Pattern recognition receptors and signaling in plant–microbe interactions
Summary Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe‐ and host damage‐associated molecular patterns leads to the first layer of inducible defenses, termed pattern‐triggered immunity (PTI)....
Uložené v:
| Vydané v: | The Plant journal : for cell and molecular biology Ročník 93; číslo 4; s. 592 - 613 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Blackwell Publishing Ltd
01.02.2018
|
| Predmet: | |
| ISSN: | 0960-7412, 1365-313X, 1365-313X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Summary
Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe‐ and host damage‐associated molecular patterns leads to the first layer of inducible defenses, termed pattern‐triggered immunity (PTI). In plants, pattern recognition receptors (PRRs) described to date are all membrane‐associated receptor‐like kinases or receptor‐like proteins, reflecting the prevalence of apoplastic colonization of plant‐infecting microbes. An increasing inventory of elicitor‐active patterns and PRRs indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRRs in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRRs are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR‐mediated pathogen recognition and disease resistance, and also an emerging role for PRRs in homeostatic association with beneficial or commensal microbes.
Significance Statement
In plants, pattern recognition receptors detect microbe‐associated and host damage‐associated molecular patterns in the extracellular spaces, and thereby trigger intracellular signaling that culminates in an enhanced state of immunity. An increasing inventory of elicitor‐active patterns and their receptors helps us to learn the molecular principles with which plants recognize and deal with a rich diversity of infectious microorganisms, ranging from pathogens, symbionts and commensals, in fluctuating environments. |
|---|---|
| AbstractList | Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe‐ and host damage‐associated molecular patterns leads to the first layer of inducible defenses, termed pattern‐triggered immunity (PTI). In plants, pattern recognition receptors (PRRs) described to date are all membrane‐associated receptor‐like kinases or receptor‐like proteins, reflecting the prevalence of apoplastic colonization of plant‐infecting microbes. An increasing inventory of elicitor‐active patterns and PRRs indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRRs in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRRs are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR‐mediated pathogen recognition and disease resistance, and also an emerging role for PRRs in homeostatic association with beneficial or commensal microbes. Summary Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe- and host damage-associated molecular patterns leads to the first layer of inducible defenses, termed pattern-triggered immunity (PTI). In plants, pattern recognition receptors (PRRs) described to date are all membrane-associated receptor-like kinases or receptor-like proteins, reflecting the prevalence of apoplastic colonization of plant-infecting microbes. An increasing inventory of elicitor-active patterns and PRRs indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRRs in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRRs are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR-mediated pathogen recognition and disease resistance, and also an emerging role for PRRs in homeostatic association with beneficial or commensal microbes. Significance Statement In plants, pattern recognition receptors detect microbe-associated and host damage-associated molecular patterns in the extracellular spaces, and thereby trigger intracellular signaling that culminates in an enhanced state of immunity. An increasing inventory of elicitor-active patterns and their receptors helps us to learn the molecular principles with which plants recognize and deal with a rich diversity of infectious microorganisms, ranging from pathogens, symbionts and commensals, in fluctuating environments. Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe‐ and host damage‐associated molecular patterns leads to the first layer of inducible defenses, termed pattern‐triggered immunity ( PTI ). In plants, pattern recognition receptors ( PRR s) described to date are all membrane‐associated receptor‐like kinases or receptor‐like proteins, reflecting the prevalence of apoplastic colonization of plant‐infecting microbes. An increasing inventory of elicitor‐active patterns and PRR s indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRR s in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRR s are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR ‐mediated pathogen recognition and disease resistance, and also an emerging role for PRR s in homeostatic association with beneficial or commensal microbes. In plants, pattern recognition receptors detect microbe‐associated and host damage‐associated molecular patterns in the extracellular spaces, and thereby trigger intracellular signaling that culminates in an enhanced state of immunity. An increasing inventory of elicitor‐active patterns and their receptors helps us to learn the molecular principles with which plants recognize and deal with a rich diversity of infectious microorganisms, ranging from pathogens, symbionts and commensals, in fluctuating environments. Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe- and host damage-associated molecular patterns leads to the first layer of inducible defenses, termed pattern-triggered immunity (PTI). In plants, pattern recognition receptors (PRRs) described to date are all membrane-associated receptor-like kinases or receptor-like proteins, reflecting the prevalence of apoplastic colonization of plant-infecting microbes. An increasing inventory of elicitor-active patterns and PRRs indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRRs in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRRs are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR-mediated pathogen recognition and disease resistance, and also an emerging role for PRRs in homeostatic association with beneficial or commensal microbes.Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe- and host damage-associated molecular patterns leads to the first layer of inducible defenses, termed pattern-triggered immunity (PTI). In plants, pattern recognition receptors (PRRs) described to date are all membrane-associated receptor-like kinases or receptor-like proteins, reflecting the prevalence of apoplastic colonization of plant-infecting microbes. An increasing inventory of elicitor-active patterns and PRRs indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRRs in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRRs are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR-mediated pathogen recognition and disease resistance, and also an emerging role for PRRs in homeostatic association with beneficial or commensal microbes. Summary Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe‐ and host damage‐associated molecular patterns leads to the first layer of inducible defenses, termed pattern‐triggered immunity (PTI). In plants, pattern recognition receptors (PRRs) described to date are all membrane‐associated receptor‐like kinases or receptor‐like proteins, reflecting the prevalence of apoplastic colonization of plant‐infecting microbes. An increasing inventory of elicitor‐active patterns and PRRs indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRRs in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRRs are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR‐mediated pathogen recognition and disease resistance, and also an emerging role for PRRs in homeostatic association with beneficial or commensal microbes. Significance Statement In plants, pattern recognition receptors detect microbe‐associated and host damage‐associated molecular patterns in the extracellular spaces, and thereby trigger intracellular signaling that culminates in an enhanced state of immunity. An increasing inventory of elicitor‐active patterns and their receptors helps us to learn the molecular principles with which plants recognize and deal with a rich diversity of infectious microorganisms, ranging from pathogens, symbionts and commensals, in fluctuating environments. |
| Author | Loo, Eliza Po‐iian Saijo, Yusuke Yasuda, Shigetaka |
| Author_xml | – sequence: 1 givenname: Yusuke surname: Saijo fullname: Saijo, Yusuke email: saijo@bs.naist.jp organization: Nara Institute of Science and Technology – sequence: 2 givenname: Eliza Po‐iian surname: Loo fullname: Loo, Eliza Po‐iian organization: Nara Institute of Science and Technology – sequence: 3 givenname: Shigetaka surname: Yasuda fullname: Yasuda, Shigetaka organization: Nara Institute of Science and Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29266555$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkbtKBDEYhYMoul4KX0AGbLQYzXWSlCLeBS0U7EImk1myzGbGJIvY-Q6-oU9i1l0bUUzzh5_vHJJzNsGq770FYBfBI5TPcRomR4gIKFbACJGKlQSRp1UwgrKCJacIb4DNGCcQIk4qug42sMRVxRgbgZt7nZINvgjW9GPvkuu_7nZIfYiF9k0R3djrzvlx4XwxdNqnj7f3qTOhr21eZbU2c1ncBmut7qLdWc4t8Hh-9nB6Wd7eXVydntyWhgouygpJ3AhT1y03VAqqW9w0lGkmam4Eg9DIlmKtM81qzpu6oYYxzaWxEDJLyBY4WPgOoX-e2ZjU1EVju_w028-iwrDiWHBO4b8oklwyBBlGGd3_gU76Wcg_n1OSEsKlwJnaW1KzemobNQQ31eFVfSeageMFkPOJMdhWGZf0PJ8UtOsUgmremcqdqa_OsuLwh-Lb9Dd26f7iOvv6N6ge7q8Xik_aDaZc |
| CitedBy_id | crossref_primary_10_1111_nph_70216 crossref_primary_10_1016_j_molp_2023_04_004 crossref_primary_10_1021_acs_jafc_5c06182 crossref_primary_10_3389_fpls_2024_1305855 crossref_primary_10_3390_ijms232214435 crossref_primary_10_3389_fpls_2021_746586 crossref_primary_10_1093_hr_uhad086 crossref_primary_10_1111_tpj_13812 crossref_primary_10_3389_fpls_2022_1026575 crossref_primary_10_3389_fpls_2022_1105591 crossref_primary_10_1093_plphys_kiab419 crossref_primary_10_3390_plants9040516 crossref_primary_10_1007_s00572_020_00934_2 crossref_primary_10_1093_g3journal_jkab378 crossref_primary_10_1111_jipb_13892 crossref_primary_10_1007_s11104_020_04423_5 crossref_primary_10_3390_plants11182342 crossref_primary_10_3389_fpls_2019_01241 crossref_primary_10_1016_j_ejop_2025_126158 crossref_primary_10_1093_plphys_kiad263 crossref_primary_10_1111_tpj_16895 crossref_primary_10_3389_fpls_2021_780805 crossref_primary_10_1111_nph_19194 crossref_primary_10_3390_plants13101420 crossref_primary_10_3389_fpls_2024_1353024 crossref_primary_10_1016_j_plantsci_2022_111321 crossref_primary_10_1146_annurev_phyto_020620_114826 crossref_primary_10_1094_MPMI_08_21_0211_R crossref_primary_10_1093_jxb_erab517 crossref_primary_10_3389_fmicb_2022_935675 crossref_primary_10_1016_j_gene_2021_146049 crossref_primary_10_1016_j_pbi_2022_102269 crossref_primary_10_1186_s13227_025_00241_x crossref_primary_10_1111_tpj_17035 crossref_primary_10_3390_biology10090920 crossref_primary_10_1051_bioconf_202518402005 crossref_primary_10_1111_tpj_16502 crossref_primary_10_3390_jof11010039 crossref_primary_10_1016_j_sajb_2025_02_028 crossref_primary_10_1111_nph_70352 crossref_primary_10_3390_jof10120831 crossref_primary_10_1007_s00203_023_03643_4 crossref_primary_10_3390_plants11172203 crossref_primary_10_1038_s41477_021_00982_2 crossref_primary_10_1080_15592324_2022_2034270 crossref_primary_10_1007_s00344_025_11691_x crossref_primary_10_1038_s41467_021_25580_w crossref_primary_10_1016_j_celrep_2025_115672 crossref_primary_10_1186_s42483_024_00289_y crossref_primary_10_1111_pce_14893 crossref_primary_10_1128_JB_00419_20 crossref_primary_10_1094_PHYTO_10_20_0449_R crossref_primary_10_1111_oik_09352 crossref_primary_10_3389_fpls_2020_01236 crossref_primary_10_1371_journal_pone_0297124 crossref_primary_10_1016_j_ijbiomac_2025_140484 crossref_primary_10_3389_fpls_2021_829645 crossref_primary_10_3389_fpls_2021_805614 