241_x
crossref_primary_10_1111_tpj_17035
crossref_primary_10_3390_biology10090920
crossref_primary_10_1051_bioconf_202518402005
crossref_primary_10_1111_tpj_16502
crossref_primary_10_3390_jof11010039
crossref_primary_10_1016_j_sajb_2025_02_028
crossref_primary_10_1111_nph_70352
crossref_primary_10_3390_jof10120831
crossref_primary_10_1007_s00203_023_03643_4
crossref_primary_10_3390_plants11172203
crossref_primary_10_1038_s41477_021_00982_2
crossref_primary_10_1080_15592324_2022_2034270
crossref_primary_10_1007_s00344_025_11691_x
crossref_primary_10_1038_s41467_021_25580_w
crossref_primary_10_1016_j_celrep_2025_115672
crossref_primary_10_1186_s42483_024_00289_y
crossref_primary_10_1111_pce_14893
crossref_primary_10_1128_JB_00419_20
crossref_primary_10_1094_PHYTO_10_20_0449_R
crossref_primary_10_1111_oik_09352
crossref_primary_10_3389_fpls_2020_01236
crossref_primary_10_1371_journal_pone_0297124
crossref_primary_10_1016_j_ijbiomac_2025_140484
crossref_primary_10_3389_fpls_2021_829645
crossref_primary_10_3389_fpls_2021_805614
crossref_primary_10_3390_genes14010054
crossref_primary_10_3390_ijms26062590
crossref_primary_10_1111_nph_15497
crossref_primary_10_1111_ppl_14150
crossref_primary_10_1007_s10340_024_01860_4
crossref_primary_10_3389_fpls_2022_910594
crossref_primary_10_1073_pnas_2022904117
crossref_primary_10_3389_fpls_2018_01271
crossref_primary_10_1093_plcell_koac040
crossref_primary_10_1371_journal_pone_0236633
crossref_primary_10_3390_genes12111789
crossref_primary_10_1016_j_xplc_2024_101195
crossref_primary_10_1094_PHYTO_09_18_0334_IA
crossref_primary_10_1016_j_ijmm_2019_04_004
crossref_primary_10_1109_TCBBIO_2025_3562082
crossref_primary_10_1016_j_cpb_2024_100367
crossref_primary_10_1093_aob_mcaa061
crossref_primary_10_1093_hr_uhae148
crossref_primary_10_1016_j_tplants_2024_11_010
crossref_primary_10_3390_ijms241210395
crossref_primary_10_1111_jipb_13739
crossref_primary_10_3390_plants11030386
crossref_primary_10_1186_s12284_025_00822_3
crossref_primary_10_1186_s12864_021_08157_1
crossref_primary_10_1093_plphys_kiab330
crossref_primary_10_1111_ppa_13468
crossref_primary_10_1016_j_microb_2025_100372
crossref_primary_10_3390_ani15182753
crossref_primary_10_1016_j_devcel_2025_04_006
crossref_primary_10_1038_s41598_020_79562_x
crossref_primary_10_1094_MPMI_34_4
crossref_primary_10_3389_fpls_2024_1377937
crossref_primary_10_1094_MPMI_34_1
crossref_primary_10_1007_s00344_020_10129_w
crossref_primary_10_1186_s12864_020_06806_5
crossref_primary_10_1007_s11262_021_01881_6
crossref_primary_10_1016_j_jare_2024_10_024
crossref_primary_10_1093_jxb_ery294
crossref_primary_10_3389_fpls_2021_756357
crossref_primary_10_1093_plcell_koac300
crossref_primary_10_3103_S0095452722010108
crossref_primary_10_1016_j_rsci_2024_12_003
crossref_primary_10_1093_aob_mcac013
crossref_primary_10_1186_s12870_024_04829_8
crossref_primary_10_1002_ps_70041
crossref_primary_10_1007_s11816_023_00876_z
crossref_primary_10_1007_s10327_018_0828_x
crossref_primary_10_1109_ACCESS_2020_2982456
crossref_primary_10_3389_fpls_2021_692328
crossref_primary_10_3390_ijms21218052
crossref_primary_10_1371_journal_pone_0310929
crossref_primary_10_1007_s11274_025_04253_6
crossref_primary_10_1186_s40538_024_00684_9
crossref_primary_10_3389_fmicb_2024_1482789
crossref_primary_10_1094_MPMI_09_18_0263_R
crossref_primary_10_1016_j_molp_2024_09_008
crossref_primary_10_1094_MPMI_07_21_0185_FI
crossref_primary_10_3390_ijms23105312
crossref_primary_10_3390_ijms26083683
crossref_primary_10_1016_j_mib_2019_10_004
crossref_primary_10_3389_fpls_2023_1231013
crossref_primary_10_1186_s12870_021_03150_y
crossref_primary_10_1016_j_pbi_2021_102044
crossref_primary_10_3389_fmicb_2020_01298
crossref_primary_10_3390_plants11223129
crossref_primary_10_1111_nph_17122
crossref_primary_10_1002_tpg2_20092
crossref_primary_10_1016_j_rhisph_2022_100524
crossref_primary_10_1007_s00425_022_03994_0
crossref_primary_10_1007_s00425_023_04310_0
crossref_primary_10_3389_fmicb_2020_01619
crossref_primary_10_1016_j_cell_2023_04_027
crossref_primary_10_1094_MPMI_08_21_0207_FI
crossref_primary_10_1111_jpi_12990
crossref_primary_10_1093_hr_uhab003
crossref_primary_10_1016_j_hpj_2022_04_005
crossref_primary_10_1094_MPMI_35_2
crossref_primary_10_1111_nph_15989
crossref_primary_10_3390_ijms22094709
crossref_primary_10_3389_fpls_2020_594827
crossref_primary_10_1038_s41598_022_11263_z
crossref_primary_10_3390_ijms23052674
crossref_primary_10_1007_s11274_022_03386_2
crossref_primary_10_1007_s10265_024_01546_z
crossref_primary_10_1111_jipb_12898
crossref_primary_10_1016_j_rhisph_2022_100654
crossref_primary_10_1038_s41598_024_62332_4
crossref_primary_10_1094_PHYTO_11_18_0443_RVW
crossref_primary_10_1016_j_pbi_2019_02_005
crossref_primary_10_1038_s41477_021_00920_2
crossref_primary_10_1093_plcell_koae020
crossref_primary_10_3390_jof9030360
crossref_primary_10_3390_app12126094
crossref_primary_10_1016_j_pbi_2019_02_001
crossref_primary_10_3389_fpls_2021_644870
crossref_primary_10_1016_j_pbi_2025_102782
crossref_primary_10_1038_s41598_020_66053_2
crossref_primary_10_3389_fpls_2021_682439
crossref_primary_10_1093_jxb_erac333
crossref_primary_10_1002_tpg2_20271
crossref_primary_10_1093_jxb_erae516
crossref_primary_10_3390_ijms222111433
crossref_primary_10_1016_j_molp_2024_04_003
crossref_primary_10_1016_j_micpath_2025_107821
crossref_primary_10_1111_tpj_17214
crossref_primary_10_1128_spectrum_04219_22
crossref_primary_10_1111_nph_70171
crossref_primary_10_1111_pce_13978
crossref_primary_10_1111_nph_17064
crossref_primary_10_3390_plants10020210
crossref_primary_10_1093_hr_uhad242
crossref_primary_10_1093_nar_gkab1087
crossref_primary_10_1094_MPMI_10_20_0291_R
crossref_primary_10_3390_plants11091178
crossref_primary_10_1093_gigascience_giaf005
crossref_primary_10_3390_molecules27207088
crossref_primary_10_1094_MPMI_08_20_0239_IA
crossref_primary_10_3390_pathogens9100787
crossref_primary_10_3389_fpls_2022_899177
crossref_primary_10_1094_MPMI_01_23_0005_R
crossref_primary_10_1007_s10709_020_00104_4
crossref_primary_10_1371_journal_pone_0308744
crossref_primary_10_3390_encyclopedia2020055
crossref_primary_10_1080_21655979_2021_1905325
crossref_primary_10_1094_MPMI_11_23_0197_R
crossref_primary_10_1016_j_mocell_2025_100239
crossref_primary_10_1186_s42483_023_00182_0
crossref_primary_10_1016_j_csbj_2021_04_008
crossref_primary_10_1016_j_scienta_2021_110361
crossref_primary_10_1111_mpp_13354
crossref_primary_10_3390_ijms241310920
crossref_primary_10_1111_tpj_15133
crossref_primary_10_3390_cells10010069
crossref_primary_10_3389_fmicb_2023_1227830
crossref_primary_10_1186_s12870_021_02927_5
crossref_primary_10_3389_fimmu_2023_1161606
crossref_primary_10_1016_j_csbj_2022_12_052
crossref_primary_10_1002_advs_202412968
crossref_primary_10_3390_su151914643
crossref_primary_10_1016_j_micres_2022_127056
crossref_primary_10_7717_peerj_18204
crossref_primary_10_1007_s00344_025_11853_x
crossref_primary_10_3389_fpls_2022_969343
crossref_primary_10_1111_mpp_70075
crossref_primary_10_3390_ijms21051722
crossref_primary_10_1111_tpj_13875
crossref_primary_10_1093_hr_uhac010
crossref_primary_10_3390_ijms25084497
crossref_primary_10_1080_15592324_2024_2370706
crossref_primary_10_1074_jbc_REV120_010852
crossref_primary_10_3389_fmicb_2023_1305899
crossref_primary_10_1094_PDIS_10_22_2339_RE
crossref_primary_10_1038_s41392_021_00687_0
crossref_primary_10_1080_17429145_2024_2346547
crossref_primary_10_3389_fpls_2020_00529
crossref_primary_10_1111_tpj_16479
crossref_primary_10_1016_j_micres_2024_127762
crossref_primary_10_1016_j_micres_2024_127883
crossref_primary_10_3389_fpls_2022_1096800
crossref_primary_10_1186_s12870_021_03042_1
crossref_primary_10_1111_mpp_13369
crossref_primary_10_3390_plants12233996
crossref_primary_10_1093_hr_uhaf078
crossref_primary_10_1007_s00425_022_03951_x
crossref_primary_10_1007_s13562_023_00858_w
crossref_primary_10_1093_pcp_pcac116
crossref_primary_10_3390_biology11030421
crossref_primary_10_1080_00275514_2020_1831293
crossref_primary_10_1016_j_coviro_2020_04_006
crossref_primary_10_3389_fpls_2023_1320509
crossref_primary_10_3390_microorganisms10122472
crossref_primary_10_1111_tpj_15110
crossref_primary_10_1021_acs_jafc_5c00286
crossref_primary_10_3389_fmicb_2018_02535
crossref_primary_10_1007_s13258_019_00801_1
crossref_primary_10_1038_s41477_021_00874_5
crossref_primary_10_3389_fmicb_2025_1660944
crossref_primary_10_3390_plants12081668
crossref_primary_10_1093_plphys_kiad472
crossref_primary_10_1094_PHYTO_04_22_0134_R
crossref_primary_10_1111_nph_18511
crossref_primary_10_15446_abc_v26n3_83077
crossref_primary_10_3389_fgene_2021_805771
crossref_primary_10_1016_j_molp_2020_09_018
crossref_primary_10_3390_ijms241210224
crossref_primary_10_3390_jof7090719
crossref_primary_10_1016_j_cell_2023_12_030
crossref_primary_10_3390_ijms21030963
crossref_primary_10_1094_PHYTO_08_20_0362_R
crossref_primary_10_3390_horticulturae8111012
crossref_primary_10_3389_fmicb_2023_1122947
crossref_primary_10_1007_s44372_024_00004_3
crossref_primary_10_1016_j_pmpp_2024_102482
crossref_primary_10_1146_annurev_phyto_021621_114026
crossref_primary_10_1007_s11103_021_01154_8
crossref_primary_10_1016_j_foodchem_2024_139987
crossref_primary_10_1186_s12985_021_01664_3
crossref_primary_10_1186_s12870_021_03251_8
crossref_primary_10_1016_j_peptides_2021_170611
crossref_primary_10_3390_polym14163416
crossref_primary_10_1016_j_plaphy_2025_110222
crossref_primary_10_1094_PHYTO_12_24_0408_R
crossref_primary_10_1186_s12870_019_1890_z
crossref_primary_10_1186_s12870_024_05742_w
crossref_primary_10_3390_microorganisms9051029
crossref_primary_10_1111_pce_14006
crossref_primary_10_3389_fpls_2020_543895
crossref_primary_10_3390_plants11101323
crossref_primary_10_3390_ijms21072540
crossref_primary_10_1093_pcp_pcz151
crossref_primary_10_1186_s12915_022_01442_9
crossref_primary_10_1094_PHYTO_01_25_0022_R
crossref_primary_10_1186_s43141_021_00231_1
crossref_primary_10_3389_fpls_2020_01287
crossref_primary_10_3390_ijms21155514
crossref_primary_10_3389_fpls_2020_593905
crossref_primary_10_3389_fpls_2024_1439380
crossref_primary_10_1039_D4EN00053F
crossref_primary_10_3389_fgene_2023_1120861
crossref_primary_10_3389_fpls_2024_1350281
crossref_primary_10_1111_mpp_13275
crossref_primary_10_3390_agronomy8080134
crossref_primary_10_1111_mpp_70026
crossref_primary_10_1111_tpj_15215
crossref_primary_10_1038_s41467_023_39208_8
crossref_primary_10_1016_j_pmpp_2020_101514
crossref_primary_10_1016_j_bbamcr_2022_119347
crossref_primary_10_1111_tpj_14924
crossref_primary_10_3390_ijms25031695
crossref_primary_10_1111_pce_14455
crossref_primary_10_1007_s00299_025_03540_8
crossref_primary_10_1016_j_tibtech_2018_04_005
crossref_primary_10_1093_jxb_eraa414
crossref_primary_10_1093_jxb_eraa417
crossref_primary_10_3390_ijms23073730
crossref_primary_10_1007_s00253_018_9556_6
crossref_primary_10_3390_ijms23074043
crossref_primary_10_3390_plants13213036
crossref_primary_10_1111_mpp_13167
crossref_primary_10_1111_pce_13927
crossref_primary_10_3389_fmicb_2022_1019069
crossref_primary_10_1111_mpp_70139
crossref_primary_10_3390_microorganisms13061251
crossref_primary_10_1016_j_psj_2024_103833
crossref_primary_10_3390_plants11243483
crossref_primary_10_3389_fpls_2020_01021
crossref_primary_10_3390_ijms23063151
crossref_primary_10_1093_hr_uhac043
crossref_primary_10_1016_j_molp_2021_12_013
crossref_primary_10_3390_nano11123161
Cites_doi 10.1104/pp.109.142067
10.1038/icb.2013.58
10.1073/pnas.0705306104
10.1105/tpc.104.026609
10.1073/pnas.1011957107
10.1016/j.chom.2013.03.007
10.1038/35074106
10.1111/tpj.12050
10.1104/pp.117.4.1373
10.1111/nph.12198
10.1126/science.1243825
10.1186/s13059-016-0955-7
10.1038/emboj.2013.104
10.1093/mp/ssq083
10.1146/annurev-phyto-102313-045907
10.1111/nph.12146
10.1002/jpln.200900081
10.1016/S0092-8674(02)00814-0
10.3389/fpls.2015.01126
10.1073/pnas.1000675107
10.1016/j.pbi.2017.04.022
10.1105/tpc.111.087122
10.1371/journal.pone.0102245
10.1111/j.1365-313X.2010.04155.x
10.1111/j.1365-313X.2010.04282.x
10.1094/MPMI.2001.14.7.867
10.1105/tpc.112.102475
10.1126/science.1248849
10.1128/JB.185.22.6658-6665.2003
10.1007/s00122-017-2876-6
10.1038/nature14611
10.1038/nature10394
10.1126/sciadv.1500245
10.1105/tpc.113.117010
10.1146/annurev-phyto-080516-035623
10.1111/nph.12549
10.1111/j.1365-313X.2012.04950.x
10.1016/j.it.2017.07.012
10.1371/journal.pgen.1002046
10.1105/tpc.106.045096
10.1074/jbc.M004796200
10.1104/pp.110.166710
10.1016/j.molcel.2014.03.012
10.1111/nph.13348
10.1016/j.pbi.2015.05.032
10.1038/nplants.2015.34
10.1094/MPMI-03-14-0068-R
10.1074/jbc.M109.027540
10.1111/nph.13802
10.1016/j.cub.2007.05.018
10.1016/j.pbi.2017.06.003
10.1073/pnas.1205448109
10.1016/j.cell.2006.03.037
10.1111/nph.13117
10.1016/j.molp.2017.01.006
10.1016/j.sbi.2016.09.012
10.1104/pp.16.01680
10.1016/j.chom.2014.10.018
10.1105/tpc.114.134809
10.1038/nrmicro2990
10.1073/pnas.1216780110
10.1111/j.1365-313X.2011.04671.x
10.1146/annurev.arplant.57.032905.105346
10.1094/MPMI-21-12-1635
10.1016/j.chom.2010.03.007
10.1073/pnas.92.6.2338
10.3389/fpls.2014.00585
10.1146/annurev.phyto.39.1.313
10.1016/j.cell.2005.03.025
10.1016/S1672-0229(08)60031-5
10.1111/tpj.12723
10.1111/tpj.12535
10.1105/tpc.15.00440
10.3389/fpls.2013.00049
10.1093/pcp/pct175
10.1038/nri3398
10.1094/MPMI-06-13-0179-R
10.1016/j.tplants.2016.08.014
10.1038/nplants.2016.185
10.1093/jxb/ert330
10.1105/tpc.15.00390
10.1111/nph.13356
10.1105/tpc.16.00891
10.1016/j.cub.2012.09.043
10.1126/science.1242736
10.3389/fpls.2014.00065
10.1038/nature14171
10.1038/ncomms1046
10.1371/journal.pbio.1000139
10.1371/journal.pgen.1006832
10.1105/tpc.17.00376
10.1111/tpj.12425
10.3389/fimmu.2013.00138
10.1111/nph.13064
10.1371/journal.ppat.1004491
10.1016/j.cub.2007.05.036
10.1038/nature20166
10.1105/tpc.104.026765
10.1016/j.it.2017.05.001
10.1371/journal.ppat.1005596
10.1111/nph.12817
10.1094/MPMI-10-13-0304-R
10.1105/tpc.10.11.1915
10.1371/journal.ppat.1004809
10.1105/tpc.022475
10.1016/S1360-1385(00)01810-0
10.1042/BJ20111112
10.1073/pnas.1318817111
10.1093/pcp/pcw104
10.1111/nph.13944
10.1111/pbi.12341
10.1146/annurev-phyto-082712-102314
10.1105/tpc.005579
10.1105/tpc.112.107904
10.1111/j.1365-313X.2010.04411.x
10.1073/pnas.0609672104
10.1074/jbc.M209880200
10.15252/embj.201488645
10.1038/nri3167
10.1016/0092-8674(94)90423-5
10.3389/fpls.2015.00911
10.1038/nature21417
10.1126/science.1242468
10.1094/MPMI.2001.14.5.653
10.1128/AEM.03297-12
10.1104/pp.111.192575
10.1038/ncomms3530
10.1016/j.tim.2007.01.006
10.1073/pnas.0502425102
10.15252/embj.201488698
10.1111/tpj.13458