crossref_primary_10_3390_genes14010054 crossref_primary_10_3390_ijms26062590 crossref_primary_10_1111_nph_15497 crossref_primary_10_1111_ppl_14150 crossref_primary_10_1007_s10340_024_01860_4 crossref_primary_10_3389_fpls_2022_910594 crossref_primary_10_1073_pnas_2022904117 crossref_primary_10_3389_fpls_2018_01271 crossref_primary_10_1093_plcell_koac040 crossref_primary_10_1371_journal_pone_0236633 crossref_primary_10_3390_genes12111789 crossref_primary_10_1016_j_xplc_2024_101195 crossref_primary_10_1094_PHYTO_09_18_0334_IA crossref_primary_10_1016_j_ijmm_2019_04_004 crossref_primary_10_1109_TCBBIO_2025_3562082 crossref_primary_10_1016_j_cpb_2024_100367 crossref_primary_10_1093_aob_mcaa061 crossref_primary_10_1093_hr_uhae148 crossref_primary_10_1016_j_tplants_2024_11_010 crossref_primary_10_3390_ijms241210395 crossref_primary_10_1111_jipb_13739 crossref_primary_10_3390_plants11030386 crossref_primary_10_1186_s12284_025_00822_3 crossref_primary_10_1186_s12864_021_08157_1 crossref_primary_10_1093_plphys_kiab330 crossref_primary_10_1111_ppa_13468 crossref_primary_10_1016_j_microb_2025_100372 crossref_primary_10_3390_ani15182753 crossref_primary_10_1016_j_devcel_2025_04_006 crossref_primary_10_1038_s41598_020_79562_x crossref_primary_10_1094_MPMI_34_4 crossref_primary_10_3389_fpls_2024_1377937 crossref_primary_10_1094_MPMI_34_1 crossref_primary_10_1007_s00344_020_10129_w crossref_primary_10_1186_s12864_020_06806_5 crossref_primary_10_1007_s11262_021_01881_6 crossref_primary_10_1016_j_jare_2024_10_024 crossref_primary_10_1093_jxb_ery294 crossref_primary_10_3389_fpls_2021_756357 crossref_primary_10_1093_plcell_koac300 crossref_primary_10_3103_S0095452722010108 crossref_primary_10_1016_j_rsci_2024_12_003 crossref_primary_10_1093_aob_mcac013 crossref_primary_10_1186_s12870_024_04829_8 crossref_primary_10_1002_ps_70041 crossref_primary_10_1007_s11816_023_00876_z crossref_primary_10_1007_s10327_018_0828_x crossref_primary_10_1109_ACCESS_2020_2982456 crossref_primary_10_3389_fpls_2021_692328 crossref_primary_10_3390_ijms21218052 crossref_primary_10_1371_journal_pone_0310929 crossref_primary_10_1007_s11274_025_04253_6 crossref_primary_10_1186_s40538_024_00684_9 crossref_primary_10_3389_fmicb_2024_1482789 crossref_primary_10_1094_MPMI_09_18_0263_R crossref_primary_10_1016_j_molp_2024_09_008 crossref_primary_10_1094_MPMI_07_21_0185_FI crossref_primary_10_3390_ijms23105312 crossref_primary_10_3390_ijms26083683 crossref_primary_10_1016_j_mib_2019_10_004 crossref_primary_10_3389_fpls_2023_1231013 crossref_primary_10_1186_s12870_021_03150_y crossref_primary_10_1016_j_pbi_2021_102044 crossref_primary_10_3389_fmicb_2020_01298 crossref_primary_10_3390_plants11223129 crossref_primary_10_1111_nph_17122 crossref_primary_10_1002_tpg2_20092 crossref_primary_10_1016_j_rhisph_2022_100524 crossref_primary_10_1007_s00425_022_03994_0 crossref_primary_10_1007_s00425_023_04310_0 crossref_primary_10_3389_fmicb_2020_01619 crossref_primary_10_1016_j_cell_2023_04_027 crossref_primary_10_1094_MPMI_08_21_0207_FI crossref_primary_10_1111_jpi_12990 crossref_primary_10_1093_hr_uhab003 crossref_primary_10_1016_j_hpj_2022_04_005 crossref_primary_10_1094_MPMI_35_2 crossref_primary_10_1111_nph_15989 crossref_primary_10_3390_ijms22094709 crossref_primary_10_3389_fpls_2020_594827 crossref_primary_10_1038_s41598_022_11263_z crossref_primary_10_3390_ijms23052674 crossref_primary_10_1007_s11274_022_03386_2 crossref_primary_10_1007_s10265_024_01546_z crossref_primary_10_1111_jipb_12898 crossref_primary_10_1016_j_rhisph_2022_100654 crossref_primary_10_1038_s41598_024_62332_4 crossref_primary_10_1094_PHYTO_11_18_0443_RVW crossref_primary_10_1016_j_pbi_2019_02_005 crossref_primary_10_1038_s41477_021_00920_2 crossref_primary_10_1093_plcell_koae020 crossref_primary_10_3390_jof9030360 crossref_primary_10_3390_app12126094 crossref_primary_10_1016_j_pbi_2019_02_001 crossref_primary_10_3389_fpls_2021_644870 crossref_primary_10_1016_j_pbi_2025_102782 crossref_primary_10_1038_s41598_020_66053_2 crossref_primary_10_3389_fpls_2021_682439 crossref_primary_10_1093_jxb_erac333 crossref_primary_10_1002_tpg2_20271 crossref_primary_10_1093_jxb_erae516 crossref_primary_10_3390_ijms222111433 crossref_primary_10_1016_j_molp_2024_04_003 crossref_primary_10_1016_j_micpath_2025_107821 crossref_primary_10_1111_tpj_17214 crossref_primary_10_1128_spectrum_04219_22 crossref_primary_10_1111_nph_70171 crossref_primary_10_1111_pce_13978 crossref_primary_10_1111_nph_17064 crossref_primary_10_3390_plants10020210 crossref_primary_10_1093_hr_uhad242 crossref_primary_10_1093_nar_gkab1087 crossref_primary_10_1094_MPMI_10_20_0291_R crossref_primary_10_3390_plants11091178 crossref_primary_10_1093_gigascience_giaf005 crossref_primary_10_3390_molecules27207088 crossref_primary_10_1094_MPMI_08_20_0239_IA crossref_primary_10_3390_pathogens9100787 crossref_primary_10_3389_fpls_2022_899177 crossref_primary_10_1094_MPMI_01_23_0005_R crossref_primary_10_1007_s10709_020_00104_4 crossref_primary_10_1371_journal_pone_0308744 crossref_primary_10_3390_encyclopedia2020055 crossref_primary_10_1080_21655979_2021_1905325 crossref_primary_10_1094_MPMI_11_23_0197_R crossref_primary_10_1016_j_mocell_2025_100239 crossref_primary_10_1186_s42483_023_00182_0 crossref_primary_10_1016_j_csbj_2021_04_008 crossref_primary_10_1016_j_scienta_2021_110361 crossref_primary_10_1111_mpp_13354 crossref_primary_10_3390_ijms241310920 crossref_primary_10_1111_tpj_15133 crossref_primary_10_3390_cells10010069 crossref_primary_10_3389_fmicb_2023_1227830 crossref_primary_10_1186_s12870_021_02927_5 crossref_primary_10_3389_fimmu_2023_1161606 crossref_primary_10_1016_j_csbj_2022_12_052 crossref_primary_10_1002_advs_202412968 crossref_primary_10_3390_su151914643 crossref_primary_10_1016_j_micres_2022_127056 crossref_primary_10_7717_peerj_18204 crossref_primary_10_1007_s00344_025_11853_x crossref_primary_10_3389_fpls_2022_969343 crossref_primary_10_1111_mpp_70075 crossref_primary_10_3390_ijms21051722 crossref_primary_10_1111_tpj_13875 crossref_primary_10_1093_hr_uhac010 crossref_primary_10_3390_ijms25084497 crossref_primary_10_1080_15592324_2024_2370706 crossref_primary_10_1074_jbc_REV120_010852 crossref_primary_10_3389_fmicb_2023_1305899 crossref_primary_10_1094_PDIS_10_22_2339_RE crossref_primary_10_1038_s41392_021_00687_0 crossref_primary_10_1080_17429145_2024_2346547 crossref_primary_10_3389_fpls_2020_00529 crossref_primary_10_1111_tpj_16479 crossref_primary_10_1016_j_micres_2024_127762 crossref_primary_10_1016_j_micres_2024_127883 crossref_primary_10_3389_fpls_2022_1096800 crossref_primary_10_1186_s12870_021_03042_1 crossref_primary_10_1111_mpp_13369 crossref_primary_10_3390_plants12233996 crossref_primary_10_1093_hr_uhaf078 crossref_primary_10_1007_s00425_022_03951_x crossref_primary_10_1007_s13562_023_00858_w crossref_primary_10_1093_pcp_pcac116 crossref_primary_10_3390_biology11030421 crossref_primary_10_1080_00275514_2020_1831293 crossref_primary_10_1016_j_coviro_2020_04_006 crossref_primary_10_3389_fpls_2023_1320509 crossref_primary_10_3390_microorganisms10122472 crossref_primary_10_1111_tpj_15110 crossref_primary_10_1021_acs_jafc_5c00286 crossref_primary_10_3389_fmicb_2018_02535 crossref_primary_10_1007_s13258_019_00801_1 crossref_primary_10_1038_s41477_021_00874_5 crossref_primary_10_3389_fmicb_2025_1660944 crossref_primary_10_3390_plants12081668 crossref_primary_10_1093_plphys_kiad472 crossref_primary_10_1094_PHYTO_04_22_0134_R crossref_primary_10_1111_nph_18511 crossref_primary_10_15446_abc_v26n3_83077 crossref_primary_10_3389_fgene_2021_805771 crossref_primary_10_1016_j_molp_2020_09_018 crossref_primary_10_3390_ijms241210224 crossref_primary_10_3390_jof7090719 crossref_primary_10_1016_j_cell_2023_12_030 crossref_primary_10_3390_ijms21030963 crossref_primary_10_1094_PHYTO_08_20_0362_R crossref_primary_10_3390_horticulturae8111012 crossref_primary_10_3389_fmicb_2023_1122947 crossref_primary_10_1007_s44372_024_00004_3 crossref_primary_10_1016_j_pmpp_2024_102482 crossref_primary_10_1146_annurev_phyto_021621_114026 crossref_primary_10_1007_s11103_021_01154_8 crossref_primary_10_1016_j_foodchem_2024_139987 crossref_primary_10_1186_s12985_021_01664_3 crossref_primary_10_1186_s12870_021_03251_8 crossref_primary_10_1016_j_peptides_2021_170611 crossref_primary_10_3390_polym14163416 crossref_primary_10_1016_j_plaphy_2025_110222 crossref_primary_10_1094_PHYTO_12_24_0408_R crossref_primary_10_1186_s12870_019_1890_z crossref_primary_10_1186_s12870_024_05742_w crossref_primary_10_3390_microorganisms9051029 crossref_primary_10_1111_pce_14006 crossref_primary_10_3389_fpls_2020_543895 crossref_primary_10_3390_plants11101323 crossref_primary_10_3390_ijms21072540 crossref_primary_10_1093_pcp_pcz151 crossref_primary_10_1186_s12915_022_01442_9 crossref_primary_10_1094_PHYTO_01_25_0022_R crossref_primary_10_1186_s43141_021_00231_1 crossref_primary_10_3389_fpls_2020_01287 crossref_primary_10_3390_ijms21155514 crossref_primary_10_3389_fpls_2020_593905 crossref_primary_10_3389_fpls_2024_1439380 crossref_primary_10_1039_D4EN00053F crossref_primary_10_3389_fgene_2023_1120861 crossref_primary_10_3389_fpls_2024_1350281 crossref_primary_10_1111_mpp_13275 crossref_primary_10_3390_agronomy8080134 crossref_primary_10_1111_mpp_70026 crossref_primary_10_1111_tpj_15215 crossref_primary_10_1038_s41467_023_39208_8 crossref_primary_10_1016_j_pmpp_2020_101514 crossref_primary_10_1016_j_bbamcr_2022_119347 crossref_primary_10_1111_tpj_14924 crossref_primary_10_3390_ijms25031695 crossref_primary_10_1111_pce_14455 crossref_primary_10_1007_s00299_025_03540_8 crossref_primary_10_1016_j_tibtech_2018_04_005 crossref_primary_10_1093_jxb_eraa414 crossref_primary_10_1093_jxb_eraa417 crossref_primary_10_3390_ijms23073730 crossref_primary_10_1007_s00253_018_9556_6 crossref_primary_10_3390_ijms23074043 crossref_primary_10_3390_plants13213036 crossref_primary_10_1111_mpp_13167 crossref_primary_10_1111_pce_13927 crossref_primary_10_3389_fmicb_2022_1019069 crossref_primary_10_1111_mpp_70139 crossref_primary_10_3390_microorganisms13061251 crossref_primary_10_1016_j_psj_2024_103833 crossref_primary_10_3390_plants11243483 crossref_primary_10_3389_fpls_2020_01021 crossref_primary_10_3390_ijms23063151 crossref_primary_10_1093_hr_uhac043 crossref_primary_10_1016_j_molp_2021_12_013 crossref_primary_10_3390_nano11123161 |
| Cites_doi | 10.1104/pp.109.142067 10.1038/icb.2013.58 10.1073/pnas.0705306104 10.1105/tpc.104.026609 10.1073/pnas.1011957107 10.1016/j.chom.2013.03.007 10.1038/35074106 10.1111/tpj.12050 10.1104/pp.117.4.1373 10.1111/nph.12198 10.1126/science.1243825 10.1186/s13059-016-0955-7 10.1038/emboj.2013.104 10.1093/mp/ssq083 10.1146/annurev-phyto-102313-045907 10.1111/nph.12146 10.1002/jpln.200900081 10.1016/S0092-8674(02)00814-0 10.3389/fpls.2015.01126 10.1073/pnas.1000675107 10.1016/j.pbi.2017.04.022 10.1105/tpc.111.087122 10.1371/journal.pone.0102245 10.1111/j.1365-313X.2010.04155.x 10.1111/j.1365-313X.2010.04282.x 10.1094/MPMI.2001.14.7.867 10.1105/tpc.112.102475 10.1126/science.1248849 10.1128/JB.185.22.6658-6665.2003 10.1007/s00122-017-2876-6 10.1038/nature14611 10.1038/nature10394 10.1126/sciadv.1500245 10.1105/tpc.113.117010 10.1146/annurev-phyto-080516-035623 10.1111/nph.12549 10.1111/j.1365-313X.2012.04950.x 10.1016/j.it.2017.07.012 10.1371/journal.pgen.1002046 10.1105/tpc.106.045096 10.1074/jbc.M004796200 10.1104/pp.110.166710 10.1016/j.molcel.2014.03.012 10.1111/nph.13348 10.1016/j.pbi.2015.05.032 10.1038/nplants.2015.34 10.1094/MPMI-03-14-0068-R 10.1074/jbc.M109.027540 10.1111/nph.13802 10.1016/j.cub.2007.05.018 10.1016/j.pbi.2017.06.003 10.1073/pnas.1205448109 10.1016/j.cell.2006.03.037 10.1111/nph.13117 10.1016/j.molp.2017.01.006 10.1016/j.sbi.2016.09.012 10.1104/pp.16.01680 10.1016/j.chom.2014.10.018 10.1105/tpc.114.134809 10.1038/nrmicro2990 10.1073/pnas.1216780110 10.1111/j.1365-313X.2011.04671.x 10.1146/annurev.arplant.57.032905.105346 10.1094/MPMI-21-12-1635 