10.1111/nph.12408
10.1016/j.molp.2016.10.006
10.7554/eLife.00983
10.3389/fpls.2016.00906
10.1093/pcp/pcs113
10.1105/tpc.112.097253
10.1186/gb-2014-15-6-r87
10.1146/annurev.arplant.56.032604.144204
10.1016/j.tplants.2014.09.003
10.1186/s12870-014-0374-4
10.1371/journal.pbio.1000280
10.1126/science.aaf3919
10.1073/pnas.1614468114
10.1073/pnas.0603729103
10.1038/nature14243
10.1126/science.1215584
10.1038/nature00841
10.1105/tpc.020834
10.1371/journal.ppat.1004602
10.1038/nrmicro1596
10.1016/j.pbi.2011.05.001
10.1073/pnas.1410031111
10.1074/jbc.M110.116657
10.1111/nph.13233
10.1073/pnas.96.4.1756
10.1371/journal.pone.0075039
10.1104/pp.109.138669
10.1111/j.1432-1033.1989.tb21084.x
10.1104/pp.110.154963
10.1146/annurev-micro-091213-112844
10.1016/j.chom.2007.03.006
10.1073/pnas.1203458110
10.1146/annurev-phyto-080614-120114
10.1038/nature05999
10.1371/journal.ppat.1005518
10.1073/pnas.1113893109
10.1104/pp.113.216077
10.1111/j.1365-313X.2011.04659.x
10.1038/nature16975
10.1073/pnas.1221294110
10.1073/pnas.1205171109
10.1074/jbc.M708106200
10.1105/tpc.110.081794
10.1104/pp.113.234625
10.1111/nph.13542
10.1073/pnas.1302154110
10.1016/j.cell.2016.02.028
10.1038/nature05286
10.1038/ni.3124
10.1105/tpc.111.084996
10.1038/emboj.2008.147
10.1073/pnas.0909705107
10.1104/pp.110.159723
10.1073/pnas.0508882103
10.15252/embj.201591807
10.1038/nature02485
10.1074/mcp.M600429-MCP200
10.1126/science.1148110
10.1105/tpc.112.104463
10.1111/mpp.12444
10.1126/science.7973631
10.1105/tpc.109.068874
10.1105/tpc.107.055624
10.1073/pnas.1605588113
10.1046/j.1364-3703.2003.00196.x
10.1038/nri1594
10.1016/S0981-9428(02)00018-9
10.1038/nature10510
10.7554/eLife.25114
10.1016/j.chom.2014.02.009
10.1038/nature10962
10.4161/psb.25345
10.1046/j.1365-313X.1999.00451.x
10.1111/j.1365-313X.2010.04324.x
10.1046/j.1529-8817.1999.3540747.x
10.1016/j.pbi.2013.06.010
10.1111/j.1365-313X.2006.02981.x
10.1073/pnas.90.17.8273
10.1105/tpc.105.037648
10.1073/pnas.0810206106
10.1104/pp.16.01853
10.1126/science.1204903
10.1073/pnas.1511847113
10.1038/nplants.2016.128
10.1105/tpc.16.00654
10.1105/tpc.112.095919
10.1371/journal.pgen.1006068
10.1038/nature08794
10.15252/embj.201694248
10.1186/s12870-016-0921-2
10.1111/j.1600-065X.2011.01037.x
10.1073/pnas.1112862108
10.1016/j.chom.2009.05.019
10.7554/eLife.03766
10.1074/jbc.M704886200
10.1094/MPMI-12-14-0405-R
10.1111/nph.13425
10.1111/j.1364-3703.2009.00537.x
10.1105/tpc.113.110833
10.1016/S0031-6997(24)01373-5
10.1126/science.aal2541
10.1073/pnas.1214668110
10.1093/jxb/erq219
10.1016/j.molcel.2014.02.021
10.1038/ncomms11362
10.1093/pcp/pcv063
10.1146/annurev-phyto-080614-120106
10.1105/tpc.113.121111
10.1073/pnas.1706795114
10.1016/j.cub.2008.07.085
10.1073/pnas.1606004113
10.1016/j.tibs.2014.06.006
10.1074/jbc.M308552200
10.1016/S0092-8674(02)00812-7
10.1126/science.aah5692
10.1093/pcp/pcx042
10.1038/ni1253
10.1105/tpc.114.132308
10.1371/journal.pone.0120245
10.1016/j.cub.2007.05.046
10.1038/nature22009
10.1016/j.tplants.2013.10.003
10.1093/jxb/err291
10.1093/pcp/pcu129
10.1094/MPMI.2003.16.6.553
10.1126/science.212.4490.67
10.1016/j.cub.2013.11.047
10.1016/j.pbi.2014.07.007
10.1038/ni.2406
10.1104/pp.114.250985
10.1126/science.1218867
10.1371/journal.ppat.1002130
10.1016/j.tplants.2017.07.005
10.1126/science.1195211
10.1186/1471-2148-9-183
10.1371/journal.ppat.1004331
10.1073/pnas.98.2.759
10.1186/1471-2164-12-49
10.1016/j.chom.2013.02.007
10.7554/eLife.06587
10.1021/bi8001488
10.1038/ncomms12151
10.1093/jxb/erv236
10.1104/pp.113.230698
10.1126/science.1206095
10.1038/nmicrobiol.2016.43
10.1038/nplants.2015.140
10.1094/MPMI-23-1-0058
10.1038/nbt.1613
10.1073/pnas.132266499
10.1074/jbc.M110.160531
10.1093/mp/ssn019
10.1111/tpj.12450
10.1073/pnas.0907711106
10.1128/JB.01757-07
10.1016/j.tplants.2014.11.008
10.1080/15592324.2017.1361076
10.1073/pnas.201416998
10.1016/j.pbi.2013.07.002
10.1105/tpc.111.084301
10.1111/nph.13345
10.1073/pnas.0706403104
10.1126/science.1244454
10.1371/journal.pbio.0060231
10.1111/nph.12043
10.1111/nph.13411
10.1126/science.253.5022.895
10.1016/j.chom.2012.01.015
10.1073/pnas.1312099111
10.1074/jbc.M109.058909
10.1007/s11103-007-9173-8
10.1094/MPMI-04-10-0099
10.1093/jxb/erv180
10.1111/j.1469-8137.2004.01043.x
10.1016/j.chom.2016.09.007
10.1371/journal.ppat.1003080
10.1038/ni922
10.1371/journal.ppat.1005811
10.1111/nph.13031
10.1104/pp.012187
10.1101/gad.366506
10.1126/science.343.6168.290
10.1073/pnas.1302360110
10.1073/pnas.1215543110
10.1002/embj.201284303
10.1126/science.1086716
10.1038/emboj.2009.263
10.1016/S1097-2765(00)80265-8
10.1073/pnas.92.10.4150
10.1107/S2053230X16014278
10.7554/eLife.13568
10.1111/nph.13306
10.1016/j.pbi.2015.06.001
10.1126/science.1549783
10.1038/nrmicro1987
10.1073/pnas.0705147104
10.1038/nri.2016.77
10.1105/tpc.107.056754
10.1105/tpc.9.12.2209
10.1038/nature09622
10.1111/nph.12592
10.1093/jxb/ert195
10.1016/j.chom.2014.10.007
10.1111/j.1365-313X.2007.03192.x
10.1073/pnas.0603727103
10.3389/fpls.2014.00446
10.1016/j.pbi.2017.04.007
10.1073/pnas.1000191107
10.1038/nplants.2015.218
10.1104/pp.113.229179
10.1126/science.1111404
10.7554/eLife.01990
10.1105/tpc.111.093039
10.1046/j.1365-313X.1999.00265.x
10.1094/MPMI-11-14-0372-R
10.1146/annurev-phyto-080516-035649
10.1016/S0092-8674(00)81290-8
10.1111/nph.14036
ContentType Journal Article
Copyright 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
Copyright © 2018 John Wiley & Sons Ltd and the Society for Experimental Biology
Copyright_xml – notice: 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
– notice: Copyright © 2018 John Wiley & Sons Ltd and the Society for Experimental Biology
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/tpj.13808
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Genetics Abstracts
CrossRef
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage 613
ExternalDocumentID 29266555
10_1111_tpj_13808
TPJ13808
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: JSPS KAKENHI
  funderid: 16KT0031; 16H01469
– fundername: Mitsubishi Foundation
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
O8X
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
ESX
IPNFZ
NPM
WRC
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4878-6192d8cbbf7c4984af2dd45a58b7c8500c9f42aac485b77dbd4c55a79ce005e33
IEDL.DBID 24P
ISICitedReferencesCount 338
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424221200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-7412
1365-313X
IngestDate Fri Jul 11 18:22:01 EDT 2025
Fri Jul 11 12:08:48 EDT 2025
Fri Jul 25 11:08:29 EDT 2025
Tue Jan 21 03:22:13 EST 2025
Tue Nov 18 22:36:15 EST 2025
Sat Nov 29 07:46:59 EST 2025
Tue Nov 11 03:08:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords pattern recognition receptors
plant-microbe interactions
receptor-like kinase
signaling
damage-associated molecular patterns
receptor-like protein
plant immunity
microbe-associated molecular patterns
Language English
License Attribution
2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4878-6192d8cbbf7c4984af2dd45a58b7c8500c9f42aac485b77dbd4c55a79ce005e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.13808
PMID 29266555
PQID 1994337982
PQPubID 31702
PageCount 22
ParticipantIDs proquest_miscellaneous_2067287740
proquest_miscellaneous_1979510521
proquest_journals_1994337982
pubmed_primary_29266555
crossref_citationtrail_10_1111_tpj_13808
crossref_primary_10_1111_tpj_13808
wiley_primary_10_1111_tpj_13808_TPJ13808
PublicationCentury 2000
PublicationDate February 2018
2018-02-00
20180201
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2018
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2011; 477
2013; 64
2017; 89
2002; 99
2015b; 4
2012; 13
2012; 12
2003; 278
2012; 11
1997; 9
2016a; 20
2014a; 16
1994; 266
2010; 1
2012b; 336
2013; 51
2008; 27
2008; 21
2013; 110
2008; 20
2012; 24
1998; 10
2012; 22
2010; 7
2011; 243
2006; 444
2010; 8
2007; 17
2007; 19
2007; 282
2009; 60
2013; 91
2013; 342
2010; 285
2009; 172
2017; 130
2013; 341
2002; 417
2011; 4
2004; 428
2016; 17
2016; 16
2011; 7
2016; 12
2007; 15
2016; 5
2016; 7
2016; 1
2016; 2
1981; 212
2017; 58
2013; 79
2017; 55
1992; 255
2013; 73
2008; 47
2005; 5
2016; 21
1999; 35
2016; 211
2016b; 72
2016; 210
2005; 6
1996; 84
2001; 39
2016; 28
2016; 9
2006; 103
2003; 185
2017; 41
2013; 26
2013; 25
2002; 110
2017; 43
2013; 200
2014; 68
2008; 6
2008; 1
2017; 355
2017; 114
2010; 63
2010; 62
2010; 61
2010; 64
2014; 5
2014; 3
2013; 16
2013; 11
2014b; 15
2013; 13
1999; 18
2017; 38
2010; 154
2016; 113
2016; 353
2003; 4
2010; 153
2014; 9
2014; 52
2012; 335
2001; 14
2014; 164
2014; 55
2014; 54
2011; 440
2006; 125
2015; 1
2012a; 24
2015; 6
2015; 169
2017; 22
2015; 167
1989; 183
2006; 18
2000; 275
2017; 29
1993; 90
2007; 51
2011; 332
2011; 108
2011; 469
2013; 32
2017; 10
2017; 13
2017; 12
2009; 9
2017
2014; 79
2009; 7
2009; 6
2017; 18
2003; 301
2014; 78
2014; 77
2007; 49
2007; 104
2002; 14
2008; 190
2015a; 27
2013; 4
2012; 485
2016a; 2
2013; 2
2010; 107
2004; 162
2010; 464
2016b; 531
2014; 27
2014; 26
2014; 24
2013; 8
2016c; 35
2013; 9
2014; 21
2010; 23
2010; 22
2001; 410
2016a; 354
2006; 20
2009; 10
2015b; 81
2010; 28
2005; 102
2014; 16
1994; 78
2014; 15
2007; 6
2014; 14
2011; 65
2011; 68
2014; 19
2007; 5
2011; 67
2013; 198
2013; 197
2007; 64
2007; 1
2003; 41
2014; 10
2015; 56
2007; 448
2015; 523
2006; 57
2015; 521
2002; 130
2015; 520
2015; 53
2016; 165
2012; 109
2004; 279
2005; 121
2015; 66
2010; 330
2014; 39
2016; 171
2007; 318
2017; 543
2014; 33
2009; 106
2017; 6
2015; 34
2000; 5
2016b; 35
2003; 16
2009; 150
2011; 12
2009; 151
1998; 117
2011; 14
2013; 161
2011; 155
2012; 53
2012; 71
2014; 204
2005; 308
1999; 96
2011; 23
1998; 50
2014; 203
2012; 63
2014; 201
2001; 98
2015; 13
1991; 253
1995; 92
2015; 16
2008; 18
2015; 11
2017; 173
2015; 207
2017; 174
2015; 206
2014; 111
2008; 283
2016; 57
2009; 28
2015; 26
2015; 28
2015; 27
2016; 539
2001; 6
2015a; 10
2004; 16
2015; 20
2012; 159
2014; 343
e_1_2_17_190_1
e_1_2_17_212_1
e_1_2_17_258_1
e_1_2_17_30_1
e_1_2_17_235_1
e_1_2_17_53_1
e_1_2_17_99_1
e_1_2_17_7_1
e_1_2_17_318_1
e_1_2_17_76_1
e_1_2_17_152_1
e_1_2_17_175_1
e_1_2_17_198_1
e_1_2_17_38_1
e_1_2_17_310_1
e_1_2_17_333_1
e_1_2_17_103_1
e_1_2_17_126_1
e_1_2_17_356_1
e_1_2_17_149_1
e_1_2_17_261_1
e_1_2_17_91_1
e_1_2_17_284_1
e_1_2_17_200_1
e_1_2_17_223_1
e_1_2_17_269_1
e_1_2_17_41_1
e_1_2_17_64_1
e_1_2_17_87_1
e_1_2_17_329_1
e_1_2_17_208_1
e_1_2_17_164_1
e_1_2_17_306_1
e_1_2_17_26_1
e_1_2_17_49_1
e_1_2_17_187_1
e_1_2_17_141_1
e_1_2_17_321_1
e_1_2_17_115_1
e_1_2_17_344_1
e_1_2_17_138_1
e_1_2_17_272_1
e_1_2_17_295_1
Narusaka Y. (e_1_2_17_213_1) 2013; 8
e_1_2_17_236_1
e_1_2_17_54_1
e_1_2_17_77_1
e_1_2_17_31_1
e_1_2_17_259_1
e_1_2_17_6_1
e_1_2_17_319_1
e_1_2_17_174_1
Vogel C. (e_1_2_17_313_1) 2016; 12
e_1_2_17_16_1
e_1_2_17_197_1
e_1_2_17_39_1
e_1_2_17_334_1
e_1_2_17_151_1
e_1_2_17_311_1
e_1_2_17_125_1
e_1_2_17_148_1
e_1_2_17_102_1
Li Z. (e_1_2_17_163_1) 2016; 72
e_1_2_17_92_1
e_1_2_17_262_1
e_1_2_17_285_1
e_1_2_17_201_1
e_1_2_17_247_1
e_1_2_17_224_1
e_1_2_17_42_1
e_1_2_17_88_1
e_1_2_17_307_1
e_1_2_17_65_1
e_1_2_17_186_1
e_1_2_17_209_1
e_1_2_17_27_1
e_1_2_17_322_1
e_1_2_17_114_1
e_1_2_17_137_1
e_1_2_17_345_1
e_1_2_17_250_1
e_1_2_17_296_1
e_1_2_17_80_1
e_1_2_17_273_1
e_1_2_17_233_1
e_1_2_17_279_1
e_1_2_17_256_1
e_1_2_17_9_1
e_1_2_17_32_1
e_1_2_17_78_1
e_1_2_17_55_1
e_1_2_17_218_1
e_1_2_17_316_1
e_1_2_17_196_1
e_1_2_17_17_1
e_1_2_17_150_1
e_1_2_17_173_1
e_1_2_17_342_1
e_1_2_17_354_1
e_1_2_17_147_1
e_1_2_17_101_1
e_1_2_17_124_1
e_1_2_17_282_1
e_1_2_17_109_1
e_1_2_17_70_1
e_1_2_17_221_1
e_1_2_17_244_1
e_1_2_17_267_1
e_1_2_17_20_1
e_1_2_17_43_1
e_1_2_17_66_1
e_1_2_17_89_1
e_1_2_17_206_1
e_1_2_17_229_1
Beloshistov R.E. (e_1_2_17_15_1) 2017
e_1_2_17_185_1
e_1_2_17_327_1
Lin Z.J. (e_1_2_17_169_1) 2015; 169
e_1_2_17_304_1
e_1_2_17_28_1
e_1_2_17_162_1
e_1_2_17_353_1
e_1_2_17_136_1
e_1_2_17_330_1
e_1_2_17_113_1
e_1_2_17_159_1
e_1_2_17_270_1
e_1_2_17_81_1
e_1_2_17_232_1
e_1_2_17_293_1
e_1_2_17_211_1
e_1_2_17_234_1
e_1_2_17_257_1
e_1_2_17_71_1
e_1_2_17_94_1
e_1_2_17_8_1
e_1_2_17_10_1
e_1_2_17_56_1
e_1_2_17_33_1
e_1_2_17_219_1
e_1_2_17_317_1
e_1_2_17_79_1
Gutierrez‐Alanis D. (e_1_2_17_93_1) 2017; 41
e_1_2_17_18_1
e_1_2_17_111_1
e_1_2_17_195_1
e_1_2_17_172_1
e_1_2_17_332_1
e_1_2_17_320_1
e_1_2_17_355_1
e_1_2_17_123_1
e_1_2_17_146_1
e_1_2_17_108_1
e_1_2_17_260_1
e_1_2_17_283_1
e_1_2_17_245_1
e_1_2_17_268_1
e_1_2_17_222_1
e_1_2_17_82_1
e_1_2_17_21_1
e_1_2_17_67_1
e_1_2_17_44_1
e_1_2_17_207_1
e_1_2_17_305_1
e_1_2_17_328_1
e_1_2_17_29_1
e_1_2_17_100_1
e_1_2_17_161_1
e_1_2_17_184_1
e_1_2_17_331_1
e_1_2_17_343_1
e_1_2_17_112_1
e_1_2_17_135_1
e_1_2_17_158_1
e_1_2_17_271_1
e_1_2_17_210_1
e_1_2_17_294_1
e_1_2_17_95_1
e_1_2_17_3_1
e_1_2_17_72_1
e_1_2_17_277_1
e_1_2_17_216_1
e_1_2_17_11_1
e_1_2_17_34_1
e_1_2_17_239_1
e_1_2_17_57_1
e_1_2_17_314_1
e_1_2_17_337_1
e_1_2_17_110_1
e_1_2_17_133_1
e_1_2_17_171_1
e_1_2_17_194_1
e_1_2_17_340_1
e_1_2_17_19_1
e_1_2_17_145_1
e_1_2_17_107_1
e_1_2_17_168_1
Ralevic V. (e_1_2_17_246_1) 1998; 50
e_1_2_17_280_1
e_1_2_17_265_1
e_1_2_17_242_1
e_1_2_17_60_1
e_1_2_17_83_1
Kong Q. (e_1_2_17_140_1) 2016; 171
e_1_2_17_288_1
Lee M.W. (e_1_2_17_154_1) 2017
e_1_2_17_204_1
e_1_2_17_227_1
e_1_2_17_22_1
e_1_2_17_45_1
e_1_2_17_68_1
e_1_2_17_325_1
e_1_2_17_122_1
e_1_2_17_160_1
e_1_2_17_302_1
e_1_2_17_351_1
e_1_2_17_183_1
e_1_2_17_134_1
e_1_2_17_119_1
e_1_2_17_157_1
e_1_2_17_348_1
e_1_2_17_230_1
e_1_2_17_253_1
e_1_2_17_276_1
e_1_2_17_291_1
e_1_2_17_50_1
e_1_2_17_73_1
e_1_2_17_96_1
e_1_2_17_255_1
e_1_2_17_278_1
e_1_2_17_2_1
e_1_2_17_217_1
e_1_2_17_12_1
e_1_2_17_35_1
e_1_2_17_338_1
e_1_2_17_58_1
e_1_2_17_155_1
e_1_2_17_315_1
e_1_2_17_132_1
e_1_2_17_170_1
e_1_2_17_341_1
e_1_2_17_193_1
e_1_2_17_167_1
e_1_2_17_129_1
e_1_2_17_106_1
e_1_2_17_281_1
e_1_2_17_243_1
e_1_2_17_220_1
e_1_2_17_84_1
e_1_2_17_266_1
e_1_2_17_289_1
e_1_2_17_61_1
e_1_2_17_205_1
e_1_2_17_23_1
e_1_2_17_228_1
e_1_2_17_46_1
e_1_2_17_303_1
e_1_2_17_326_1
e_1_2_17_69_1
e_1_2_17_121_1
e_1_2_17_144_1
e_1_2_17_182_1
e_1_2_17_352_1
e_1_2_17_118_1
e_1_2_17_156_1
e_1_2_17_179_1
e_1_2_17_349_1
e_1_2_17_254_1
e_1_2_17_292_1
e_1_2_17_231_1
e_1_2_17_5_1
e_1_2_17_74_1
e_1_2_17_51_1
e_1_2_17_214_1
e_1_2_17_237_1
e_1_2_17_97_1
e_1_2_17_13_1
e_1_2_17_36_1
e_1_2_17_59_1
e_1_2_17_177_1
e_1_2_17_312_1
e_1_2_17_335_1
e_1_2_17_131_1
e_1_2_17_192_1
Yeh Y.H. (e_1_2_17_339_1) 2016; 28
e_1_2_17_189_1
e_1_2_17_105_1
e_1_2_17_128_1
e_1_2_17_240_1
e_1_2_17_286_1
e_1_2_17_263_1
e_1_2_17_62_1
e_1_2_17_85_1
e_1_2_17_202_1
e_1_2_17_225_1
e_1_2_17_248_1
e_1_2_17_308_1
e_1_2_17_24_1
e_1_2_17_47_1
e_1_2_17_166_1
e_1_2_17_143_1
e_1_2_17_181_1