10.1016/j.chom.2010.03.007 10.1073/pnas.92.6.2338 10.3389/fpls.2014.00585 10.1146/annurev.phyto.39.1.313 10.1016/j.cell.2005.03.025 10.1016/S1672-0229(08)60031-5 10.1111/tpj.12723 10.1111/tpj.12535 10.1105/tpc.15.00440 10.3389/fpls.2013.00049 10.1093/pcp/pct175 10.1038/nri3398 10.1094/MPMI-06-13-0179-R 10.1016/j.tplants.2016.08.014 10.1038/nplants.2016.185 10.1093/jxb/ert330 10.1105/tpc.15.00390 10.1111/nph.13356 10.1105/tpc.16.00891 10.1016/j.cub.2012.09.043 10.1126/science.1242736 10.3389/fpls.2014.00065 10.1038/nature14171 10.1038/ncomms1046 10.1371/journal.pbio.1000139 10.1371/journal.pgen.1006832 10.1105/tpc.17.00376 10.1111/tpj.12425 10.3389/fimmu.2013.00138 10.1111/nph.13064 10.1371/journal.ppat.1004491 10.1016/j.cub.2007.05.036 10.1038/nature20166 10.1105/tpc.104.026765 10.1016/j.it.2017.05.001 10.1371/journal.ppat.1005596 10.1111/nph.12817 10.1094/MPMI-10-13-0304-R 10.1105/tpc.10.11.1915 10.1371/journal.ppat.1004809 10.1105/tpc.022475 10.1016/S1360-1385(00)01810-0 10.1042/BJ20111112 10.1073/pnas.1318817111 10.1093/pcp/pcw104 10.1111/nph.13944 10.1111/pbi.12341 10.1146/annurev-phyto-082712-102314 10.1105/tpc.005579 10.1105/tpc.112.107904 10.1111/j.1365-313X.2010.04411.x 10.1073/pnas.0609672104 10.1074/jbc.M209880200 10.15252/embj.201488645 10.1038/nri3167 10.1016/0092-8674(94)90423-5 10.3389/fpls.2015.00911 10.1038/nature21417 10.1126/science.1242468 10.1094/MPMI.2001.14.5.653 10.1128/AEM.03297-12 10.1104/pp.111.192575 10.1038/ncomms3530 10.1016/j.tim.2007.01.006 10.1073/pnas.0502425102 10.15252/embj.201488698 10.1111/tpj.13458 10.1111/nph.12408 10.1016/j.molp.2016.10.006 10.7554/eLife.00983 10.3389/fpls.2016.00906 10.1093/pcp/pcs113 10.1105/tpc.112.097253 10.1186/gb-2014-15-6-r87 10.1146/annurev.arplant.56.032604.144204 10.1016/j.tplants.2014.09.003 10.1186/s12870-014-0374-4 10.1371/journal.pbio.1000280 10.1126/science.aaf3919 10.1073/pnas.1614468114 10.1073/pnas.0603729103 10.1038/nature14243 10.1126/science.1215584 10.1038/nature00841 10.1105/tpc.020834 10.1371/journal.ppat.1004602 10.1038/nrmicro1596 10.1016/j.pbi.2011.05.001 10.1073/pnas.1410031111 10.1074/jbc.M110.116657 10.1111/nph.13233 10.1073/pnas.96.4.1756 10.1371/journal.pone.0075039 10.1104/pp.109.138669 10.1111/j.1432-1033.1989.tb21084.x 10.1104/pp.110.154963 10.1146/annurev-micro-091213-112844 10.1016/j.chom.2007.03.006 10.1073/pnas.1203458110 10.1146/annurev-phyto-080614-120114 10.1038/nature05999 10.1371/journal.ppat.1005518 10.1073/pnas.1113893109 10.1104/pp.113.216077 10.1111/j.1365-313X.2011.04659.x 10.1038/nature16975 10.1073/pnas.1221294110 10.1073/pnas.1205171109 10.1074/jbc.M708106200 10.1105/tpc.110.081794 10.1104/pp.113.234625 10.1111/nph.13542 10.1073/pnas.1302154110 10.1016/j.cell.2016.02.028 10.1038/nature05286 10.1038/ni.3124 10.1105/tpc.111.084996 10.1038/emboj.2008.147 10.1073/pnas.0909705107 10.1104/pp.110.159723 10.1073/pnas.0508882103 10.15252/embj.201591807 10.1038/nature02485 10.1074/mcp.M600429-MCP200 10.1126/science.1148110 10.1105/tpc.112.104463 10.1111/mpp.12444 10.1126/science.7973631 10.1105/tpc.109.068874 10.1105/tpc.107.055624 10.1073/pnas.1605588113 10.1046/j.1364-3703.2003.00196.x 10.1038/nri1594 10.1016/S0981-9428(02)00018-9 10.1038/nature10510 10.7554/eLife.25114 10.1016/j.chom.2014.02.009 10.1038/nature10962 10.4161/psb.25345 10.1046/j.1365-313X.1999.00451.x 10.1111/j.1365-313X.2010.04324.x 10.1046/j.1529-8817.1999.3540747.x 10.1016/j.pbi.2013.06.010 10.1111/j.1365-313X.2006.02981.x 10.1073/pnas.90.17.8273 10.1105/tpc.105.037648 10.1073/pnas.0810206106 10.1104/pp.16.01853 10.1126/science.1204903 10.1073/pnas.1511847113 10.1038/nplants.2016.128 10.1105/tpc.16.00654 10.1105/tpc.112.095919 10.1371/journal.pgen.1006068 10.1038/nature08794 10.15252/embj.201694248 10.1186/s12870-016-0921-2 10.1111/j.1600-065X.2011.01037.x 10.1073/pnas.1112862108 10.1016/j.chom.2009.05.019 10.7554/eLife.03766 10.1074/jbc.M704886200 10.1094/MPMI-12-14-0405-R 10.1111/nph.13425 10.1111/j.1364-3703.2009.00537.x 10.1105/tpc.113.110833 10.1016/S0031-6997(24)01373-5 10.1126/science.aal2541 10.1073/pnas.1214668110 10.1093/jxb/erq219 10.1016/j.molcel.2014.02.021 10.1038/ncomms11362 10.1093/pcp/pcv063 10.1146/annurev-phyto-080614-120106 10.1105/tpc.113.121111 10.1073/pnas.1706795114 10.1016/j.cub.2008.07.085 10.1073/pnas.1606004113 10.1016/j.tibs.2014.06.006 10.1074/jbc.M308552200 10.1016/S0092-8674(02)00812-7 10.1126/science.aah5692 10.1093/pcp/pcx042 10.1038/ni1253 10.1105/tpc.114.132308 10.1371/journal.pone.0120245 10.1016/j.cub.2007.05.046 10.1038/nature22009 10.1016/j.tplants.2013.10.003 10.1093/jxb/err291 10.1093/pcp/pcu129 10.1094/MPMI.2003.16.6.553 10.1126/science.212.4490.67 10.1016/j.cub.2013.11.047 10.1016/j.pbi.2014.07.007 10.1038/ni.2406 10.1104/pp.114.250985 10.1126/science.1218867 10.1371/journal.ppat.1002130 10.1016/j.tplants.2017.07.005 10.1126/science.1195211 10.1186/1471-2148-9-183 10.1371/journal.ppat.1004331 10.1073/pnas.98.2.759 10.1186/1471-2164-12-49 10.1016/j.chom.2013.02.007 10.7554/eLife.06587 10.1021/bi8001488 10.1038/ncomms12151 10.1093/jxb/erv236 10.1104/pp.113.230698 10.1126/science.1206095 10.1038/nmicrobiol.2016.43 10.1038/nplants.2015.140 10.1094/MPMI-23-1-0058 10.1038/nbt.1613 10.1073/pnas.132266499 10.1074/jbc.M110.160531 10.1093/mp/ssn019 10.1111/tpj.12450 10.1073/pnas.0907711106 10.1128/JB.01757-07 10.1016/j.tplants.2014.11.008 10.1080/15592324.2017.1361076 10.1073/pnas.201416998 10.1016/j.pbi.2013.07.002 10.1105/tpc.111.084301 10.1111/nph.13345 10.1073/pnas.0706403104 10.1126/science.1244454 10.1371/journal.pbio.0060231 10.1111/nph.12043 10.1111/nph.13411 10.1126/science.253.5022.895 10.1016/j.chom.2012.01.015 10.1073/pnas.1312099111 10.1074/jbc.M109.058909 10.1007/s11103-007-9173-8 10.1094/MPMI-04-10-0099 10.1093/jxb/erv180 10.1111/j.1469-8137.2004.01043.x 10.1016/j.chom.2016.09.007 10.1371/journal.ppat.1003080 10.1038/ni922 10.1371/journal.ppat.1005811 10.1111/nph.13031 10.1104/pp.012187 10.1101/gad.366506 10.1126/science.343.6168.290 10.1073/pnas.1302360110 10.1073/pnas.1215543110 10.1002/embj.201284303 10.1126/science.1086716 10.1038/emboj.2009.263 10.1016/S1097-2765(00)80265-8 10.1073/pnas.92.10.4150 10.1107/S2053230X16014278 10.7554/eLife.13568 10.1111/nph.13306 10.1016/j.pbi.2015.06.001 10.1126/science.1549783 10.1038/nrmicro1987 10.1073/pnas.0705147104 10.1038/nri.2016.77 10.1105/tpc.107.056754 10.1105/tpc.9.12.2209 10.1038/nature09622 10.1111/nph.12592 10.1093/jxb/ert195 10.1016/j.chom.2014.10.007 10.1111/j.1365-313X.2007.03192.x 10.1073/pnas.0603727103 10.3389/fpls.2014.00446 10.1016/j.pbi.2017.04.007 10.1073/pnas.1000191107 10.1038/nplants.2015.218 10.1104/pp.113.229179 10.1126/science.1111404 10.7554/eLife.01990 10.1105/tpc.111.093039 10.1046/j.1365-313X.1999.00265.x 10.1094/MPMI-11-14-0372-R 10.1146/annurev-phyto-080516-035649 10.1016/S0092-8674(00)81290-8 10.1111/nph.14036 |
| ContentType | Journal Article |
| Copyright | 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology. Copyright © 2018 John Wiley & Sons Ltd and the Society for Experimental Biology |
| Copyright_xml | – notice: 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology. – notice: Copyright © 2018 John Wiley & Sons Ltd and the Society for Experimental Biology |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 7S9 L.6 |
| DOI | 10.1111/tpj.13808 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Genetics Abstracts CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1365-313X |
| EndPage | 613 |
| ExternalDocumentID | 29266555 10_1111_tpj_13808 TPJ13808 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: JSPS KAKENHI funderid: 16KT0031; 16H01469 – fundername: Mitsubishi Foundation |
| GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P FIJ G-S G.N GODZA H.T H.X HF~ HGLYW HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT AAYXX CITATION O8X AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE CGR CUY CVF ECM EIF ESX IPNFZ NPM WRC 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c4878-6192d8cbbf7c4984af2dd45a58b7c8500c9f42aac485b77dbd4c55a79ce005e33 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 338 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424221200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-7412 1365-313X |
| IngestDate | Fri Jul 11 18:22:01 EDT 2025 Fri Jul 11 12:08:48 EDT 2025 Fri Jul 25 11:08:29 EDT 2025 Tue Jan 21 03:22:13 EST 2025 Tue Nov 18 22:36:15 EST 2025 Sat Nov 29 07:46:59 EST 2025 Tue Nov 11 03:08:57 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | pattern recognition receptors plant-microbe interactions receptor-like kinase signaling damage-associated molecular patterns receptor-like protein plant immunity microbe-associated molecular patterns |
| Language | English |
| License | Attribution 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4878-6192d8cbbf7c4984af2dd45a58b7c8500c9f42aac485b77dbd4c55a79ce005e33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.13808 |
| PMID | 29266555 |
| PQID | 1994337982 |
| PQPubID | 31702 |
| PageCount | 22 |
| ParticipantIDs | proquest_miscellaneous_2067287740 proquest_miscellaneous_1979510521 proquest_journals_1994337982 pubmed_primary_29266555 crossref_citationtrail_10_1111_tpj_13808 crossref_primary_10_1111_tpj_13808 wiley_primary_10_1111_tpj_13808_TPJ13808 |
| PublicationCentury | 2000 |
| PublicationDate | February 2018 2018-02-00 20180201 |
| PublicationDateYYYYMMDD | 2018-02-01 |
| PublicationDate_xml | – month: 02 year: 2018 text: February 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | The Plant journal : for cell and molecular biology |
| PublicationTitleAlternate | Plant J |
| PublicationYear | 2018 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2011; 477 2013; 64 2017; 89 2002; 99 2015b; 4 2012; 13 2012; 12 2003; 278 2012; 11 1997; 9 2016a; 20 2014a; 16 1994; 266 2010; 1 2012b; 336 2013; 51 2008; 27 2008; 21 2013; 110 2008; 20 2012; 24 1998; 10 2012; 22 2010; 7 2011; 243 2006; 444 2010; 8 2007; 17 2007; 19 2007; 282 2009; 60 2013; 91 2013; 342 2010; 285 2009; 172 2017; 130 2013; 341 2002; 417 2011; 4 2004; 428 2016; 17 2016; 16 2011; 7 2016; 12 2007; 15 2016; 5 2016; 7 2016; 1 2016; 2 1981; 212 2017; 58 2013; 79 2017; 55 1992; 255 2013; 73 2008; 47 2005; 5 2016; 21 1999; 35 2016; 211 2016b; 72 2016; 210 2005; 6 1996; 84 2001; 39 2016; 28 2016; 9 2006; 103 2003; 185 2017; 41 2013; 26 2013; 25 2002; 110 2017; 43 2013; 200 2014; 68 2008; 6 2008; 1 2017; 355 2017; 114 2010; 63 2010; 62 2010; 61 2010; 64 2014; 5 2014; 3 2013; 16 2013; 11 2014b; 15 2013; 13 1999; 18 2017; 38 2010; 154 2016; 113 2016; 353 2003; 4 2010; 153 2014; 9 2014; 52 2012; 335 2001; 14 2014; 164 2014; 55 2014; 54 2011; 440 2006; 125 2015; 1 2012a; 24 2015; 6 2015; 169 2017; 22 2015; 167 1989; 183 2006; 18 2000; 275 2017; 29 1993; 90 2007; 51 2011; 332 2011; 108 2011; 469 2013; 32 2017; 10 2017; 13 2017; 12 2009; 9 2017 2014; 79 2009; 7 2009; 6 2017; 18 2003; 301 2014; 78 2014; 77 2007; 49 2007; 104 2002; 14 2008; 190 2015a; 27 2013; 4 2012; 485 2016a; 2 2013; 2 2010; 107 2004; 162 2010; 464 2016b; 531 2014; 27 2014; 26 2014; 24 2013; 8 2016c; 35 2013; 9 2014; 21 2010; 23 2010; 22 2001; 410 2016a; 354 2006; 20 2009; 10 2015b; 81 2010; 28 2005; 102 2014; 16 1994; 78 2014; 15 2007; 6 2014; 14 2011; 65 2011; 68 2014; 19 2007; 5 2011; 67 2013; 198 2013; 197 2007; 64 2007; 1 2003; 41 2014; 10 2015; 56 2007; 448 2015; 523 2006; 57 2015; 521 2002; 130 2015; 520 2015; 53 2016; 165 2012; 109 2004; 279 2005; 121 2015; 66 2010; 330 2014; 39 2016; 171 2007; 318 2017; 543 2014; 33 2009; 106 2017; 6 2015; 34 2000; 5 2016b; 35 2003; 16 2009; 150 2011; 12 2009; 151 1998; 117 2011; 14 2013; 161 2011; 155 2012; 53 2012; 71 2014; 204 2005; 308 1999; 96 2011; 23 1998; 50 2014; 203 2012; 63 2014; 201 2001; 98 2015; 13 1991; 253 1995; 92 2015; 16 2008; 18 2015; 11 2017; 173 2015; 207 2017; 174 2015; 206 2014; 111 2008; 283 2016; 57 2009; 28 2015; 26 2015; 28 2015; 27 2016; 539 2001; 6 2015a; 10 2004; 16 2015; 20 2012; 