e_1_2_17_323_1
e_1_2_17_120_1
e_1_2_17_300_1
e_1_2_17_346_1
e_1_2_17_178_1
e_1_2_17_117_1
e_1_2_17_297_1
e_1_2_17_251_1
e_1_2_17_274_1
e_1_2_17_4_1
e_1_2_17_191_1
e_1_2_17_52_1
e_1_2_17_215_1
e_1_2_17_238_1
e_1_2_17_299_1
e_1_2_17_75_1
e_1_2_17_98_1
e_1_2_17_14_1
e_1_2_17_153_1
e_1_2_17_199_1
e_1_2_17_37_1
e_1_2_17_176_1
e_1_2_17_336_1
e_1_2_17_130_1
e_1_2_17_104_1
e_1_2_17_127_1
e_1_2_17_241_1
e_1_2_17_264_1
e_1_2_17_287_1
e_1_2_17_90_1
e_1_2_17_63_1
e_1_2_17_180_1
e_1_2_17_40_1
e_1_2_17_203_1
e_1_2_17_309_1
e_1_2_17_226_1
e_1_2_17_86_1
e_1_2_17_249_1
e_1_2_17_25_1
e_1_2_17_165_1
e_1_2_17_188_1
e_1_2_17_48_1
e_1_2_17_301_1
e_1_2_17_324_1
e_1_2_17_350_1
e_1_2_17_142_1
e_1_2_17_290_1
e_1_2_17_347_1
e_1_2_17_116_1
e_1_2_17_139_1
e_1_2_17_298_1
e_1_2_17_275_1
e_1_2_17_252_1
29607591 - Plant J. 2018 Apr;94(2):405
References_xml – volume: 1
  start-page: 15034
  year: 2015
  article-title: Elicitin recognition confers enhanced resistance to in potato
  publication-title: Nat. Plants
– volume: 2
  start-page: 16128
  year: 2016
  article-title: Tomato receptor FLAGELLIN‐SENSING 3 binds flgII‐28 and activates the plant immune system
  publication-title: Nat. Plants
– volume: 308
  start-page: 1783
  year: 2005
  end-page: 1786
  article-title: Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf‐2‐dependent disease resistance
  publication-title: Science
– volume: 2
  start-page: 15218
  year: 2016
  article-title: Specific control of Arabidopsis BAK1/SERK4‐regulated cell death by protein glycosylation
  publication-title: Nat. Plants
– volume: 38
  start-page: 10
  year: 2017
  end-page: 18
  article-title: A look at plant immunity through the window of the multitasking coreceptor BAK1
  publication-title: Curr. Opin. Plant Biol.
– volume: 444
  start-page: 323
  year: 2006
  end-page: 329
  article-title: The plant immune system
  publication-title: Nature
– volume: 9
  start-page: e1003080
  year: 2013
  article-title: Innate sensing of chitin and chitosan
  publication-title: PLoS Pathog.
– volume: 153
  start-page: 799
  year: 2010
  end-page: 805
  article-title: DNA is taken up by root hairs and pollen, and stimulates root and pollen tube growth
  publication-title: Plant Physiol.
– volume: 9
  start-page: 2209
  year: 1997
  end-page: 2224
  article-title: Characterization of the tomato Cf‐4 gene for resistance to identifies sequences that determine recognitional specificity in Cf‐4 and Cf‐9
  publication-title: Plant Cell
– volume: 108
  start-page: 19824
  year: 2011
  end-page: 19829
  article-title: Arabidopsis lysin‐motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 24
  start-page: 3406
  year: 2012a
  end-page: 3419
  article-title: Lysin motif‐containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity
  publication-title: Plant Cell
– volume: 24
  start-page: 134
  year: 2014
  end-page: 143
  article-title: The leucine‐rich repeat receptor kinase BIR2 is a negative regulator of BAK1 in plant immunity
  publication-title: Curr. Biol.
– year: 2017
  article-title: Phytaspase‐mediated precursor processing and maturation of the wound hormone systemin
  publication-title: New Phytol.
– volume: 159
  start-page: 798
  year: 2012
  end-page: 809
  article-title: Plasma membrane calcium ATPases are important components of receptor‐mediated signaling in plant immune responses and development
  publication-title: Plant Physiol.
– volume: 110
  start-page: 8744
  year: 2013
  end-page: 8749
  article-title: Calcium‐dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 35
  start-page: 2468
  year: 2016b
  end-page: 2483
  article-title: The Arabidopsis CERK1‐associated kinase PBL27 connects chitin perception to MAPK activation
  publication-title: EMBO J.
– volume: 114
  start-page: 5749
  year: 2017
  end-page: 5754
  article-title: Arabidopsis glycosylphosphatidylinositol‐anchored protein LLG1 associates with and modulates FLS2 to regulate innate immunity
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 78
  start-page: 56
  year: 2014
  end-page: 69
  article-title: Functional analysis of chimeric lysin motif domain receptors mediating Nod factor‐induced defense signaling in and chitin‐induced nodulation signaling in
  publication-title: Plant J.
– volume: 448
  start-page: 497
  year: 2007
  end-page: 500
  article-title: A flagellin‐induced complex of the receptor FLS2 and BAK1 initiates plant defence
  publication-title: Nature
– volume: 109
  start-page: 4215
  year: 2012
  end-page: 4220
  article-title: Identification of innate immunity elicitors using molecular signatures of natural selection
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 7
  start-page: e1002046
  year: 2011
  article-title: Phosphorylation‐dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor‐like kinase BAK1
  publication-title: PLoS Genet.
– volume: 18
  start-page: 811
  year: 2017
  end-page: 824
  article-title: Fungal phytopathogens encode functional homologues of plant rapid alkalinization factor (RALF) peptides
  publication-title: Mol. Plant Pathol.
– volume: 13
  start-page: 925
  year: 2012
  end-page: 931
  article-title: From IL‐2 to IL‐37: the expanding spectrum of anti‐inflammatory cytokines
  publication-title: Nat. Immunol.
– volume: 84
  start-page: 451
  year: 1996
  end-page: 459
  article-title: The tomato Cf‐2 disease resistance locus comprises two functional genes encoding leucine‐rich repeat proteins
  publication-title: Cell
– volume: 55
  start-page: 1864
  year: 2014
  end-page: 1872
  article-title: The bifunctional plant receptor, OsCERK1, regulates both chitin‐triggered immunity and arbuscular mycorrhizal symbiosis in rice
  publication-title: Plant Cell Physiol.
– volume: 60
  start-page: 379
  year: 2009
  end-page: 406
  article-title: A renaissance of elicitors: perception of microbe‐associated molecular patterns and danger signals by pattern‐recognition receptors
  publication-title: Annu. Rev. Plant Biol.
– volume: 10
  start-page: e1004331
  year: 2014
  article-title: The secreted peptide PIP1 amplifies immunity through receptor‐like kinase 7
  publication-title: PLoS Pathog.
– volume: 164
  start-page: 1443
  year: 2014
  end-page: 1455
  article-title: Antagonistic regulation of growth and immunity by the Arabidopsis basic helix‐loop‐helix transcription factor homolog of brassinosteroid enhanced expression2 interacting with increased leaf inclination1 binding bHLH1
  publication-title: Plant Physiol.
– volume: 22
  start-page: 2242
  year: 2012
  end-page: 2246
  article-title: A common signaling process that promotes mycorrhizal and oomycete colonization of plants
  publication-title: Curr. Biol.
– volume: 17
  start-page: 98
  year: 2016
  article-title: Genomic screens identify a new phytobacterial microbe‐associated molecular pattern and the cognate Arabidopsis receptor‐like kinase that mediates its immune elicitation
  publication-title: Genome Biol.
– volume: 21
  start-page: 1635
  year: 2008
  end-page: 1642
  article-title: Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice
  publication-title: Mol. Plant Microbe Interact.
– volume: 24
  start-page: 2225
  year: 2012
  end-page: 2236
  article-title: The MEKK1‐MKK1/MKK2‐MPK4 kinase cascade negatively regulates immunity mediated by a mitogen‐activated protein kinase kinase kinase in Arabidopsis
  publication-title: Plant Cell
– volume: 9
  start-page: 1620
  year: 2016
  end-page: 1633
  article-title: Identification of methylosome components as negative regulators of plant immunity using chemical genetics
  publication-title: Mol. Plant
– volume: 4
  start-page: 478
  year: 2003
  end-page: 484
  article-title: The Drosophila immune system detects bacteria through specific peptidoglycan recognition
  publication-title: Nat. Immunol.
– volume: 23
  start-page: 1639
  year: 2011
  end-page: 1653
  article-title: Phosphorylation of a WRKY transcription factor by two pathogen‐responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis
  publication-title: Plant Cell
– volume: 7
  start-page: e1000139
  year: 2009
  article-title: RIN4 functions with plasma membrane H ‐ATPases to regulate stomatal apertures during pathogen attack
  publication-title: PLoS Biol.
– volume: 190
  start-page: 2858
  year: 2008
  end-page: 2870
  article-title: Naturally occurring nonpathogenic isolates of the plant pathogen lack a type III secretion system and effector gene orthologues
  publication-title: J. Bacteriol.
– volume: 1
  start-page: 423
  year: 2008
  end-page: 445
  article-title: Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings
  publication-title: Mol. Plant
– volume: 102
  start-page: 12990
  year: 2005
  end-page: 12995
  article-title: Flagellin induces innate immunity in nonhost interactions that is suppressed by effectors
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 106
  start-page: 8067
  year: 2009
  end-page: 8072
  article-title: Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in via ethylene signaling
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 5
  start-page: e13568
  year: 2016
  article-title: Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor
  publication-title: eLife
– volume: 183
  start-page: 555
  year: 1989
  end-page: 563
  article-title: Structure and activity of proteins from pathogenic fungi eliciting necrosis and acquired resistance in tobacco
  publication-title: Eur. J. Biochem.
– volume: 164
  start-page: 352
  year: 2014
  end-page: 364
  article-title: Fungal endopolygalacturonases are recognized as microbe‐associated molecular patterns by the arabidopsis receptor‐like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1
  publication-title: Plant Physiol.
– volume: 7
  start-page: 290
  year: 2010
  end-page: 301
  article-title: Receptor‐like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a effector
  publication-title: Cell Host Microbe
– volume: 185
  start-page: 6658
  year: 2003
  end-page: 6665
  article-title: Flagellin glycosylation island in pv. glycinea and its role in host specificity
  publication-title: J. Bacteriol.
– volume: 110
  start-page: 6205
  year: 2013
  end-page: 6210
  article-title: BIK1 interacts with PEPRs to mediate ethylene‐induced immunity
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 3
  start-page: e03766
  year: 2014
  article-title: The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin‐induced complex with related kinase CERK1
  publication-title: eLife
– volume: 121
  start-page: 749
  year: 2005
  end-page: 759
  article-title: Two type III effectors inhibit RIN4‐regulated basal defense in Arabidopsis
  publication-title: Cell
– volume: 283
  start-page: 8885
  year: 2008
  end-page: 8892
  article-title: Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca and phosphorylation
  publication-title: J. Biol. Chem.
– volume: 301
  start-page: 969
  year: 2003
  end-page: 972
  article-title: Loss of a callose synthase results in salicylic acid‐dependent disease resistance
  publication-title: Science
– volume: 103
  start-page: 10104
  year: 2006
  end-page: 10109
  article-title: The cell surface leucine‐rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 55
  start-page: 257
  year: 2017
  end-page: 286
  article-title: Function, discovery, and exploitation of plant pattern recognition receptors for broad‐spectrum disease resistance
  publication-title: Annu. Rev. Phytopathol.
– volume: 67
  start-page: 1081
  year: 2011
  end-page: 1093
  article-title: BON1 interacts with the protein kinases BIR1 and BAK1 in modulation of temperature‐dependent plant growth and cell death in Arabidopsis
  publication-title: Plant J.
– volume: 71
  start-page: 194
  year: 2012
  end-page: 204
  article-title: The peptide growth factor, phytosulfokine, attenuates pattern‐triggered immunity
  publication-title: Plant J.
– volume: 13
  start-page: 347
  year: 2013
  end-page: 357
  article-title: A receptor‐like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity
  publication-title: Cell Host Microbe
– volume: 38
  start-page: 92
  year: 2017
  end-page: 100
  article-title: Apoplastic ROS signaling in plant immunity
  publication-title: Curr. Opin. Plant Biol.
– volume: 201
  start-page: 1371
  year: 2014
  end-page: 1384
  article-title: The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin‐derived epitopes from the endophytic growth‐promoting bacterium and plant pathogenic bacteria
  publication-title: New Phytol.
– volume: 18
  start-page: 1396
  year: 2008
  end-page: 1401
  article-title: Negative regulation of PAMP‐triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis
  publication-title: Curr. Biol.
– volume: 61
  start-page: 3839
  year: 2010
  end-page: 3845
  article-title: NSP‐interacting kinase, NIK: a transducer of plant defence signalling
  publication-title: J. Exp. Bot.
– volume: 27
  start-page: 2214
  year: 2008
  end-page: 2221
  article-title: Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus
  publication-title: EMBO J.
– volume: 12
  start-page: e1361076
  year: 2017
  article-title: Chitin receptor‐mediated activation of MAP kinases and ROS production in rice and Arabidopsis
  publication-title: Plant Signal. Behav.
– volume: 285
  start-page: 1435
  year: 2010
  end-page: 1445
  article-title: Structure of the N‐terminal regulatory domain of a plant NADPH oxidase and its functional implications
  publication-title: J. Biol. Chem.
– volume: 354
  start-page: 1427
  year: 2016a
  end-page: 1430
  article-title: Regulation of sugar transporter activity for antibacterial defense in Arabidopsis
  publication-title: Science
– volume: 6
  start-page: e231
  year: 2008
  article-title: Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21‐mediated innate immunity
  publication-title: PLoS Biol.
– volume: 210
  start-page: 627
  year: 2016
  end-page: 642
  article-title: Avr4 promotes Cf‐4 receptor‐like protein association with the BAK1/SERK3 receptor‐like kinase to initiate receptor endocytosis and plant immunity
  publication-title: New Phytol.
– volume: 65
  start-page: 169
  year: 2011
  end-page: 180
  article-title: From defense to symbiosis: limited alterations in the kinase domain of LysM receptor‐like kinases are crucial for evolution of legume‐Rhizobium symbiosis
  publication-title: Plant J.
– volume: 5
  start-page: 65
  year: 2014
  article-title: ER‐mediated control for abundance, quality, and signaling of transmembrane immune receptors in plants
  publication-title: Front. Plant Sci.