159 2014; 343 e_1_2_17_190_1 e_1_2_17_212_1 e_1_2_17_258_1 e_1_2_17_30_1 e_1_2_17_235_1 e_1_2_17_53_1 e_1_2_17_99_1 e_1_2_17_7_1 e_1_2_17_318_1 e_1_2_17_76_1 e_1_2_17_152_1 e_1_2_17_175_1 e_1_2_17_198_1 e_1_2_17_38_1 e_1_2_17_310_1 e_1_2_17_333_1 e_1_2_17_103_1 e_1_2_17_126_1 e_1_2_17_356_1 e_1_2_17_149_1 e_1_2_17_261_1 e_1_2_17_91_1 e_1_2_17_284_1 e_1_2_17_200_1 e_1_2_17_223_1 e_1_2_17_269_1 e_1_2_17_41_1 e_1_2_17_64_1 e_1_2_17_87_1 e_1_2_17_329_1 e_1_2_17_208_1 e_1_2_17_164_1 e_1_2_17_306_1 e_1_2_17_26_1 e_1_2_17_49_1 e_1_2_17_187_1 e_1_2_17_141_1 e_1_2_17_321_1 e_1_2_17_115_1 e_1_2_17_344_1 e_1_2_17_138_1 e_1_2_17_272_1 e_1_2_17_295_1 Narusaka Y. (e_1_2_17_213_1) 2013; 8 e_1_2_17_236_1 e_1_2_17_54_1 e_1_2_17_77_1 e_1_2_17_31_1 e_1_2_17_259_1 e_1_2_17_6_1 e_1_2_17_319_1 e_1_2_17_174_1 Vogel C. (e_1_2_17_313_1) 2016; 12 e_1_2_17_16_1 e_1_2_17_197_1 e_1_2_17_39_1 e_1_2_17_334_1 e_1_2_17_151_1 e_1_2_17_311_1 e_1_2_17_125_1 e_1_2_17_148_1 e_1_2_17_102_1 Li Z. (e_1_2_17_163_1) 2016; 72 e_1_2_17_92_1 e_1_2_17_262_1 e_1_2_17_285_1 e_1_2_17_201_1 e_1_2_17_247_1 e_1_2_17_224_1 e_1_2_17_42_1 e_1_2_17_88_1 e_1_2_17_307_1 e_1_2_17_65_1 e_1_2_17_186_1 e_1_2_17_209_1 e_1_2_17_27_1 e_1_2_17_322_1 e_1_2_17_114_1 e_1_2_17_137_1 e_1_2_17_345_1 e_1_2_17_250_1 e_1_2_17_296_1 e_1_2_17_80_1 e_1_2_17_273_1 e_1_2_17_233_1 e_1_2_17_279_1 e_1_2_17_256_1 e_1_2_17_9_1 e_1_2_17_32_1 e_1_2_17_78_1 e_1_2_17_55_1 e_1_2_17_218_1 e_1_2_17_316_1 e_1_2_17_196_1 e_1_2_17_17_1 e_1_2_17_150_1 e_1_2_17_173_1 e_1_2_17_342_1 e_1_2_17_354_1 e_1_2_17_147_1 e_1_2_17_101_1 e_1_2_17_124_1 e_1_2_17_282_1 e_1_2_17_109_1 e_1_2_17_70_1 e_1_2_17_221_1 e_1_2_17_244_1 e_1_2_17_267_1 e_1_2_17_20_1 e_1_2_17_43_1 e_1_2_17_66_1 e_1_2_17_89_1 e_1_2_17_206_1 e_1_2_17_229_1 Beloshistov R.E. (e_1_2_17_15_1) 2017 e_1_2_17_185_1 e_1_2_17_327_1 Lin Z.J. (e_1_2_17_169_1) 2015; 169 e_1_2_17_304_1 e_1_2_17_28_1 e_1_2_17_162_1 e_1_2_17_353_1 e_1_2_17_136_1 e_1_2_17_330_1 e_1_2_17_113_1 e_1_2_17_159_1 e_1_2_17_270_1 e_1_2_17_81_1 e_1_2_17_232_1 e_1_2_17_293_1 e_1_2_17_211_1 e_1_2_17_234_1 e_1_2_17_257_1 e_1_2_17_71_1 e_1_2_17_94_1 e_1_2_17_8_1 e_1_2_17_10_1 e_1_2_17_56_1 e_1_2_17_33_1 e_1_2_17_219_1 e_1_2_17_317_1 e_1_2_17_79_1 Gutierrez‐Alanis D. (e_1_2_17_93_1) 2017; 41 e_1_2_17_18_1 e_1_2_17_111_1 e_1_2_17_195_1 e_1_2_17_172_1 e_1_2_17_332_1 e_1_2_17_320_1 e_1_2_17_355_1 e_1_2_17_123_1 e_1_2_17_146_1 e_1_2_17_108_1 e_1_2_17_260_1 e_1_2_17_283_1 e_1_2_17_245_1 e_1_2_17_268_1 e_1_2_17_222_1 e_1_2_17_82_1 e_1_2_17_21_1 e_1_2_17_67_1 e_1_2_17_44_1 e_1_2_17_207_1 e_1_2_17_305_1 e_1_2_17_328_1 e_1_2_17_29_1 e_1_2_17_100_1 e_1_2_17_161_1 e_1_2_17_184_1 e_1_2_17_331_1 e_1_2_17_343_1 e_1_2_17_112_1 e_1_2_17_135_1 e_1_2_17_158_1 e_1_2_17_271_1 e_1_2_17_210_1 e_1_2_17_294_1 e_1_2_17_95_1 e_1_2_17_3_1 e_1_2_17_72_1 e_1_2_17_277_1 e_1_2_17_216_1 e_1_2_17_11_1 e_1_2_17_34_1 e_1_2_17_239_1 e_1_2_17_57_1 e_1_2_17_314_1 e_1_2_17_337_1 e_1_2_17_110_1 e_1_2_17_133_1 e_1_2_17_171_1 e_1_2_17_194_1 e_1_2_17_340_1 e_1_2_17_19_1 e_1_2_17_145_1 e_1_2_17_107_1 e_1_2_17_168_1 Ralevic V. (e_1_2_17_246_1) 1998; 50 e_1_2_17_280_1 e_1_2_17_265_1 e_1_2_17_242_1 e_1_2_17_60_1 e_1_2_17_83_1 Kong Q. (e_1_2_17_140_1) 2016; 171 e_1_2_17_288_1 Lee M.W. (e_1_2_17_154_1) 2017 e_1_2_17_204_1 e_1_2_17_227_1 e_1_2_17_22_1 e_1_2_17_45_1 e_1_2_17_68_1 e_1_2_17_325_1 e_1_2_17_122_1 e_1_2_17_160_1 e_1_2_17_302_1 e_1_2_17_351_1 e_1_2_17_183_1 e_1_2_17_134_1 e_1_2_17_119_1 e_1_2_17_157_1 e_1_2_17_348_1 e_1_2_17_230_1 e_1_2_17_253_1 e_1_2_17_276_1 e_1_2_17_291_1 e_1_2_17_50_1 e_1_2_17_73_1 e_1_2_17_96_1 e_1_2_17_255_1 e_1_2_17_278_1 e_1_2_17_2_1 e_1_2_17_217_1 e_1_2_17_12_1 e_1_2_17_35_1 e_1_2_17_338_1 e_1_2_17_58_1 e_1_2_17_155_1 e_1_2_17_315_1 e_1_2_17_132_1 e_1_2_17_170_1 e_1_2_17_341_1 e_1_2_17_193_1 e_1_2_17_167_1 e_1_2_17_129_1 e_1_2_17_106_1 e_1_2_17_281_1 e_1_2_17_243_1 e_1_2_17_220_1 e_1_2_17_84_1 e_1_2_17_266_1 e_1_2_17_289_1 e_1_2_17_61_1 e_1_2_17_205_1 e_1_2_17_23_1 e_1_2_17_228_1 e_1_2_17_46_1 e_1_2_17_303_1 e_1_2_17_326_1 e_1_2_17_69_1 e_1_2_17_121_1 e_1_2_17_144_1 e_1_2_17_182_1 e_1_2_17_352_1 e_1_2_17_118_1 e_1_2_17_156_1 e_1_2_17_179_1 e_1_2_17_349_1 e_1_2_17_254_1 e_1_2_17_292_1 e_1_2_17_231_1 e_1_2_17_5_1 e_1_2_17_74_1 e_1_2_17_51_1 e_1_2_17_214_1 e_1_2_17_237_1 e_1_2_17_97_1 e_1_2_17_13_1 e_1_2_17_36_1 e_1_2_17_59_1 e_1_2_17_177_1 e_1_2_17_312_1 e_1_2_17_335_1 e_1_2_17_131_1 e_1_2_17_192_1 Yeh Y.H. (e_1_2_17_339_1) 2016; 28 e_1_2_17_189_1 e_1_2_17_105_1 e_1_2_17_128_1 e_1_2_17_240_1 e_1_2_17_286_1 e_1_2_17_263_1 e_1_2_17_62_1 e_1_2_17_85_1 e_1_2_17_202_1 e_1_2_17_225_1 e_1_2_17_248_1 e_1_2_17_308_1 e_1_2_17_24_1 e_1_2_17_47_1 e_1_2_17_166_1 e_1_2_17_143_1 e_1_2_17_181_1 e_1_2_17_323_1 e_1_2_17_120_1 e_1_2_17_300_1 e_1_2_17_346_1 e_1_2_17_178_1 e_1_2_17_117_1 e_1_2_17_297_1 e_1_2_17_251_1 e_1_2_17_274_1 e_1_2_17_4_1 e_1_2_17_191_1 e_1_2_17_52_1 e_1_2_17_215_1 e_1_2_17_238_1 e_1_2_17_299_1 e_1_2_17_75_1 e_1_2_17_98_1 e_1_2_17_14_1 e_1_2_17_153_1 e_1_2_17_199_1 e_1_2_17_37_1 e_1_2_17_176_1 e_1_2_17_336_1 e_1_2_17_130_1 e_1_2_17_104_1 e_1_2_17_127_1 e_1_2_17_241_1 e_1_2_17_264_1 e_1_2_17_287_1 e_1_2_17_90_1 e_1_2_17_63_1 e_1_2_17_180_1 e_1_2_17_40_1 e_1_2_17_203_1 e_1_2_17_309_1 e_1_2_17_226_1 e_1_2_17_86_1 e_1_2_17_249_1 e_1_2_17_25_1 e_1_2_17_165_1 e_1_2_17_188_1 e_1_2_17_48_1 e_1_2_17_301_1 e_1_2_17_324_1 e_1_2_17_350_1 e_1_2_17_142_1 e_1_2_17_290_1 e_1_2_17_347_1 e_1_2_17_116_1 e_1_2_17_139_1 e_1_2_17_298_1 e_1_2_17_275_1 e_1_2_17_252_1 29607591 - Plant J. 2018 Apr;94(2):405 |