– volume: 543
  start-page: 328
  year: 2017
  end-page: 336
  article-title: Plant signalling in symbiosis and immunity
  publication-title: Nature
– volume: 200
  start-page: 847
  year: 2013
  end-page: 860
  article-title: Allelic variation in two distinct flagellin epitopes modulates the strength of plant immune responses but not bacterial motility
  publication-title: New Phytol.
– volume: 41
  start-page: 165
  year: 2003
  end-page: 174
  article-title: Differential effects of flagellins from pv. tabaci, tomato and glycinea on plant defense response
  publication-title: Plant Physiol. Biochem.
– volume: 49
  start-page: 607
  year: 2007
  end-page: 618
  article-title: Early events in the pathogenicity of on
  publication-title: Plant J.
– volume: 341
  start-page: 889
  year: 2013
  end-page: 892
  article-title: Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co‐receptor kinases
  publication-title: Science
– volume: 77
  start-page: 748
  year: 2014
  end-page: 756
  article-title: Regulation of SOBIR1 accumulation and activation of defense responses in by specific components of ER quality control
  publication-title: Plant J.
– volume: 54
  start-page: 212
  year: 2014
  end-page: 223
  article-title: A cross‐disciplinary perspective on the innate immune responses to bacterial lipopolysaccharide
  publication-title: Mol. Cell
– volume: 51
  start-page: 931
  year: 2007
  end-page: 940
  article-title: Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses
  publication-title: Plant J.
– volume: 10
  start-page: 619
  year: 2017
  end-page: 633
  article-title: OsCERK1‐mediated chitin perception and immune signaling requires receptor‐like cytoplasmic kinase 185 to activate an MAPK cascade in rice
  publication-title: Mol. Plant
– volume: 7
  start-page: 12151
  year: 2016
  article-title: Host genotype and age shape the leaf and root microbiomes of a wild perennial plant
  publication-title: Nat. Commun.
– volume: 25
  start-page: 1143
  year: 2013
  end-page: 1157
  article-title: BR‐SIGNALING KINASE1 physically associates with FLAGELLIN SENSING2 and regulates plant innate immunity in Arabidopsis
  publication-title: Plant Cell
– volume: 125
  start-page: 749
  year: 2006
  end-page: 760
  article-title: Perception of the bacterial PAMP EF‐Tu by the receptor EFR restricts ‐mediated transformation
  publication-title: Cell
– volume: 96
  start-page: 1756
  year: 1999
  end-page: 1760
  article-title: A wound‐ and systemin‐inducible polygalacturonase in tomato leaves
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 169
  start-page: 2950
  year: 2015
  end-page: 2962
  article-title: PBL13 is a serine/threonine protein kinase that negatively regulates Arabidopsis immune responses
  publication-title: Plant Physiol.
– volume: 98
  start-page: 759
  year: 2001
  end-page: 764
  article-title: Essential role of the small GTPase Rac in disease resistance of rice
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 92
  start-page: 2338
  year: 1995
  end-page: 2342
  article-title: Covalent cross‐linking of the oligopeptide elicitor to its receptor in parsley membranes
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 68
  start-page: 137
  year: 2014
  end-page: 154
  article-title: The medium is the message: interspecies and interkingdom signaling by peptidoglycan and related bacterial glycans
  publication-title: Annu. Rev. Microbiol.
– volume: 55
  start-page: 412
  year: 2014
  end-page: 425
  article-title: The Arabidopsis tandem zinc finger 9 protein binds RNA and mediates pathogen‐associated molecular pattern‐triggered immune responses
  publication-title: Plant Cell Physiol.
– volume: 11
  start-page: e1004809
  year: 2015
  article-title: Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand‐dependent activation of defense responses
  publication-title: PLoS Pathog.
– volume: 104
  start-page: 19613
  year: 2007
  end-page: 19618
  article-title: CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 107
  start-page: 9452
  year: 2010
  end-page: 9457
  article-title: A domain swap approach reveals a role of the plant wall‐associated kinase 1 (WAK1) as a receptor of oligogalacturonides
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 29
  start-page: 618
  year: 2017
  end-page: 637
  article-title: Receptor kinases in plant‐pathogen interactions: more than pattern recognition
  publication-title: Plant Cell
– volume: 103
  start-page: 11086
  year: 2006
  end-page: 11091
  article-title: Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 111
  start-page: 16955
  year: 2014
  end-page: 16960
  article-title: Nep1‐like proteins from three kingdoms of life act as a microbe‐associated molecular pattern in Arabidopsis
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 107
  start-page: 21193
  year: 2010
  end-page: 21198
  article-title: Ca signaling by plant Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP‐activated Ca channels
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 2
  start-page: e00983
  year: 2013
  article-title: The transcriptional regulator BZR1 mediates trade‐off between plant innate immunity and growth
  publication-title: eLife
– volume: 53
  start-page: 1696
  year: 2012
  end-page: 1706
  article-title: Functional characterization of CEBiP and CERK1 homologs in arabidopsis and rice reveals the presence of different chitin receptor systems in plants
  publication-title: Plant Cell Physiol.
– volume: 206
  start-page: 127
  year: 2015
  end-page: 132
  article-title: Inhibitory effects of extracellular self‐DNA: a general biological process?
  publication-title: New Phytol.
– volume: 198
  start-page: 875
  year: 2013
  end-page: 886
  article-title: NFP, a LysM protein controlling Nod factor perception, also intervenes in resistance to pathogens
  publication-title: New Phytol.
– volume: 355
  start-page: 287
  year: 2017
  end-page: 289
  article-title: The receptor kinase FER is a RALF‐regulated scaffold controlling plant immune signaling
  publication-title: Science
– volume: 4
  start-page: 416
  year: 2011
  end-page: 427
  article-title: The role of the plasma membrane H ‐ATPase in plant‐microbe interactions
  publication-title: Mol. Plant
– volume: 78
  start-page: 449
  year: 1994
  end-page: 460
  article-title: High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses
  publication-title: Cell
– volume: 12
  start-page: e1005811
  year: 2016
  article-title: The Arabidopsis protein phosphatase PP2C38 negatively regulates the central immune kinase BIK1
  publication-title: PLoS Pathog.
– volume: 22
  start-page: 508
  year: 2010
  end-page: 522
  article-title: PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis
  publication-title: Plant Cell
– volume: 15
  start-page: R87
  year: 2014
  article-title: Functional analysis of Arabidopsis immune‐related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences
  publication-title: Genome Biol.
– volume: 11
  start-page: 252
  year: 2013
  end-page: 263
  article-title: Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants
  publication-title: Nat. Rev. Microbiol.
– volume: 14
  start-page: 374
  year: 2014
  article-title: Microbe‐associated molecular pattern‐induced calcium signaling requires the receptor‐like cytoplasmic kinases, PBL1 and BIK1
  publication-title: BMC Plant Biol.
– volume: 204
  start-page: 873
  year: 2014
  end-page: 881
  article-title: Cytosolic calcium signals elicited by the pathogen‐associated molecular pattern flg22 in stomatal guard cells are of an oscillatory nature
  publication-title: New Phytol.
– volume: 64
  start-page: 204
  year: 2010
  end-page: 214
  article-title: Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice
  publication-title: Plant J.
– volume: 6
  start-page: 24
  year: 2001
  end-page: 30
  article-title: Perception of lipo‐chitooligosaccharidic Nod factors in legumes
  publication-title: Trends Plant Sci.
– volume: 15
  start-page: 329
  year: 2014b
  end-page: 338
  article-title: The FLS2‐associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity
  publication-title: Cell Host Microbe
– volume: 39
  start-page: 447
  year: 2014
  end-page: 456
  article-title: The growth‐defense pivot: crisis management in plants mediated by LRR‐RK surface receptors
  publication-title: Trends Biochem. Sci.
– volume: 81
  start-page: 258
  year: 2015b
  end-page: 267
  article-title: The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling
  publication-title: Plant J.
– volume: 1
  start-page: 15140
  year: 2015
  article-title: An RLP23‐SOBIR1‐BAK1 complex mediates NLP‐triggered immunity
  publication-title: Nat. Plants
– volume: 62
  start-page: 367
  year: 2010
  end-page: 378
  article-title: Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca ‐associated opening of plasma membrane anion channels
  publication-title: Plant J.
– volume: 165
  start-page: 464
  year: 2016
  end-page: 474
  article-title: Root endophyte confers plant fitness benefits that are phosphate status dependent
  publication-title: Cell
– volume: 57
  start-page: 1791
  year: 2016
  end-page: 1800
  article-title: Effector‐triggered immunity determines host genotype‐specific incompatibility in legume‐rhizobium symbiosis
  publication-title: Plant Cell Physiol.
– volume: 35
  start-page: 46
  year: 2016c
  end-page: 61
  article-title: Danger peptide receptor signaling in plants ensures basal immunity upon pathogen‐induced depletion of BAK1
  publication-title: EMBO J.
– volume: 6
  start-page: e25114
  year: 2017
  article-title: Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains
  publication-title: eLife
– volume: 64
  start-page: 5309
  year: 2013
  end-page: 5321
  article-title: The family of Peps and their precursors in Arabidopsis: differential expression and localization but similar induction of pattern‐triggered immune responses
  publication-title: J. Exp. Bot.
– volume: 161
  start-page: 2023
  year: 2013
  end-page: 2035
  article-title: The anticipation of danger: microbe‐associated molecular pattern perception enhances AtPep‐triggered oxidative burst
  publication-title: Plant Physiol.
– volume: 107
  start-page: 496
  year: 2010
  end-page: 501
  article-title: A receptor‐like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 1
  start-page: e1500245
  year: 2015
  article-title: The rice immune receptor XA21 recognizes a tyrosine‐sulfated protein from a Gram‐negative bacterium
  publication-title: Sci. Adv.
– volume: 12
  start-page: 49
  year: 2011
  article-title: Transcriptome profiling of the rice blast fungus during invasive plant infection and stresses
  publication-title: BMC Genom.
– volume: 16
  start-page: 1604
  year: 2004
  end-page: 1615
  article-title: The receptor for the fungal elicitor ethylene‐inducing xylanase is a member of a resistance‐like gene family in tomato
  publication-title: Plant Cell
– volume: 12
  start-page: e1005596
  year: 2016
  article-title: Immune sensing of lipopolysaccharide in plants and animals: same but different
  publication-title: PLoS Pathog.
– volume: 38
  start-page: 173
  year: 2017
  end-page: 183
  article-title: Calcium signatures and signaling events orchestrate plant‐microbe interactions
  publication-title: Curr. Opin. Plant Biol.
– volume: 27
  start-page: 975
  year: 2014
  end-page: 982
  article-title: Targeted gene disruption of OsCERK1 reveals its indispensable role in chitin perception and involvement in the peptidoglycan response and immunity in rice
  publication-title: Mol. Plant Microbe Interact.
– volume: 23
  start-page: 2831
  year: 2011
  end-page: 2849
  article-title: Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS‐INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP‐triggered immunity in Arabidopsis
  publication-title: Plant Cell
– volume: 6
  start-page: 911
  year: 2015
  article-title: Transcriptome analysis reveals regulatory networks underlying differential susceptibility to in response to nitrogen availability in
  publication-title: Front. Plant Sci.
– volume: 38
  start-page: 696
  year: 2017
  end-page: 704
  article-title: Lipopolysaccharide detection across the kingdoms of life
  publication-title: Trends Immunol.
– volume: 10
  start-page: e0120245
  year: 2015a
  article-title: ER quality control components UGGT and STT3a are required for activation of defense responses in bir1‐1
  publication-title: PLoS ONE
– volume: 539
  start-page: 524
  year: 2016
  end-page: 529
  article-title: Bacteria establish an aqueous living space in plants crucial for virulence
  publication-title: Nature
– volume: 207
  start-page: 482
  year: 2015
  end-page: 485
  article-title: Growth inhibition by self‐DNA: a phenomenon and its multiple explanations
  publication-title: New Phytol.
– volume: 23
  start-page: 1531
  year: 2010
  end-page: 1536
  article-title: Understanding the plant immune system
  publication-title: Mol. Plant Microbe Interact.
– volume: 6
  start-page: 34
  year: 2009
  end-page: 44
  article-title: Regulation of cell death and innate immunity by two receptor‐like kinases in Arabidopsis
  publication-title: Cell Host Microbe
– volume: 171
  start-page: 1344
  year: 2016
  end-page: 1354
  article-title: Two redundant receptor‐like cytoplasmic kinases function downstream of pattern recognition receptors to regulate activation of SA biosynthesis
  publication-title: Plant Physiol.
– volume: 53
  start-page: 541
  year: 2015
  end-page: 563
  article-title: Understanding plant immunity as a surveillance system to detect invasion
  publication-title: Annu. Rev. Phytopathol.
– volume: 13
  start-page: e1006832
  year: 2017
  article-title: The Arabidopsis leucine‐rich repeat receptor kinase MIK2/LRR‐KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses
  publication-title: PLoS Genet.
– volume: 58
  start-page: 993
  year: 2017
  end-page: 1002
  article-title: Conservation of chitin‐induced MAPK signaling pathways in rice and Arabidopsis
  publication-title: Plant Cell Physiol.
– volume: 64
  start-page: 539
  year: 2007
  end-page: 547
  article-title: Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities
  publication-title: Plant Mol. Biol.
– volume: 154
  start-page: 233
  year: 2010
  end-page: 244
  article-title: Plant immunity directly or indirectly restricts the injection of type III effectors by the type III secretion system
  publication-title: Plant Physiol.
– volume: 10
  start-page: 1915
  year: 1998
  end-page: 1925
  article-title: The tomato Cf‐5 disease resistance gene and six homologs show pronounced allelic variation in leucine‐rich repeat copy number
  publication-title: Plant Cell
– volume: 109
  start-page: 19852
  year: 2012
  end-page: 19857
  article-title: Linking ligand perception by PEPR pattern recognition receptors to cytosolic Ca elevation and downstream immune signaling in plants
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 33
  start-page: 2069
  year: 2014
  end-page: 2079
  article-title: Negative control of BAK1 by protein phosphatase 2A during plant innate immunity
  publication-title: EMBO J.
– volume: 16
  start-page: 575
  year: 2013
  end-page: 582
  article-title: ROS signaling loops – production, perception, regulation
  publication-title: Curr. Opin. Plant Biol.
– volume: 18
  start-page: 277
  year: 1999
  end-page: 284
  article-title: A single locus determines sensitivity to bacterial flagellin in
  publication-title: Plant J.
– volume: 16
  start-page: 3496
  year: 2004
  end-page: 3507
  article-title: The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants
  publication-title: Plant Cell
– volume: 4
  start-page: 138
  year: 2013
  article-title: The dendritic cell response to classic, emerging, and homeostatic danger signals. Implications for autoimmunity
  publication-title: Front Immunol.
– volume: 520
  start-page: 679
  year: 2015
  end-page: 682
  article-title: NIK1‐mediated translation suppression functions as a plant antiviral immunity mechanism
  publication-title: Nature
– volume: 285
  start-page: 2996
  year: 2010
  end-page: 3004
  article-title: Direct binding of a plant LysM receptor‐like kinase, LysM RLK1/CERK1, to chitin
  publication-title: J. Biol. Chem.
– volume: 104
  start-page: 997
  year: 2007
  end-page: 1002
  article-title: A critical role for peptidoglycan N‐deacetylation in Listeria evasion from the host innate immune system
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 2
  start-page: 16185
  year: 2016a
  article-title: The pattern‐recognition receptor CORE of Solanaceae detects bacterial cold‐shock protein
  publication-title: Nat. Plants
– volume: 282
  start-page: 32338
  year: 2007
  end-page: 32348
  article-title: Bacteria‐derived peptidoglycans constitute pathogen‐associated molecular patterns triggering innate immunity in Arabidopsis
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: 11362
  year: 2016
  article-title: Survival trade‐offs in plant roots during colonization by closely related beneficial and pathogenic fungi
  publication-title: Nat. Commun.
– volume: 23
  start-page: 2440
  year: 2011
  end-page: 2455
  article-title: The Arabidopsis leucine‐rich repeat receptor‐like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens
  publication-title: Plant Cell
– volume: 19
  start-page: 4022
  year: 2007
  end-page: 4034
  article-title: Regulation of rice NADPH oxidase by binding of Rac GTPase to its N‐terminal extension
  publication-title: Plant Cell
– volume: 17
  start-page: 922
  year: 2007
  end-page: 931
  article-title: A receptor‐like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis
  publication-title: Curr. Biol.
– volume: 9
  start-page: e102245
  year: 2014
  article-title: LIK1, a CERK1‐interacting kinase, regulates plant immune responses in Arabidopsis
  publication-title: PLoS ONE
– volume: 16
  start-page: 537
  year: 2016
  end-page: 552
  article-title: Regulation of pattern recognition receptor signalling in plants
  publication-title: Nat. Rev. Immunol.
– volume: 20
  start-page: 504
  year: 2016a
  end-page: 514
  article-title: Activation‐dependent destruction of a co‐receptor by a effector dampens plant immunity
  publication-title: Cell Host Microbe
– volume: 521
  start-page: 213
  year: 2015
  end-page: 216
  article-title: Pathogen‐secreted proteases activate a novel plant immune pathway
  publication-title: Nature
– volume: 5
  start-page: 1003
  year: 2000
  end-page: 1011
  article-title: FLS2: an LRR receptor‐like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis
  publication-title: Mol. Cell
– volume: 106
  start-page: 22522
  year: 2009
  end-page: 22527
  article-title: Uncoupling of sustained MAMP receptor signaling from early outputs in an Arabidopsis endoplasmic reticulum glucosidase II allele
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 24
  start-page: 4703
  year: 2012
  end-page: 4716
  article-title: The ubiquitin ligase PUB22 targets a subunit of the exocyst complex required for PAMP‐triggered responses in Arabidopsis
  publication-title: Plant Cell
– volume: 25
  start-page: 4227
  year: 2013
  end-page: 4241
  article-title: Arabidopsis receptor‐like protein30 and receptor‐like kinase suppressor of BIR1‐1/EVERSHED mediate innate immunity to necrotrophic fungi
  publication-title: Plant Cell
– volume: 20
  start-page: 537
  year: 2006
  end-page: 542
  article-title: Ligand‐induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis
  publication-title: Genes Dev.
– volume: 55
  start-page: 565
  year: 2017
  end-page: 589
  article-title: Interplay between innate immunity and the plant microbiota
  publication-title: Annu. Rev. Phytopathol.
– volume: 342
  start-page: 624
  year: 2013
  end-page: 628
  article-title: Structural basis for flg22‐induced activation of the Arabidopsis FLS2‐BAK1 immune complex
  publication-title: Science
– volume: 417
  start-page: 959
  year: 2002
  end-page: 962
  article-title: A plant receptor‐like kinase required for both bacterial and fungal symbiosis
  publication-title: Nature
– volume: 32
  start-page: 1660
  year: 2013
  end-page: 1664
  article-title: Unconventional protein secretion: an evolving mechanism
  publication-title: EMBO J.
– volume: 16
  start-page: 553
  year: 2003
  end-page: 564
  article-title: The endopolygalacturonase 1 from activates grapevine defense reactions unrelated to its enzymatic activity
  publication-title: Mol. Plant Microbe Interact.
– volume: 25
  start-page: 2330
  year: 2013
  end-page: 2340
  article-title: The receptor‐like protein ReMAX of Arabidopsis detects the microbe‐associated molecular pattern eMax from Xanthomonas
  publication-title: Plant Cell
– volume: 8
  start-page: e1000280
  year: 2010
  article-title: Experimental evolution of a plant pathogen into a legume symbiont
  publication-title: PLoS Biol.
– volume: 341
  start-page: 1384
  year: 2013
  end-page: 1387
  article-title: Nonlegumes respond to rhizobial Nod factors by suppressing the innate immune response
  publication-title: Science
– volume: 8
  start-page: e75039
  year: 2013
  article-title: Aphanomyces euteiches cell wall fractions containing novel glucan‐chitosaccharides induce defense genes and nuclear calcium oscillations in the plant host
  publication-title: PLoS ONE
– volume: 10
  start-page: e1004491
  year: 2014
  article-title: A conserved peptide pattern from a widespread microbial virulence factor triggers pattern‐induced immunity in Arabidopsis
  publication-title: PLoS Pathog.
– volume: 203
  start-page: 592
  year: 2014
  end-page: 606
  article-title: The Arabidopsis thaliana mitogen‐activated protein kinases MPK3 and MPK6 target a subclass of ‘VQ‐motif’‐containing proteins to regulate immune responses
  publication-title: New Phytol.
– volume: 7
  start-page: e1002130
  year: 2011
  article-title: The plant pathogen pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity
  publication-title: PLoS Pathog.
– volume: 104
  start-page: 18333
  year: 2007
  end-page: 18338
  article-title: Tyrosine‐sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 12
  start-page: 215
  year: 2012
  end-page: 225
  article-title: Beyond pattern recognition: five immune checkpoints for scaling the microbial threat
  publication-title: Nat. Rev. Immunol.
– volume: 54
  start-page: 43
  year: 2014
  end-page: 55
  article-title: Direct regulation of the NADPH oxidase RBOHD by the PRR‐associated kinase BIK1 during plant immunity
  publication-title: Mol. Cell
– volume: 35
  start-page: 747
  year: 1999
  end-page: 755
  article-title: Oligoagars elicit a physiological response in (Rhodophyta)
  publication-title: J. Phycol.
– volume: 531
  start-page: 241
  year: 2016b
  end-page: 244
  article-title: A receptor heteromer mediates the male perception of female attractants in plants
  publication-title: Nature
– volume: 343
  start-page: 1509
  year: 2014
  end-page: 1512
  article-title: A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation
  publication-title: Science
– volume: 4
  start-page: 2530
  year: 2013
  article-title: Plant immune response to pathogens differs with changing temperatures
  publication-title: Nat. Commun.
– volume: 57
  start-page: 649
  year: 2006
  end-page: 674
  article-title: Peptide hormones in plants
  publication-title: Annu. Rev. Plant Biol.
– volume: 113
  start-page: 11034
  year: 2016
  end-page: 11039
  article-title: Clathrin‐dependent endocytosis is required for immunity mediated by pattern recognition receptor kinases
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 28
  start-page: 913
  year: 2015
  end-page: 926
  article-title: Tomato SOBIR1/EVR homologs are involved in elicitin perception and plant defense against the oomycete pathogen
  publication-title: Mol. Plant Microbe Interact.
– volume: 464
  start-page: 418
  year: 2010
  end-page: 422
  article-title: Differential innate immune signalling via Ca sensor protein kinases
  publication-title: Nature
– volume: 68
  start-page: 100
  year: 2011
  end-page: 113
  article-title: Interplay between calcium signalling and early signalling elements during defence responses to microbe‐ or damage‐associated molecular patterns
  publication-title: Plant J.
– volume: 18
  start-page: 265
  year: 1999
  end-page: 276
  article-title: Plants have a sensitive perception system for the most conserved domain of bacterial flagellin
  publication-title: Plant J.
– volume: 16
  start-page: 426
  year: 2015
  end-page: 433
  article-title: A lectin S‐domain receptor kinase mediates lipopolysaccharide sensing in
  publication-title: Nat. Immunol.
– volume: 164
  start-page: 440
  year: 2014
  end-page: 454
  article-title: Sensitivity to Flg22 is modulated by ligand‐induced degradation and synthesis of the endogenous flagellin‐receptor FLAGELLIN‐SENSING2
  publication-title: Plant Physiol.
– volume: 13
  start-page: 465
  year: 2013
  end-page: 476
  article-title: An OsCEBiP/OsCERK1‐OsRacGEF1‐OsRac1 module is an essential early component of chitin‐induced rice immunity
  publication-title: Cell Host Microbe
– volume: 201
  start-page: 961
  year: 2014
  end-page: 972
  article-title: Evolution of a symbiotic receptor through gene duplications in the legume‐rhizobium mutualism
  publication-title: New Phytol.
– volume: 113
  start-page: 3389
  year: 2016
  end-page: 3394
  article-title: NbCSPR underlies age‐dependent immune responses to bacterial cold shock protein in
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 79
  start-page: 1048
  year: 2013
  end-page: 1051
  article-title: The type III secretion system of USDA122 mediates symbiotic incompatibility with Rj2 soybean plants
  publication-title: Appl. Environ. Microbiol.
– volume: 172
  start-page: 626
  year: 2009
  end-page: 629
  article-title: In‐field detection and quantification of extracellular DNA
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 8
  start-page: pii: e25345
  year: 2013
  article-title: Presence of LYM2 dependent but CERK1 independent disease resistance in Arabidopsis
  publication-title: Plant Signal. Behav.
– volume: 52
  start-page: 19
  year: 2014
  end-page: 43
  article-title: Harnessing population genomics to understand how bacterial pathogens emerge, adapt to crop hosts, and disseminate
  publication-title: Annu. Rev. Phytopathol.
– volume: 1
  start-page: 48
  year: 2010
  article-title: Mechanisms underlying beneficial plant‐fungus interactions in mycorrhizal symbiosis
  publication-title: Nat. Commun.
– volume: 6
  start-page: 1126
  year: 2015
  article-title: Comparative genomics of pathogenic and nonpathogenic strains of unveil molecular and evolutionary events linked to pathoadaptation
  publication-title: Front. Plant Sci.
– volume: 330
  start-page: 968
  year: 2010
  end-page: 971
  article-title: Conserved molecular components for pollen tube reception and fungal invasion
  publication-title: Science
– volume: 543
  start-page: 513
  year: 2017
  end-page: 518
  article-title: Root microbiota drive direct integration of phosphate stress and immunity
  publication-title: Nature
– volume: 41
  start-page: e553
  issue: 555–570
  year: 2017
  article-title: Phosphate starvation‐dependent iron mobilization induces CLE14 expression to trigger root meristem differentiation through CLV2/PEPR2 signaling
  publication-title: Dev. Cell
– volume: 63
  start-page: 393
  year: 2012
  end-page: 401
  article-title: Interplay of flg22‐induced defence responses and nodulation in
  publication-title: J. Exp. Bot.
– volume: 14
  start-page: 653
  year: 2001
  end-page: 662
  article-title: Molecular characterization of a subtilase from the vascular wilt fungus
  publication-title: Mol. Plant Microbe Interact.
– volume: 110
  start-page: 6211
  year: 2013
  end-page: 6216
  article-title: Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 16
  start-page: 232
  year: 2016
  article-title: DAMPs, MAMPs, and NAMPs in plant innate immunity
  publication-title: BMC Plant Biol.
– volume: 266
  start-page: 789
  year: 1994
  end-page: 793
  article-title: Isolation of the tomato Cf‐9 gene for resistance to by transposon tagging
  publication-title: Science
– volume: 211
  start-page: 1008
  year: 2016
  end-page: 1019
  article-title: Double‐stranded RNAs induce a pattern‐triggered immune signaling pathway in plants
  publication-title: New Phytol.
– volume: 23
  start-page: 58
  year: 2010
  end-page: 66
  article-title: Improved characterization of nod factors and genetically based variation in LysM Receptor domains identify amino acids expendable for nod factor recognition in Lotus spp
  publication-title: Mol. Plant Microbe Interact.
– volume: 255
  start-page: 1570
  year: 1992
  end-page: 1573
  article-title: Structure, expression, and antisense inhibition of the systemin precursor gene
  publication-title: Science
– volume: 110
  start-page: 5707
  year: 2013
  end-page: 5712
  article-title: Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 79
  start-page: 56
  year: 2014
  end-page: 66
  article-title: Selective regulation of the chitin‐induced defense response by the Arabidopsis receptor‐like cytoplasmic kinase PBL27
  publication-title: Plant J.
– volume: 275
  start-page: 32347
  year: 2000
  end-page: 32356
  article-title: Flagellin from an incompatible strain of induces a resistance response in cultured rice cells
  publication-title: J. Biol. Chem.
– volume: 4
  start-page: 49
  year: 2013
  article-title: Oligogalacturonides: plant damage‐associated molecular patterns and regulators of growth and development
  publication-title: Front. Plant Sci.
– volume: 198
  start-page: 190
  year: 2013
  end-page: 202
  article-title: Short‐chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca spiking in roots and their production is enhanced by strigolactone
  publication-title: New Phytol.
– volume: 130
  start-page: 1155
  year: 2017
  end-page: 1168
  article-title: Genetic dissection of the maize ( L.) MAMP response
  publication-title: Theor. Appl. Genet.
– volume: 6
  start-page: 763
  year: 2008
  end-page: 775
  article-title: Arbuscular mycorrhiza: the mother of plant root endosymbioses
  publication-title: Nat. Rev. Microbiol.
– volume: 113
  start-page: 11028
  year: 2016
  end-page: 11033
  article-title: Danger‐associated peptide signaling in Arabidopsis requires clathrin
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 212
  start-page: 67
  year: 1981
  end-page: 69
  article-title: Eicosapentaenoic and arachidonic acids from elicit fungitoxic sesquiterpenes in the potato
  publication-title: Science
– volume: 523
  start-page: 308
  year: 2015
  end-page: 312
  article-title: Receptor‐mediated exopolysaccharide perception controls bacterial infection
  publication-title: Nature
– volume: 477
  start-page: 592
  year: 2011
  end-page: 595
  article-title: Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity
  publication-title: Nature
– volume: 332
  start-page: 1439
  year: 2011
  end-page: 1442
  article-title: Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity
  publication-title: Science
– volume: 279
  start-page: 1132
  year: 2004
  end-page: 1140
  article-title: An ancient enzyme domain hidden in the putative beta‐glucan elicitor receptor of soybean may play an active part in the perception of pathogen‐associated molecular patterns during broad host resistance
  publication-title: J. Biol. Chem.
– volume: 343
  start-page: 290
  year: 2014
  end-page: 294
  article-title: Identification of a plant receptor for extracellular ATP
  publication-title: Science
– volume: 47
  start-page: 6311
  year: 2008
  end-page: 6321
  article-title: A cytoplasmic Ca functional assay for identifying and purifying endogenous cell signaling peptides in Arabidopsis seedlings: identification of AtRALF1 peptide
  publication-title: Biochemistry
– volume: 6
  start-page: 973
  year: 2005
  end-page: 979
  article-title: Are innate immune signaling pathways in plants and animals conserved?
  publication-title: Nat. Immunol.
– volume: 3
  start-page: e01990
  year: 2014
  article-title: Host‐induced bacterial cell wall decomposition mediates pattern‐triggered immunity in Arabidopsis
  publication-title: eLife
– volume: 20
  start-page: 186
  year: 2015
  end-page: 194
  article-title: Rhizobium‐legume symbioses: the crucial role of plant immunity
  publication-title: Trends Plant Sci.
– volume: 117
  start-page: 1373
  year: 1998
  end-page: 1380
  article-title: Cutin monomers and surface wax constituents elicit H O in conditioned cucumber hypocotyl segments and enhance the activity of other H O elicitors
  publication-title: Plant Physiol.
– volume: 4
  start-page: 509
  year: 2003
  end-page: 516
  article-title: Pathogenic fungi: leading or led by ambient pH?
  publication-title: Mol. Plant Pathol.
– volume: 103
  start-page: 10098
  year: 2006
  end-page: 10103
  article-title: An endogenous peptide signal in Arabidopsis activates components of the innate immune response
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 1
  start-page: 16043
  year: 2016
  article-title: A fungal pathogen secretes plant alkalinizing peptides to increase infection
  publication-title: Nat. Microbiol.
– volume: 66
  start-page: 5315
  year: 2015
  end-page: 5325
  article-title: Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling
  publication-title: J. Exp. Bot.
– volume: 16
  start-page: 1220
  year: 2004
  end-page: 1234
  article-title: Comparative analysis of the receptor‐like kinase family in Arabidopsis and rice
  publication-title: Plant Cell
– volume: 26
  start-page: 45
  year: 2015
  end-page: 50
  article-title: Reconsidering mutualistic plant‐fungal interactions through the lens of effector biology
  publication-title: Curr. Opin. Plant Biol.
– volume: 16
  start-page: 489
  year: 2013
  end-page: 495
  article-title: Root border cells and secretions as critical elements in plant host defense
  publication-title: Curr. Opin. Plant Biol.
– volume: 173
  start-page: 2383
  year: 2017
  end-page: 2398
  article-title: Cellulose‐derived oligomers act as damage‐associated molecular patterns and trigger defense‐like responses
  publication-title: Plant Physiol.
– volume: 207
  start-page: 78
  year: 2015
  end-page: 90
  article-title: The receptor‐like cytoplasmic kinase PCRK1 contributes to pattern‐triggered immunity against in
  publication-title: New Phytol.
– volume: 440
  start-page: 355
  year: 2011
  end-page: 365
  article-title: Ionotropic glutamate receptor (iGluR)‐like channels mediate MAMP‐induced calcium influx in
  publication-title: Biochem. J.
– volume: 428
  start-page: 764
  year: 2004
  end-page: 767
  article-title: Bacterial disease resistance in Arabidopsis through flagellin perception
  publication-title: Nature
– volume: 278
  start-page: 6201
  year: 2003
  end-page: 6208
  article-title: Molecular sensing of bacteria in plants. The highly conserved RNA‐binding motif RNP‐1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco
  publication-title: J. Biol. Chem.
– volume: 14
  start-page: 2627
  year: 2002
  end-page: 2641
  article-title: Analysis and effects of cytosolic free calcium increases in response to elicitors in cells
  publication-title: Plant Cell
– volume: 26
  start-page: 1271
  year: 2013
  end-page: 1280
  article-title: The immunity regulator BAK1 contributes to resistance against diverse RNA viruses
  publication-title: Mol. Plant Microbe Interact.
– volume: 111
  start-page: 3632
  year: 2014
  end-page: 3637
  article-title: Tyrosine phosphorylation of protein kinase complex BAK1/BIK1 mediates Arabidopsis innate immunity
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 90
  start-page: 8273
  year: 1993
  end-page: 8276
  article-title: Expression of an antisense prosystemin gene in tomato plants reduces resistance toward Manduca sexta larvae
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 14
  start-page: 867
  year: 2001
  end-page: 876
  article-title: No evidence for binding between resistance gene product Cf‐9 of tomato and avirulence gene product AVR9 of
  publication-title: Mol. Plant Microbe Interact.
– volume: 107
  start-page: 18735
  year: 2010
  end-page: 18740
  article-title: R gene‐controlled host specificity in the legume‐rhizobia symbiosis
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 9
  start-page: 183
  year: 2009
  article-title: Evolutionary genomics of LysM genes in land plants
  publication-title: BMC Evol. Biol.
– volume: 21
  start-page: 104
  year: 2014
  end-page: 111
  article-title: Receptor like proteins associate with SOBIR1‐type of adaptors to form bimolecular receptor kinases
  publication-title: Curr. Opin. Plant Biol.
– volume: 33
  start-page: 62
  year: 2014
  end-page: 75
  article-title: The Arabidopsis PEPR pathway couples local and systemic plant immunity
  publication-title: EMBO J.
– volume: 318
  start-page: 453
  year: 2007
  end-page: 456
  article-title: Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling
  publication-title: Science
– volume: 14
  start-page: 351
  year: 2011
  end-page: 357
  article-title: Endogenous peptide elicitors in higher plants
  publication-title: Curr. Opin. Plant Biol.
– volume: 28
  start-page: 3439
  year: 2009
  end-page: 3449
  article-title: Receptor quality control in the endoplasmic reticulum for plant innate immunity
  publication-title: EMBO J.
– volume: 111
  start-page: E404
  year: 2014
  end-page: E413
  article-title: Chitin‐induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich‐type dimerization
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 12
  start-page: e1006068
  year: 2016
  article-title: Differentiation between MAMP triggered defenses in
  publication-title: PLoS Genet.
– volume: 39
  start-page: 313
  year: 2001
  end-page: 335
  article-title: The role of polygalacturonase‐inhibiting proteins (PGIPs) in defense against pathogenic fungi
  publication-title: Annu. Rev. Phytopathol.
– volume: 28
  start-page: 1701
  year: 2016
  end-page: 1721
  article-title: The Arabidopsis malectin‐like/LRR‐RLK IOS1 is critical for BAK1‐dependent and BAK1‐independent pattern‐triggered immunity
  publication-title: Plant Cell
– volume: 6
  start-page: 1198
  year: 2007
  end-page: 1214
  article-title: Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis
  publication-title: Mol. Cell Proteomics
– volume: 27
  start-page: 2042
  year: 2015
  end-page: 2056
  article-title: Phosphorylation of the plant immune regulator RPM1‐INTERACTING PROTEIN4 enhances plant plasma membrane H ‐ATPase activity and inhibits flagellin‐triggered immune responses in Arabidopsis
  publication-title: Plant Cell
– volume: 155
  start-page: 1325
  year: 2011
  end-page: 1338
  article-title: ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance
  publication-title: Plant Physiol.
– volume: 55
  start-page: 109
  year: 2017
  end-page: 137
  article-title: From chaos to harmony: responses and signaling upon microbial pattern recognition
  publication-title: Annu. Rev. Phytopathol.
– volume: 89
  start-page: 1195
  year: 2017
  end-page: 1209
  article-title: The tomato I gene for Fusarium wilt resistance encodes an atypical leucine‐rich repeat receptor‐like protein whose function is nevertheless dependent on SOBIR1 and SERK3/BAK1
  publication-title: Plant J.
– volume: 174
  start-page: 561
  year: 2017
  end-page: 571
  article-title: Stomatal defense a decade later
  publication-title: Plant Physiol.