| References_xml | – volume: 1 start-page: 15034 year: 2015 article-title: Elicitin recognition confers enhanced resistance to in potato publication-title: Nat. Plants – volume: 2 start-page: 16128 year: 2016 article-title: Tomato receptor FLAGELLIN‐SENSING 3 binds flgII‐28 and activates the plant immune system publication-title: Nat. Plants – volume: 308 start-page: 1783 year: 2005 end-page: 1786 article-title: Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf‐2‐dependent disease resistance publication-title: Science – volume: 2 start-page: 15218 year: 2016 article-title: Specific control of Arabidopsis BAK1/SERK4‐regulated cell death by protein glycosylation publication-title: Nat. Plants – volume: 38 start-page: 10 year: 2017 end-page: 18 article-title: A look at plant immunity through the window of the multitasking coreceptor BAK1 publication-title: Curr. Opin. Plant Biol. – volume: 444 start-page: 323 year: 2006 end-page: 329 article-title: The plant immune system publication-title: Nature – volume: 9 start-page: e1003080 year: 2013 article-title: Innate sensing of chitin and chitosan publication-title: PLoS Pathog. – volume: 153 start-page: 799 year: 2010 end-page: 805 article-title: DNA is taken up by root hairs and pollen, and stimulates root and pollen tube growth publication-title: Plant Physiol. – volume: 9 start-page: 2209 year: 1997 end-page: 2224 article-title: Characterization of the tomato Cf‐4 gene for resistance to identifies sequences that determine recognitional specificity in Cf‐4 and Cf‐9 publication-title: Plant Cell – volume: 108 start-page: 19824 year: 2011 end-page: 19829 article-title: Arabidopsis lysin‐motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection publication-title: Proc. Natl Acad. Sci. USA – volume: 24 start-page: 3406 year: 2012a end-page: 3419 article-title: Lysin motif‐containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity publication-title: Plant Cell – volume: 24 start-page: 134 year: 2014 end-page: 143 article-title: The leucine‐rich repeat receptor kinase BIR2 is a negative regulator of BAK1 in plant immunity publication-title: Curr. Biol. – year: 2017 article-title: Phytaspase‐mediated precursor processing and maturation of the wound hormone systemin publication-title: New Phytol. – volume: 159 start-page: 798 year: 2012 end-page: 809 article-title: Plasma membrane calcium ATPases are important components of receptor‐mediated signaling in plant immune responses and development publication-title: Plant Physiol. – volume: 110 start-page: 8744 year: 2013 end-page: 8749 article-title: Calcium‐dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation publication-title: Proc. Natl Acad. Sci. USA – volume: 35 start-page: 2468 year: 2016b end-page: 2483 article-title: The Arabidopsis CERK1‐associated kinase PBL27 connects chitin perception to MAPK activation publication-title: EMBO J. – volume: 114 start-page: 5749 year: 2017 end-page: 5754 article-title: Arabidopsis glycosylphosphatidylinositol‐anchored protein LLG1 associates with and modulates FLS2 to regulate innate immunity publication-title: Proc. Natl Acad. Sci. USA – volume: 78 start-page: 56 year: 2014 end-page: 69 article-title: Functional analysis of chimeric lysin motif domain receptors mediating Nod factor‐induced defense signaling in and chitin‐induced nodulation signaling in publication-title: Plant J. – volume: 448 start-page: 497 year: 2007 end-page: 500 article-title: A flagellin‐induced complex of the receptor FLS2 and BAK1 initiates plant defence publication-title: Nature – volume: 109 start-page: 4215 year: 2012 end-page: 4220 article-title: Identification of innate immunity elicitors using molecular signatures of natural selection publication-title: Proc. Natl Acad. Sci. USA – volume: 7 start-page: e1002046 year: 2011 article-title: Phosphorylation‐dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor‐like kinase BAK1 publication-title: PLoS Genet. – volume: 18 start-page: 811 year: 2017 end-page: 824 article-title: Fungal phytopathogens encode functional homologues of plant rapid alkalinization factor (RALF) peptides publication-title: Mol. Plant Pathol. – volume: 13 start-page: 925 year: 2012 end-page: 931 article-title: From IL‐2 to IL‐37: the expanding spectrum of anti‐inflammatory cytokines publication-title: Nat. Immunol. – volume: 84 start-page: 451 year: 1996 end-page: 459 article-title: The tomato Cf‐2 disease resistance locus comprises two functional genes encoding leucine‐rich repeat proteins publication-title: Cell – volume: 55 start-page: 1864 year: 2014 end-page: 1872 article-title: The bifunctional plant receptor, OsCERK1, regulates both chitin‐triggered immunity and arbuscular mycorrhizal symbiosis in rice publication-title: Plant Cell Physiol. – volume: 60 start-page: 379 year: 2009 end-page: 406 article-title: A renaissance of elicitors: perception of microbe‐associated molecular patterns and danger signals by pattern‐recognition receptors publication-title: Annu. Rev. Plant Biol. – volume: 10 start-page: e1004331 year: 2014 article-title: The secreted peptide PIP1 amplifies immunity through receptor‐like kinase 7 publication-title: PLoS Pathog. – volume: 164 start-page: 1443 year: 2014 end-page: 1455 article-title: Antagonistic regulation of growth and immunity by the Arabidopsis basic helix‐loop‐helix transcription factor homolog of brassinosteroid enhanced expression2 interacting with increased leaf inclination1 binding bHLH1 publication-title: Plant Physiol. – volume: 22 start-page: 2242 year: 2012 end-page: 2246 article-title: A common signaling process that promotes mycorrhizal and oomycete colonization of plants publication-title: Curr. Biol. – volume: 17 start-page: 98 year: 2016 article-title: Genomic screens identify a new phytobacterial microbe‐associated molecular pattern and the cognate Arabidopsis receptor‐like kinase that mediates its immune elicitation publication-title: Genome Biol. – volume: 21 start-page: 1635 year: 2008 end-page: 1642 article-title: Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice publication-title: Mol. Plant Microbe Interact. – volume: 24 start-page: 2225 year: 2012 end-page: 2236 article-title: The MEKK1‐MKK1/MKK2‐MPK4 kinase cascade negatively regulates immunity mediated by a mitogen‐activated protein kinase kinase kinase in Arabidopsis publication-title: Plant Cell – volume: 9 start-page: 1620 year: 2016 end-page: 1633 article