– volume: 29
  start-page: 2285
  year: 2017
  end-page: 2303
  article-title: The Arabidopsis leucine‐rich repeat receptor kinase BIR3 negatively regulates BAK1 receptor complex formation and stabilizes BAK1
  publication-title: Plant Cell
– volume: 110
  start-page: 9166
  year: 2013
  end-page: 9170
  article-title: LYM2‐dependent chitin perception limits molecular flux via plasmodesmata
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 10
  start-page: 375
  year: 2009
  end-page: 387
  article-title: Microbe‐associated molecular pattern (MAMP) signatures, synergy, size and charge: influences on perception or mobility and host defence responses
  publication-title: Mol. Plant Pathol.
– volume: 22
  start-page: 779
  year: 2017
  end-page: 791
  article-title: Sensing danger: key to activating plant immunity
  publication-title: Trends Plant Sci.
– volume: 15
  start-page: 127
  year: 2007
  end-page: 134
  article-title: Peptidoglycan recognition proteins of the innate immune system
  publication-title: Trends Microbiol.
– volume: 16
  start-page: 3386
  year: 2004
  end-page: 3399
  article-title: Phosphorylation of 1‐aminocyclopropane‐1‐carboxylic acid synthase by MPK6, a stress‐responsive mitogen‐activated protein kinase, induces ethylene biosynthesis in Arabidopsis
  publication-title: Plant Cell
– volume: 410
  start-page: 1099
  year: 2001
  end-page: 1103
  article-title: The innate immune response to bacterial flagellin is mediated by Toll‐like receptor 5
  publication-title: Nature
– volume: 23
  start-page: 1153
  year: 2011
  end-page: 1170
  article-title: Phosphorylation of the WRKY8 transcription factor by MAPK functions in the defense response
  publication-title: Plant Cell
– volume: 207
  start-page: 488
  year: 2015
  end-page: 490
  article-title: Self‐DNA: a blessing in disguise?
  publication-title: New Phytol.
– volume: 28
  start-page: 365
  year: 2010
  end-page: 369
  article-title: Interfamily transfer of a plant pattern‐recognition receptor confers broad‐spectrum bacterial resistance
  publication-title: Nat. Biotechnol.
– volume: 24
  start-page: 1096
  year: 2012
  end-page: 1113
  article-title: Probing the Arabidopsis flagellin receptor: FLS2‐FLS2 association and the contributions of specific domains to signaling function
  publication-title: Plant Cell
– volume: 13
  start-page: 199
  year: 2013
  end-page: 206
  article-title: Effector‐triggered versus pattern‐triggered immunity: how animals sense pathogens
  publication-title: Nat. Rev. Immunol.
– volume: 167
  start-page: 1076
  year: 2015
  end-page: 1086
  article-title: The Arabidopsis transcription factor BRASSINOSTEROID INSENSITIVE1‐ETHYL METHANESULFONATE‐SUPPRESSOR1 is a direct substrate of MITOGEN‐ACTIVATED PROTEIN KINASE6 and regulates immunity
  publication-title: Plant Physiol.
– volume: 353
  start-page: 478
  year: 2016
  end-page: 481
  article-title: Detection of the plant parasite by a tomato cell surface receptor
  publication-title: Science
– volume: 20
  start-page: 12
  year: 2015
  end-page: 19
  article-title: Trade‐off between growth and immunity: role of brassinosteroids
  publication-title: Trends Plant Sci.
– volume: 204
  start-page: 791
  year: 2014
  end-page: 802
  article-title: Knowing your friends and foes – plant receptor‐like kinases as initiators of symbiosis or defence
  publication-title: New Phytol.
– volume: 29
  start-page: 726
  year: 2017
  end-page: 745
  article-title: Changes in PUB22 ubiquitination modes triggered by MITOGEN‐ACTIVATED PROTEIN KINASE3 dampen the immune response
  publication-title: Plant Cell
– volume: 162
  start-page: 501
  year: 2004
  end-page: 510
  article-title: The CBEL elicitor of var. nicotianae activates defence in via three different signalling pathways
  publication-title: New Phytol.
– volume: 73
  start-page: 469
  year: 2013
  end-page: 482
  article-title: The tyrosine‐sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner
  publication-title: Plant J.
– volume: 27
  start-page: 113
  year: 2014
  end-page: 124
  article-title: Two distinct EF‐Tu epitopes induce immune responses in rice and Arabidopsis
  publication-title: Mol. Plant Microbe Interact.
– volume: 485
  start-page: 114
  year: 2012
  end-page: 118
  article-title: A Xanthomonas uridine 5’‐monophosphate transferase inhibits plant immune kinases
  publication-title: Nature
– volume: 91
  start-page: 601
  year: 2013
  end-page: 610
  article-title: The interplay between pathogen‐associated and danger‐associated molecular patterns: an inflammatory code in cancer?
  publication-title: Immunol. Cell Biol.
– volume: 204
  start-page: 782
  year: 2014
  end-page: 790
  article-title: Ca signalling in plant immune response: from pattern recognition receptors to Ca decoding mechanisms
  publication-title: New Phytol.
– volume: 332
  start-page: 974
  year: 2011
  end-page: 977
  article-title: The Toll‐like receptor 2 pathway establishes colonization by a commensal of the human microbiota
  publication-title: Science
– volume: 110
  start-page: 12114
  year: 2013
  end-page: 12119
  article-title: Inverse modulation of plant immune and brassinosteroid signaling pathways by the receptor‐like cytoplasmic kinase BIK1
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 43
  start-page: 18
  year: 2017
  end-page: 27
  article-title: Structural insights into ligand recognition and activation of plant receptor kinases
  publication-title: Curr. Opin. Struct. Biol.
– volume: 151
  start-page: 820
  year: 2009
  end-page: 829
  article-title: Extracellular DNA is required for root tip resistance to fungal infection
  publication-title: Plant Physiol.
– volume: 7
  start-page: 37
  year: 2009
  end-page: 46
  article-title: Bioinformatic comparison of bacterial secretomes
  publication-title: Genom. Proteom. Bioinform.
– volume: 336
  start-page: 1160
  year: 2012b
  end-page: 1164
  article-title: Chitin‐induced dimerization activates a plant immune receptor
  publication-title: Science
– volume: 5
  start-page: 331
  year: 2005
  end-page: 342
  article-title: High‐mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal
  publication-title: Nat. Rev. Immunol.
– volume: 477
  start-page: 596
  year: 2011
  end-page: 600
  article-title: The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus
  publication-title: Nature
– volume: 92
  start-page: 4150
  year: 1995
  end-page: 4157
  article-title: Oligopeptide elicitor‐mediated defense gene activation in cultured parsley cells
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 150
  start-page: 1422
  year: 2009
  end-page: 1433
  article-title: Isolation and characterization of hydroxyproline‐rich glycopeptide signals in black nightshade leaves
  publication-title: Plant Physiol.
– volume: 5
  start-page: 152
  year: 2007
  end-page: 156
  article-title: The disease triangle: pathogens, the environment and society
  publication-title: Nat. Rev. Microbiol.
– volume: 19
  start-page: 1081
  year: 2007
  end-page: 1095
  article-title: Death don't have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity
  publication-title: Plant Cell
– volume: 109
  start-page: 13859
  year: 2012
  end-page: 13864
  article-title: Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 469
  start-page: 58
  year: 2011
  end-page: 63
  article-title: Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza
  publication-title: Nature
– volume: 72
  start-page: 782
  year: 2016b
  end-page: 787
  article-title: X‐ray crystallographic studies of the extracellular domain of the first plant ATP receptor, DORN1, and the orthologous protein from
  publication-title: Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.
– volume: 206
  start-page: 606
  year: 2015
  end-page: 613
  article-title: Arabidopsis EF‐Tu receptor enhances bacterial disease resistance in transgenic wheat
  publication-title: New Phytol.
– volume: 20
  start-page: 471
  year: 2008
  end-page: 481
  article-title: A LysM receptor‐like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis
  publication-title: Plant Cell
– volume: 66
  start-page: 5183
  year: 2015
  end-page: 5193
  article-title: Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development
  publication-title: J. Exp. Bot.
– volume: 5
  start-page: 585
  year: 2014
  article-title: Damaged‐self recognition in common bean ( ) shows taxonomic specificity and triggers signaling via reactive oxygen species (ROS)
  publication-title: Front. Plant Sci.
– volume: 4
  start-page: e06587
  year: 2015b
  article-title: Glycosylphosphatidylinositol‐anchored proteins as chaperones and co‐receptors for FERONIA receptor kinase signaling in Arabidopsis
  publication-title: eLife
– volume: 24
  start-page: 275
  year: 2012
  end-page: 287
  article-title: The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern‐triggered immunity
  publication-title: Plant Cell
– volume: 343
  start-page: 408
  year: 2014
  end-page: 411
  article-title: A peptide hormone and its receptor protein kinase regulate plant cell expansion
  publication-title: Science
– volume: 64
  start-page: 3615
  year: 2013
  end-page: 3625
  article-title: Pathogen‐associated molecular pattern‐triggered immunity and resistance to the root pathogen in Arabidopsis
  publication-title: J. Exp. Bot.
– volume: 16
  start-page: 605
  year: 2014
  end-page: 615
  article-title: The calcium‐dependent protein kinase CPK28 buffers plant immunity and regulates BIK1 turnover
  publication-title: Cell Host Microbe
– volume: 207
  start-page: 106
  year: 2015
  end-page: 118
  article-title: The tomato I‐3 gene: a novel gene for resistance to Fusarium wilt disease
  publication-title: New Phytol.
– volume: 7
  start-page: 906
  year: 2016
  article-title: Extracellular recognition of oomycetes during biotrophic infection of plants
  publication-title: Front. Plant Sci.
– volume: 206
  start-page: 497
  year: 2015
  end-page: 500
  article-title: symbiosis mutants affected in the interaction with a biotrophic root pathogen
  publication-title: New Phytol.
– volume: 5
  start-page: 446
  year: 2014
  article-title: Extracellular ATP acts as a damage‐associated molecular pattern (DAMP) signal in plants
  publication-title: Front. Plant Sci.
– volume: 12
  start-page: e1005518
  year: 2016
  article-title: Activation of plant innate immunity by extracellular high mobility group box 3 and its inhibition by salicylic acid
  publication-title: PLoS Pathog.
– volume: 51
  start-page: 245
  year: 2013
  end-page: 266
  article-title: MAPK cascades in plant disease resistance signaling
  publication-title: Annu. Rev. Phytopathol.
– volume: 27
  start-page: 2095
  year: 2015
  end-page: 2118
  article-title: The plant peptidome: an expanding repertoire of structural features and biological functions
  publication-title: Plant Cell
– volume: 110
  start-page: 213
  year: 2002
  end-page: 222
  article-title: BAK1, an Arabidopsis LRR receptor‐like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling
  publication-title: Cell
– volume: 99
  start-page: 9585
  year: 2002
  end-page: 9590
  article-title: The systemin receptor SR160 from is a member of the LRR receptor kinase family
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 130
  start-page: 2152
  year: 2002
  end-page: 2163
  article-title: Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells
  publication-title: Plant Physiol.
– volume: 56
  start-page: 1472
  year: 2015
  end-page: 1480
  article-title: Regulation of the NADPH oxidase RBOHD during plant immunity
  publication-title: Plant Cell Physiol.
– volume: 16
  start-page: 748
  year: 2014a
  end-page: 758
  article-title: Modulation of RNA polymerase II phosphorylation downstream of pathogen perception orchestrates plant immunity
  publication-title: Cell Host Microbe
– volume: 38
  start-page: 719
  year: 2017
  end-page: 732
  article-title: DNA sensing across the tree of life
  publication-title: Trends Immunol.
– volume: 253
  start-page: 895
  year: 1991
  end-page: 897
  article-title: A polypeptide from tomato leaves induces wound‐inducible proteinase inhibitor proteins
  publication-title: Science
– volume: 27
  start-page: 839
  year: 2015a
  end-page: 856
  article-title: Phosphorylation of trihelix transcriptional repressor ASR3 by MAP KINASE4 negatively regulates Arabidopsis immunity
  publication-title: Plant Cell
– volume: 19
  start-page: 123
  year: 2014
  end-page: 132
  article-title: Two for all: receptor‐associated kinases SOBIR1 and BAK1
  publication-title: Trends Plant Sci.
– volume: 18
  start-page: 764
  year: 2006
  end-page: 779
  article-title: Within‐species flagellin polymorphism in pv campestris and its impact on elicitation of Arabidopsis FLAGELLIN SENSING2‐dependent defenses
  publication-title: Plant Cell
– volume: 26
  start-page: 828
  year: 2014
  end-page: 841
  article-title: The bHLH transcription factor HBI1 mediates the trade‐off between growth and pathogen‐associated molecular pattern‐triggered immunity in Arabidopsis
  publication-title: Plant Cell
– volume: 11
  start-page: e1004602
  year: 2015
  article-title: The phylogenetically‐related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots
  publication-title: PLoS Pathog.
– volume: 50
  start-page: 413
  year: 1998
  end-page: 492
  article-title: Receptors for purines and pyrimidines
  publication-title: Pharmacol. Rev.
– volume: 13
  start-page: 983
  year: 2015
  end-page: 992
  article-title: The receptor‐like protein RLM2 is encoded by a second allele of the / blackleg resistance locus
  publication-title: Plant Biotechnol. J.
– volume: 12
  start-page: 192
  year: 2016
  end-page: 207
  article-title: The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health
  publication-title: New Phytol.
– volume: 197
  start-page: 595
  year: 2013
  end-page: 605
  article-title: The blackleg resistance gene encodes a receptor‐like protein triggered by the effector AVRLM1
  publication-title: New Phytol.
– volume: 110
  start-page: 17131
  year: 2013
  end-page: 17136
  article-title: Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system
  publication-title: Proc. Natl Acad. Sci. USA
– year: 2017
  article-title: Plant elicitor peptides promote plant defences against nematodes in soybean
  publication-title: Mol. Plant Pathol.
– volume: 27
  start-page: 2057
  year: 2015
  end-page: 2072
  article-title: A glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP
  publication-title: Plant Cell
– volume: 21
  start-page: 1017
  year: 2016
  end-page: 1033
  article-title: SERKing coreceptors for receptors
  publication-title: Trends Plant Sci.
– volume: 17
  start-page: 1109
  year: 2007
  end-page: 1115
  article-title: BAK1 and BKK1 regulate brassinosteroid‐dependent growth and brassinosteroid‐independent cell‐death pathways
  publication-title: Curr. Biol.
– volume: 207
  start-page: 841
  year: 2015
  end-page: 857
  article-title: Mutualistic root endophytism is not associated with the reduction of saprotrophic traits and requires a noncompromised plant innate immunity
  publication-title: New Phytol.
– volume: 114
  start-page: E8118
  year: 2017
  end-page: E8127
  article-title: Receptor‐mediated chitin perception in legume roots is functionally separable from Nod factor perception
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 98
  start-page: 12843
  year: 2001
  end-page: 12847
  article-title: RALF, a 5‐kDa ubiquitous polypeptide in plants, arrests root growth and development
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 63
  start-page: 791
  year: 2010
  end-page: 800
  article-title: BAK1 is required for the attenuation of ethylene‐inducing xylanase (Eix)‐induced defense responses by the decoy receptor LeEix1
  publication-title: Plant J.
– volume: 17
  start-page: 1116
  year: 2007
  end-page: 1122
  article-title: The BRI1‐associated kinase 1, BAK1, has a brassinolide‐independent role in plant cell‐death control
  publication-title: Curr. Biol.
– volume: 1
  start-page: 175
  year: 2007
  end-page: 185
  article-title: A effector inactivates MAPKs to suppress PAMP‐induced immunity in plants
  publication-title: Cell Host Microbe
– volume: 104
  start-page: 12217
  year: 2007
  end-page: 12222
  article-title: The receptor‐like kinase SERK3/BAK1 is a central regulator of innate immunity in plants
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 26
  start-page: 64
  year: 2015
  end-page: 71
  article-title: Chitin‐mediated plant‐fungal interactions: catching, hiding and handshaking
  publication-title: Curr. Opin. Plant Biol.
– volume: 285
  start-page: 39140
  year: 2010
  end-page: 39149
  article-title: PAMP (pathogen‐associated molecular pattern)‐induced changes in plasma membrane compartmentalization reveal novel components of plant immunity
  publication-title: J. Biol. Chem.
– volume: 34
  start-page: 593
  year: 2015
  end-page: 608
  article-title: The mRNA decay factor PAT1 functions in a pathway including MAP kinase 4 and immune receptor SUMM2
  publication-title: EMBO J.
– volume: 335
  start-page: 859
  year: 2012
  end-page: 864
  article-title: Structural basis of TLR5‐flagellin recognition and signaling
  publication-title: Science
– volume: 11
  start-page: 253
  year: 2012
  end-page: 263
  article-title: Disruption of PAMP‐induced MAP kinase cascade by a effector activates plant immunity mediated by the NB‐LRR protein SUMM2
  publication-title: Cell Host Microbe
– volume: 243
  start-page: 26
  year: 2011
  end-page: 39
  article-title: Two signal models in innate immunity
  publication-title: Immunol. Rev.
– volume: 28
  start-page: 648
  year: 2015
  end-page: 658
  article-title: CD2‐1, the C‐terminal region of flagellin, modulates the induction of immune responses in rice
  publication-title: Mol. Plant Microbe Interact.
– volume: 110
  start-page: 203
  year: 2002
  end-page: 212
  article-title: BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling
  publication-title: Cell
– volume: 285
  start-page: 28902
  year: 2010
  end-page: 28911
  article-title: The lysin motif receptor‐like kinase (LysM‐RLK) CERK1 is a major chitin‐binding protein in and subject to chitin‐induced phosphorylation
  publication-title: J. Biol. Chem.
– ident: e_1_2_17_323_1
  doi: 10.1104/pp.109.142067
– ident: e_1_2_17_67_1
  doi: 10.1038/icb.2013.58
– ident: e_1_2_17_104_1
  doi: 10.1073/pnas.0705306104
– ident: e_1_2_17_170_1
  doi: 10.1105/tpc.104.026609
– ident: e_1_2_17_336_1
  doi: 10.1073/pnas.1011957107
– ident: e_1_2_17_2_1
  doi: 10.1016/j.chom.2013.03.007
– ident: e_1_2_17_102_1
  doi: 10.1038/35074106
– ident: e_1_2_17_208_1
  doi: 10.1111/tpj.12050
– ident: e_1_2_17_70_1
  doi: 10.1104/pp.117.4.1373
– ident: e_1_2_17_251_1
  doi: 10.1111/nph.12198
– ident: e_1_2_17_291_1
  doi: 10.1126/science.1243825
– ident: e_1_2_17_209_1
  doi: 10.1186/s13059-016-0955-7
– ident: e_1_2_17_191_1
  doi: 10.1038/emboj.2013.104
– ident: e_1_2_17_66_1
  doi: 10.1093/mp/ssq083
– ident: e_1_2_17_312_1
  doi: 10.1146/annurev-phyto-102313-045907
– ident: e_1_2_17_85_1
  doi: 10.1111/nph.12146
– ident: e_1_2_17_37_1
  doi: 10.1002/jpln.200900081
– ident: e_1_2_17_211_1
  doi: 10.1016/S0092-8674(02)00814-0
– ident: e_1_2_17_38_1
  doi: 10.3389/fpls.2015.01126
– volume: 169
  start-page: 2950
  year: 2015
  ident: e_1_2_17_169_1
  article-title: PBL13 is a serine/threonine protein kinase that negatively regulates Arabidopsis immune responses
  publication-title: Plant Physiol.
– ident: e_1_2_17_29_1
  doi: 10.1073/pnas.1000675107
– ident: e_1_2_17_243_1
  doi: 10.1016/j.pbi.2017.04.022
– ident: e_1_2_17_147_1
  doi: 10.1105/tpc.111.087122
– ident: e_1_2_17_151_1
  doi: 10.1371/journal.pone.0102245
– ident: e_1_2_17_120_1
  doi: 10.1111/j.1365-313X.2010.04155.x
– ident: e_1_2_17_10_1
  doi: 10.1111/j.1365-313X.2010.04282.x
– ident: e_1_2_17_184_1
  doi: 10.1094/MPMI.2001.14.7.867
– ident: e_1_2_17_172_1
  doi: 10.1105/tpc.112.102475
– ident: e_1_2_17_188_1
  doi: 10.1126/science.1248849
– ident: e_1_2_17_295_1
  doi: 10.1128/JB.185.22.6658-6665.2003
– ident: e_1_2_17_351_1
  doi: 10.1007/s00122-017-2876-6
– ident: e_1_2_17_130_1
  doi: 10.1038/nature14611
– ident: e_1_2_17_138_1
  doi: 10.1038/nature10394
– ident: e_1_2_17_240_1
  doi: 10.1126/sciadv.1500245
– ident: e_1_2_17_347_1
  doi: 10.1105/tpc.113.117010
– ident: e_1_2_17_95_1
  doi: 10.1146/annurev-phyto-080516-035623
– ident: e_1_2_17_54_1
  doi: 10.1111/nph.12549
– ident: e_1_2_17_115_1
  doi: 10.1111/j.1365-313X.2012.04950.x
– ident: e_1_2_17_83_1
  doi: 10.1016/j.it.2017.07.012
– ident: e_1_2_17_269_1
  doi: 10.1371/journal.pgen.1002046
– ident: e_1_2_17_4_1
  doi: 10.1105/tpc.106.045096
– ident: e_1_2_17_39_1
  doi: 10.1074/jbc.M004796200
– ident: e_1_2_17_113_1
  doi: 10.1104/pp.110.166710
– ident: e_1_2_17_296_1
  doi: 10.1016/j.molcel.2014.03.012
– year: 2017
  ident: e_1_2_17_15_1
  article-title: Phytaspase‐mediated precursor processing and maturation of the wound hormone systemin
  publication-title: New Phytol.
– ident: e_1_2_17_35_1
  doi: 10.1111/nph.13348
– ident: e_1_2_17_278_1
  doi: 10.1016/j.pbi.2015.05.032
– ident: e_1_2_17_61_1
  doi: 10.1038/nplants.2015.34
– ident: e_1_2_17_142_1
  doi: 10.1094/MPMI-03-14-0068-R
– ident: e_1_2_17_116_1
  doi: 10.1074/jbc.M109.027540
– ident: e_1_2_17_239_1
  doi: 10.1111/nph.13802
– ident: e_1_2_17_106_1
  doi: 10.1016/j.cub.2007.05.018
– ident: e_1_2_17_342_1
  doi: 10.1016/j.pbi.2017.06.003
– ident: e_1_2_17_185_1
  doi: 10.1073/pnas.1205448109
– ident: e_1_2_17_355_1
  doi: 10.1016/j.cell.2006.03.037
– ident: e_1_2_17_6_1
  doi: 10.1111/nph.13117
– ident: e_1_2_17_321_1
  doi: 10.1016/j.molp.2017.01.006
– ident: e_1_2_17_282_1
  doi: 10.1016/j.sbi.2016.09.012
– ident: e_1_2_17_283_1
  doi: 10.1104/pp.16.01680
– ident: e_1_2_17_158_1
  doi: 10.1016/j.chom.2014.10.018
– ident: e_1_2_17_160_1
  doi: 10.1105/tpc.114.134809
– ident: e_1_2_17_222_1
  doi: 10.1038/nrmicro2990
– ident: e_1_2_17_304_1
  doi: 10.1073/pnas.1216780110
– ident: e_1_2_17_248_1
  doi: 10.1111/j.1365-313X.2011.04671.x
– ident: e_1_2_17_21_1
  doi: 10.1146/annurev.arplant.57.032905.105346
– ident: e_1_2_17_294_1
  doi: 10.1094/MPMI-21-12-1635
– volume: 28
  start-page: 1701
  year: 2016
  ident: e_1_2_17_339_1
  article-title: The Arabidopsis malectin‐like/LRR‐RLK IOS1 is critical for BAK1‐dependent and BAK1‐independent pattern‐triggered immunity
  publication-title: Plant Cell
– ident: e_1_2_17_345_1
  doi: 10.1016/j.chom.2010.03.007
– ident: e_1_2_17_218_1
  doi: 10.1073/pnas.92.6.2338
– ident: e_1_2_17_63_1
  doi: 10.3389/fpls.2014.00585
– ident: e_1_2_17_53_1
  doi: 10.1146/annurev.phyto.39.1.313
– ident: e_1_2_17_136_1
  doi: 10.1016/j.cell.2005.03.025
– ident: e_1_2_17_281_1
  doi: 10.1016/S1672-0229(08)60031-5
– ident: e_1_2_17_350_1
  doi: 10.1111/tpj.12723
– ident: e_1_2_17_277_1
  doi: 10.1111/tpj.12535
– ident: e_1_2_17_299_1
  doi: 10.1105/tpc.15.00440
– ident: e_1_2_17_74_1
  doi: 10.3389/fpls.2013.00049
– ident: e_1_2_17_190_1
  doi: 10.1093/pcp/pct175
– ident: e_1_2_17_288_1
  doi: 10.1038/nri3398
– ident: e_1_2_17_141_1
  doi: 10.1094/MPMI-06-13-0179-R
– ident: e_1_2_17_187_1
  doi: 10.1016/j.tplants.2016.08.014
– ident: e_1_2_17_319_1
  doi: 10.1038/nplants.2016.185
– ident: e_1_2_17_12_1
  doi: 10.1093/jxb/ert330
– ident: e_1_2_17_186_1
  doi: 10.1105/tpc.15.00390
– ident: e_1_2_17_268_1
  doi: 10.1111/nph.13356
– ident: e_1_2_17_298_1
  doi: 10.1105/tpc.16.00891
– ident: e_1_2_17_317_1
  doi: 10.1016/j.cub.2012.09.043
– ident: e_1_2_17_164_1
  doi: 10.1126/science.1242736
– ident: e_1_2_17_303_1
  doi: 10.3389/fpls.2014.00065
– ident: e_1_2_17_356_1
  doi: 10.1038/nature14171
– ident: e_1_2_17_23_1
  doi: 10.1038/ncomms1046
– ident: e_1_2_17_171_1
  doi: 10.1371/journal.pbio.1000139
– ident: e_1_2_17_308_1
  doi: 10.1371/journal.pgen.1006832
– ident: e_1_2_17_117_1
  doi: 10.1105/tpc.17.00376
– ident: e_1_2_17_292_1
  doi: 10.1111/tpj.12425
– ident: e_1_2_17_82_1
  doi: 10.3389/fimmu.2013.00138
– ident: e_1_2_17_301_1
  doi: 10.1111/nph.13064
– ident: e_1_2_17_20_1
  doi: 10.1371/journal.ppat.1004491
– ident: e_1_2_17_103_1
  doi: 10.1016/j.cub.2007.05.036
– ident: e_1_2_17_327_1
  doi: 10.1038/nature20166
– ident: e_1_2_17_143_1
  doi: 10.1105/tpc.104.026765
– ident: e_1_2_17_125_1
  doi: 10.1016/j.it.2017.05.001
– ident: e_1_2_17_247_1
  doi: 10.1371/journal.ppat.1005596
– ident: e_1_2_17_234_1
  doi: 10.1111/nph.12817
– ident: e_1_2_17_81_1
  doi: 10.1094/MPMI-10-13-0304-R
– ident: e_1_2_17_58_1
  doi: 10.1105/tpc.10.11.1915
– ident: e_1_2_17_270_1
  doi: 10.1371/journal.ppat.1004809
– ident: e_1_2_17_256_1
  doi: 10.1105/tpc.022475
– ident: e_1_2_17_51_1
  doi: 10.1016/S1360-1385(00)01810-0
– ident: e_1_2_17_144_1
  doi: 10.1042/BJ20111112
– ident: e_1_2_17_168_1
  doi: 10.1073/pnas.1318817111
– ident: e_1_2_17_337_1
  doi: 10.1093/pcp/pcw104
– ident: e_1_2_17_214_1
  doi: 10.1111/nph.13944
– ident: e_1_2_17_149_1
  doi: 10.1111/pbi.12341
– ident: e_1_2_17_203_1
  doi: 10.1146/annurev-phyto-082712-102314
– ident: e_1_2_17_152_1
  doi: 10.1105/tpc.005579
– ident: e_1_2_17_274_1
  doi: 10.1105/tpc.112.107904
– ident: e_1_2_17_210_1
  doi: 10.1111/j.1365-313X.2010.04411.x
– ident: e_1_2_17_22_1
  doi: 10.1073/pnas.0609672104
– ident: e_1_2_17_71_1
  doi: 10.1074/jbc.M209880200
– ident: e_1_2_17_261_1
  doi: 10.15252/embj.201488645
– ident: e_1_2_17_19_1
  doi: 10.1038/nri3167
– ident: e_1_2_17_217_1
  doi: 10.1016/0092-8674(94)90423-5
– ident: e_1_2_17_309_1
  doi: 10.3389/fpls.2015.00911
– ident: e_1_2_17_34_1
  doi: 10.1038/nature21417
– ident: e_1_2_17_263_1
  doi: 10.1126/science.1242468
– ident: e_1_2_17_56_1
  doi: 10.1094/MPMI.2001.14.5.653
– ident: e_1_2_17_307_1
  doi: 10.1128/AEM.03297-12
– ident: e_1_2_17_78_1
  doi: 10.1104/pp.111.192575
– ident: e_1_2_17_40_1
  doi: 10.1038/ncomms3530
– ident: e_1_2_17_89_1
  doi: 10.1016/j.tim.2007.01.006
– ident: e_1_2_17_157_1
  doi: 10.1073/pnas.0502425102
– ident: e_1_2_17_271_1
  doi: 10.15252/embj.201488698
– ident: e_1_2_17_36_1
  doi: 10.1111/tpj.13458
– ident: e_1_2_17_46_1
  doi: 10.1111/nph.12408
– ident: e_1_2_17_111_1
  doi: 10.1016/j.molp.2016.10.006
– ident: e_1_2_17_180_1
  doi: 10.7554/eLife.00983
– ident: e_1_2_17_245_1
  doi: 10.3389/fpls.2016.00906
– ident: e_1_2_17_276_1
  doi: 10.1093/pcp/pcs113
– ident: e_1_2_17_139_1
  doi: 10.1105/tpc.112.097253
– ident: e_1_2_17_79_1
  doi: 10.1186/gb-2014-15-6-r87
– ident: e_1_2_17_197_1
  doi: 10.1146/annurev.arplant.56.032604.144204
– ident: e_1_2_17_179_1
  doi: 10.1016/j.tplants.2014.09.003
– ident: e_1_2_17_249_1
  doi: 10.1186/s12870-014-0374-4
– ident: e_1_2_17_194_1
  doi: 10.1371/journal.pbio.1000280
– ident: e_1_2_17_105_1
  doi: 10.1126/science.aaf3919
– ident: e_1_2_17_273_1
  doi: 10.1073/pnas.1614468114
– ident: e_1_2_17_333_1
  doi: 10.1073/pnas.0603729103
– ident: e_1_2_17_41_1
  doi: 10.1038/nature14243
– ident: e_1_2_17_340_1
  doi: 10.1126/science.1215584
– ident: e_1_2_17_287_1
  doi: 10.1038/nature00841
– ident: e_1_2_17_279_1
  doi: 10.1105/tpc.020834
– ident: e_1_2_17_109_1
  doi: 10.1371/journal.ppat.1004602
– ident: e_1_2_17_267_1
  doi: 10.1038/nrmicro1596
– ident: e_1_2_17_332_1
  doi: 10.1016/j.pbi.2011.05.001
– ident: e_1_2_17_225_1
  doi: 10.1073/pnas.1410031111
– ident: e_1_2_17_236_1
  doi: 10.1074/jbc.M110.116657
– ident: e_1_2_17_252_1
  doi: 10.1111/nph.13233
– ident: e_1_2_17_17_1
  doi: 10.1073/pnas.96.4.1756
– ident: e_1_2_17_212_1
  doi: 10.1371/journal.pone.0075039
– ident: e_1_2_17_233_1
  doi: 10.1104/pp.109.138669
– ident: e_1_2_17_253_1
  doi: 10.1111/j.1432-1033.1989.tb21084.x
– ident: e_1_2_17_230_1
  doi: 10.1104/pp.110.154963
– ident: e_1_2_17_65_1
  doi: 10.1146/annurev-micro-091213-112844
– ident: e_1_2_17_343_1
  doi: 10.1016/j.chom.2007.03.006
– ident: e_1_2_17_69_1
  doi: 10.1073/pnas.1203458110
– ident: e_1_2_17_47_1
  doi: 10.1146/annurev-phyto-080614-120114
– ident: e_1_2_17_42_1
  doi: 10.1038/nature05999
– ident: e_1_2_17_45_1
  doi: 10.1371/journal.ppat.1005518
– ident: e_1_2_17_200_1
  doi: 10.1073/pnas.1113893109
– ident: e_1_2_17_76_1
  doi: 10.1104/pp.113.216077
– ident: e_1_2_17_316_1
  doi: 10.1111/j.1365-313X.2011.04659.x
– ident: e_1_2_17_320_1
  doi: 10.1038/nature16975
– ident: e_1_2_17_62_1
  doi: 10.1073/pnas.1221294110
– ident: e_1_2_17_28_1
  doi: 10.1073/pnas.1205171109
– ident: e_1_2_17_220_1
  doi: 10.1074/jbc.M708106200
– ident: e_1_2_17_118_1
  doi: 10.1105/tpc.110.081794
– ident: e_1_2_17_192_1
  doi: 10.1104/pp.113.234625
– ident: e_1_2_17_64_1
  doi: 10.1111/nph.13542
– ident: e_1_2_17_167_1
  doi: 10.1073/pnas.1302154110
– ident: e_1_2_17_108_1
  doi: 10.1016/j.cell.2016.02.028
– ident: e_1_2_17_121_1
  doi: 10.1038/nature05286
– ident: e_1_2_17_250_1
  doi: 10.1038/ni.3124
– ident: e_1_2_17_193_1
  doi: 10.1105/tpc.111.084996
– ident: e_1_2_17_244_1
  doi: 10.1038/emboj.2008.147
– ident: e_1_2_17_182_1
  doi: 10.1073/pnas.0909705107
– ident: e_1_2_17_50_1
  doi: 10.1104/pp.110.159723
– ident: e_1_2_17_126_1
  doi: 10.1073/pnas.0508882103
– ident: e_1_2_17_330_1
  doi: 10.15252/embj.201591807
– ident: e_1_2_17_354_1
  doi: 10.1038/nature02485
– ident: e_1_2_17_16_1
  doi: 10.1074/mcp.M600429-MCP200
– ident: e_1_2_17_59_1
  doi: 10.1126/science.1148110
– ident: e_1_2_17_285_1
  doi: 10.1105/tpc.112.104463
– ident: e_1_2_17_302_1
  doi: 10.1111/mpp.12444
– ident: e_1_2_17_122_1
  doi: 10.1126/science.7973631
– ident: e_1_2_17_334_1
  doi: 10.1105/tpc.109.068874
– ident: e_1_2_17_325_1
  doi: 10.1105/tpc.107.055624
– ident: e_1_2_17_227_1
  doi: 10.1073/pnas.1605588113
– ident: e_1_2_17_241_1
  doi: 10.1046/j.1364-3703.2003.00196.x
– ident: e_1_2_17_178_1
  doi: 10.1038/nri1594
– ident: e_1_2_17_293_1
  doi: 10.1016/S0981-9428(02)00018-9
– ident: e_1_2_17_352_1
  doi: 10.1038/nature10510
– ident: e_1_2_17_30_1
  doi: 10.7554/eLife.25114
– ident: e_1_2_17_159_1
  doi: 10.1016/j.chom.2014.02.009
– ident: e_1_2_17_73_1
  doi: 10.1038/nature10962
– volume: 8
  start-page: pii: e25345
  year: 2013
  ident: e_1_2_17_213_1
  article-title: Presence of LYM2 dependent but CERK1 independent disease resistance in Arabidopsis
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.25345
– ident: e_1_2_17_87_1
  doi: 10.1046/j.1365-313X.1999.00451.x
– ident: e_1_2_17_275_1
  doi: 10.1111/j.1365-313X.2010.04324.x
– ident: e_1_2_17_322_1
  doi: 10.1046/j.1529-8817.1999.3540747.x
– ident: e_1_2_17_60_1
  doi: 10.1016/j.pbi.2013.06.010
– ident: e_1_2_17_98_1
  doi: 10.1111/j.1365-313X.2006.02981.x
– ident: e_1_2_17_226_1
  doi: 10.1073/pnas.90.17.8273
– ident: e_1_2_17_289_1
  doi: 10.1105/tpc.105.037648
– ident: e_1_2_17_18_1
  doi: 10.1073/pnas.0810206106
– ident: e_1_2_17_202_1
  doi: 10.1104/pp.16.01853
– ident: e_1_2_17_183_1
  doi: 10.1126/science.1204903
– ident: e_1_2_17_265_1
  doi: 10.1073/pnas.1511847113
– ident: e_1_2_17_107_1
  doi: 10.1038/nplants.2016.128
– ident: e_1_2_17_80_1
  doi: 10.1105/tpc.16.00654
– ident: e_1_2_17_290_1
  doi: 10.1105/tpc.112.095919
– ident: e_1_2_17_311_1
  doi: 10.1371/journal.pgen.1006068
– ident: e_1_2_17_25_1
  doi: 10.1038/nature08794
– ident: e_1_2_17_329_1
  doi: 10.15252/embj.201694248
– ident: e_1_2_17_43_1
  doi: 10.1186/s12870-016-0921-2
– ident: e_1_2_17_77_1
  doi: 10.1111/j.1600-065X.2011.01037.x
– ident: e_1_2_17_324_1
  doi: 10.1073/pnas.1112862108
– ident: e_1_2_17_84_1
  doi: 10.1016/j.chom.2009.05.019
– ident: e_1_2_17_33_1
  doi: 10.7554/eLife.03766
– ident: e_1_2_17_91_1
  doi: 10.1074/jbc.M704886200
– ident: e_1_2_17_235_1
  doi: 10.1094/MPMI-12-14-0405-R
– ident: e_1_2_17_310_1
  doi: 10.1111/nph.13425
– ident: e_1_2_17_7_1
  doi: 10.1111/j.1364-3703.2009.00537.x
– ident: e_1_2_17_119_1
  doi: 10.1105/tpc.113.110833
– volume: 50
  start-page: 413
  year: 1998
  ident: e_1_2_17_246_1
  article-title: Receptors for purines and pyrimidines
  publication-title: Pharmacol. Rev.
  doi: 10.1016/S0031-6997(24)01373-5
– ident: e_1_2_17_286_1
  doi: 10.1126/science.aal2541
– ident: e_1_2_17_114_1
  doi: 10.1073/pnas.1214668110
– ident: e_1_2_17_264_1
  doi: 10.1093/jxb/erq219
– ident: e_1_2_17_123_1
  doi: 10.1016/j.molcel.2014.02.021
– ident: e_1_2_17_94_1
  doi: 10.1038/ncomms11362
– ident: e_1_2_17_124_1
  doi: 10.1093/pcp/pcv063
– ident: e_1_2_17_26_1
  doi: 10.1146/annurev-phyto-080614-120106
– ident: e_1_2_17_68_1
  doi: 10.1105/tpc.113.121111
– ident: e_1_2_17_27_1
  doi: 10.1073/pnas.1706795114
– ident: e_1_2_17_306_1
  doi: 10.1016/j.cub.2008.07.085
– ident: e_1_2_17_199_1
  doi: 10.1073/pnas.1606004113
– ident: e_1_2_17_14_1
  doi: 10.1016/j.tibs.2014.06.006
– ident: e_1_2_17_75_1
  doi: 10.1074/jbc.M308552200
– ident: e_1_2_17_156_1
  doi: 10.1016/S0092-8674(02)00812-7
– ident: e_1_2_17_328_1
  doi: 10.1126/science.aah5692
– ident: e_1_2_17_331_1
  doi: 10.1093/pcp/pcx042
– ident: e_1_2_17_8_1
  doi: 10.1038/ni1253
– volume: 171
  start-page: 1344
  year: 2016
  ident: e_1_2_17_140_1
  article-title: Two redundant receptor‐like cytoplasmic kinases function downstream of pattern recognition receptors to regulate activation of SA biosynthesis
  publication-title: Plant Physiol.
– ident: e_1_2_17_153_1
  doi: 10.1105/tpc.114.132308
– year: 2017
  ident: e_1_2_17_154_1
  article-title: Plant elicitor peptides promote plant defences against nematodes in soybean
  publication-title: Mol. Plant Pathol.
– ident: e_1_2_17_349_1
  doi: 10.1371/journal.pone.0120245
– ident: e_1_2_17_133_1
  doi: 10.1016/j.cub.2007.05.046
– ident: e_1_2_17_353_1
  doi: 10.1038/nature22009
– ident: e_1_2_17_166_1
  doi: 10.1016/j.tplants.2013.10.003
– ident: e_1_2_17_176_1
  doi: 10.1093/jxb/err291
– ident: e_1_2_17_205_1
  doi: 10.1093/pcp/pcu129
– ident: e_1_2_17_238_1
  doi: 10.1094/MPMI.2003.16.6.553
– ident: e_1_2_17_24_1
  doi: 10.1126/science.212.4490.67
– ident: e_1_2_17_97_1
  doi: 10.1016/j.cub.2013.11.047
– ident: e_1_2_17_90_1
  doi: 10.1016/j.pbi.2014.07.007
– ident: e_1_2_17_9_1
  doi: 10.1038/ni.2406
– ident: e_1_2_17_127_1
  doi: 10.1104/pp.114.250985
– ident: e_1_2_17_173_1
  doi: 10.1126/science.1218867
– ident: e_1_2_17_32_1
  doi: 10.1371/journal.ppat.1002130
– ident: e_1_2_17_92_1
  doi: 10.1016/j.tplants.2017.07.005
– ident: e_1_2_17_134_1
  doi: 10.1126/science.1195211
– ident: e_1_2_17_344_1
  doi: 10.1186/1471-2148-9-183
– ident: e_1_2_17_110_1
  doi: 10.1371/journal.ppat.1004331
– ident: e_1_2_17_224_1
  doi: 10.1073/pnas.98.2.759
– ident: e_1_2_17_196_1
  doi: 10.1186/1471-2164-12-49
– ident: e_1_2_17_335_1
  doi: 10.1016/j.chom.2013.02.007
– ident: e_1_2_17_161_1
  doi: 10.7554/eLife.06587
– ident: e_1_2_17_99_1
  doi: 10.1021/bi8001488
– ident: e_1_2_17_314_1
  doi: 10.1038/ncomms12151
– ident: e_1_2_17_177_1
  doi: 10.1093/jxb/erv236
– ident: e_1_2_17_348_1
  doi: 10.1104/pp.113.230698
– ident: e_1_2_17_259_1
  doi: 10.1126/science.1206095
– ident: e_1_2_17_195_1
  doi: 10.1038/nmicrobiol.2016.43
– ident: e_1_2_17_3_1
  doi: 10.1038/nplants.2015.140
– ident: e_1_2_17_13_1
  doi: 10.1094/MPMI-23-1-0058
– ident: e_1_2_17_145_1
  doi: 10.1038/nbt.1613
– ident: e_1_2_17_266_1
  doi: 10.1073/pnas.132266499
– ident: e_1_2_17_132_1
  doi: 10.1074/jbc.M110.160531
– ident: e_1_2_17_55_1
  doi: 10.1093/mp/ssn019
– ident: e_1_2_17_318_1
  doi: 10.1111/tpj.12450
– ident: e_1_2_17_181_1
  doi: 10.1073/pnas.0907711106
– ident: e_1_2_17_206_1
  doi: 10.1128/JB.01757-07
– ident: e_1_2_17_88_1
  doi: 10.1016/j.tplants.2014.11.008
– ident: e_1_2_17_131_1
  doi: 10.1080/15592324.2017.1361076
– ident: e_1_2_17_232_1
  doi: 10.1073/pnas.201416998
– ident: e_1_2_17_326_1
  doi: 10.1016/j.pbi.2013.07.002
– ident: e_1_2_17_260_1
  doi: 10.1105/tpc.111.084301
– ident: e_1_2_17_284_1
  doi: 10.1111/nph.13345
– ident: e_1_2_17_5_1
  doi: 10.1073/pnas.0706403104
– ident: e_1_2_17_100_1
  doi: 10.1126/science.1244454
– ident: e_1_2_17_228_1
  doi: 10.1371/journal.pbio.0060231
– ident: e_1_2_17_148_1
  doi: 10.1111/nph.12043
– ident: e_1_2_17_146_1
  doi: 10.1111/nph.13411
– ident: e_1_2_17_231_1
  doi: 10.1126/science.253.5022.895
– ident: e_1_2_17_346_1
  doi: 10.1016/j.chom.2012.01.015
– ident: e_1_2_17_101_1
  doi: 10.1073/pnas.1312099111
– ident: e_1_2_17_219_1
  doi: 10.1074/jbc.M109.058909
– ident: e_1_2_17_255_1
  doi: 10.1007/s11103-007-9173-8
– ident: e_1_2_17_128_1
  doi: 10.1094/MPMI-04-10-0099
– ident: e_1_2_17_11_1
  doi: 10.1093/jxb/erv180
– ident: e_1_2_17_135_1
  doi: 10.1111/j.1469-8137.2004.01043.x
– ident: e_1_2_17_162_1
  doi: 10.1016/j.chom.2016.09.007
– ident: e_1_2_17_31_1
  doi: 10.1371/journal.ppat.1003080
– ident: e_1_2_17_155_1
  doi: 10.1038/ni922
– ident: e_1_2_17_49_1
  doi: 10.1371/journal.ppat.1005811
– ident: e_1_2_17_272_1
  doi: 10.1111/nph.13031
– ident: e_1_2_17_137_1
  doi: 10.1104/pp.012187
– ident: e_1_2_17_254_1
  doi: 10.1101/gad.366506
– ident: e_1_2_17_44_1
  doi: 10.1126/science.343.6168.290
– ident: e_1_2_17_221_1
  doi: 10.1073/pnas.1302360110
– ident: e_1_2_17_174_1
  doi: 10.1073/pnas.1215543110
– ident: e_1_2_17_258_1
  doi: 10.1002/embj.201284303
– ident: e_1_2_17_215_1
  doi: 10.1126/science.1086716
– ident: e_1_2_17_262_1
  doi: 10.1038/emboj.2009.263
– ident: e_1_2_17_86_1
  doi: 10.1016/S1097-2765(00)80265-8
– ident: e_1_2_17_96_1
  doi: 10.1073/pnas.92.10.4150
– volume: 72
  start-page: 782
  year: 2016
  ident: e_1_2_17_163_1
  article-title: X‐ray crystallographic studies of the extracellular domain of the first plant ATP receptor, DORN1, and the orthologous protein from Camelina sativa
  publication-title: Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.
  doi: 10.1107/S2053230X16014278
– ident: e_1_2_17_165_1
  doi: 10.7554/eLife.13568
– ident: e_1_2_17_198_1
  doi: 10.1111/nph.13306
– ident: e_1_2_17_237_1
  doi: 10.1016/j.pbi.2015.06.001
– ident: e_1_2_17_201_1
  doi: 10.1126/science.1549783
– ident: e_1_2_17_229_1
  doi: 10.1038/nrmicro1987
– ident: e_1_2_17_204_1
  doi: 10.1073/pnas.0705147104
– ident: e_1_2_17_48_1
  doi: 10.1038/nri.2016.77
– ident: e_1_2_17_315_1
  doi: 10.1105/tpc.107.056754
– ident: e_1_2_17_300_1
  doi: 10.1105/tpc.9.12.2209
– volume: 41
  start-page: e553
  issue: 555
  year: 2017
  ident: e_1_2_17_93_1
  article-title: Phosphate starvation‐dependent iron mobilization induces CLE14 expression to trigger root meristem differentiation through CLV2/PEPR2 signaling
  publication-title: Dev. Cell
– ident: e_1_2_17_189_1
  doi: 10.1038/nature09622
– ident: e_1_2_17_305_1
  doi: 10.1111/nph.12592
– ident: e_1_2_17_150_1
  doi: 10.1093/jxb/ert195
– ident: e_1_2_17_207_1
  doi: 10.1016/j.chom.2014.10.007
– ident: e_1_2_17_216_1
  doi: 10.1111/j.1365-313X.2007.03192.x
– ident: e_1_2_17_112_1
  doi: 10.1073/pnas.0603727103
– ident: e_1_2_17_297_1
  doi: 10.3389/fpls.2014.00446
– ident: e_1_2_17_338_1
  doi: 10.1016/j.pbi.2017.04.007
– ident: e_1_2_17_242_1
  doi: 10.1073/pnas.1000191107
– ident: e_1_2_17_223_1
  doi: 10.1038/nplants.2015.218
– ident: e_1_2_17_280_1
  doi: 10.1104/pp.113.229179
– ident: e_1_2_17_257_1
  doi: 10.1126/science.1111404
– ident: e_1_2_17_175_1
  doi: 10.7554/eLife.01990
– ident: e_1_2_17_52_1
  doi: 10.1105/tpc.111.093039
– ident: e_1_2_17_72_1
  doi: 10.1046/j.1365-313X.1999.00265.x
– ident: e_1_2_17_129_1
  doi: 10.1094/MPMI-11-14-0372-R
– ident: e_1_2_17_341_1
  doi: 10.1146/annurev-phyto-080516-035649
– ident: e_1_2_17_57_1
  doi: 10.1016/S0092-8674(00)81290-8
– volume: 12
  start-page: 192
  year: 2016
  ident: e_1_2_17_313_1
  article-title: The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health
  publication-title: New Phytol.
  doi: 10.1111/nph.14036
– reference: 29607591 - Plant J. 2018 Apr;94(2):405
SSID ssj0017364
Score 2.6679134
SecondaryResourceType review_article
Snippet Summary Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of...
Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe‐...
Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe-...
Summary Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 592
SubjectTerms Biological evolution
Colonization
Commensals
convergent evolution
Damage detection
Damage patterns
damage‐associated molecular patterns
Disease Resistance
Host-Pathogen Interactions
Immunity
Innate immunity
Intracellular signalling
inventories
Kinases
microbe‐associated molecular patterns
Microorganisms
Oomycetes - pathogenicity
Pathogen-Associated Molecular Pattern Molecules - metabolism
Pathogens
Pattern recognition
Pattern recognition receptors
phosphotransferases (kinases)
Plant Diseases - immunology
Plant Diseases - microbiology
plant immunity
Plant Immunity - physiology
plant–microbe interactions
plasticity
Proteins
Receptors
Receptors, Pattern Recognition
receptor‐like kinase
receptor‐like protein
Regulatory mechanisms (biology)
Signal Transduction
signaling
Symbionts
Variation
Title Pattern recognition receptors and signaling in plant–microbe interactions
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.13808
https://www.ncbi.nlm.nih.gov/pubmed/29266555
https://www.proquest.com/docview/1994337982
https://www.proquest.com/docview/1979510521
https://www.proquest.com/docview/2067287740
Volume 93
WOSCitedRecordID wos000424221200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1365-313X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0017364
  issn: 0960-7412
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-313X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017364
  issn: 0960-7412
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS-QwEB9E98EXT-_UW12lig--FLZtspnik97dcn9kWQ7FfStJmoKg3WV3FXzzO_gN_STOpN2i3AkH91KmdAppkkl-08z8BuBIx0XacxZDnYgkFD3pQtTMRcjOB_aiwgnri02owQBHo3S4BCeLXJiKH6L54caW4ddrNnBtZq-MfD7hGC3kRN-ViAWmdRbD5ghBJRV3FEH0kLbNuKYV4jCe5tW3m9EfCPMtYPU7Tv_Df7V1HdZqoBmcVjNjA5Zc-RFaZ2MCgw-f4NfQ82qWQRNANPaym3D1nUCXecCRHZqT1YPrMpjc0Ag8Pz7dcvyecQGzTEyrnIjZJlz2v118-R7WdRVCS-4Jhuwz5WiNKZQVKQpdxHkupJZolEXZ7dq0ELHWpC2NUrnJhZVSq9Q6slmXJFuwXI5L9xkCZ2mNMAZRGBSRjlONkcpzRV5XIYzsteF40cGZrUnHufbFTbZwPqhrMt81bThsVCcV08bflDqLUcpqY5tlTG-cJCrFuA0HzWMyEz770KUb37GO8lgyjt7XYSZ7ciCV6LZhu5oBTUvilJCMlJI-yA_0-03MLoY_vbDz76q7sEpADKto8A4sz6d3bg9a9n5-PZvu-3lNVzXCfVj5-rt_eU53Vz8GL2ct_rE
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kFfTi-7E-q3jwUti2ySYFLyqKz2UPK3orSZrCgnaX3VXw5n_wH_pLnEm7RVFB8BbolKaTTPJNMvMNwL4Ks7hpjfRVxCKfNbn1pSIuQnI-ZDPILDOu2IRoteT9fdyegMNxLkzBD1EduJFluPWaDJwOpD9Z-ahPQVqSMn0n8SMNKtxwd9Gq7hBEVJBHIUb3cd8MS14hiuOpXv26G32DmF8Rq9tyzub-19l5mC2hpndUzI0FmLD5Ikwd9xAOvizBVdsxa-ZeFULUc23bp_o7nspTj2I7FKWre93c6z_gGLy_vj1SBJ-2HvFMDIqsiOEy3J6ddk7O_bKygm_QQZE-eU2pNFpnwrBYMpWFacq44lILI1GVJs5YqBRKcy1EqlNmOFciNhat1kbRCtTyXm7XwLMGVwmtpWRaskCFsZKBSFOBflfGNG_W4WCs4cSUtONU_eIhGbsfqJrEqaYOe5Vov-Da-EloczxMSWluw4QIjqNIxDKsw271GA2Fbj9UbntPJCMcmgyD32WIyx5dSMEadVgtpkDVkzBGLMM5xx9yI_17F5NO-9I11v8uugPT552b6-T6onW1ATMIy2QRG74JtdHgyW7BlHkedYeDbTfJPwA67_9y
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kinjx_ajPKB68BNpkt7sBL76Kj1KKtOAt7CtQ0DS0VfDmf_Af-kvc2aRB0YLgbSET2OzM7H6TnfkG4FgESdQwivsiJKFPGtT4XCAXIQYfvFFPDFGu2QRrt_nDQ9SZgdNJLUzOD1H-cEPPcPs1OrjJdPLFy8cZJmlxrPSdJdhEpgKzl_fNXqu8RWBhTh9lUbpvT86gYBbCTJ7y5e_n0Q-Q-R2zukOnufS_6S7DYgE2vbPcOlZgxqSrMHc-sIDwdQ3uOo5bM_XKJKKBG5sMO_B4ItUeZncILFj3-qmXPVotfLy9P2EOnzQeMk0M87qI0Tr0mlfdi2u_6K3gKxuicB_jJs2VlAlTJOJEJIHWhArKJVOc1moqSkgghJWmkjEtNVGUChYpY_3WhOEGVNJBarbAM8ruE1JyTiQndRFEgteZ1sxGXgmRtFGFk8kKx6ogHsf-F4_xJACxSxO7panCUSma5WwbvwntTtQUFw43ipHiOAxZxIMqHJaPravg_YdIzeAZZZjDk0F9ugyy2dsgkpFaFTZzEyhnEkQWzVBK7Qc5TU-fYtzt3LrB9t9FD2C-c9mMWzftux1YsLiM58nhu1AZD5_NHsypl3F_NNwvrPwT0x0AKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pattern+recognition+receptors+and+signaling+in+plant-microbe+interactions&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Saijo%2C+Yusuke&rft.au=Loo%2C+Eliza+Po-Iian&rft.au=Yasuda%2C+Shigetaka&rft.date=2018-02-01&rft.issn=1365-313X&rft.eissn=1365-313X&rft.volume=93&rft.issue=4&rft.spage=592&rft_id=info:doi/10.1111%2Ftpj.13808&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon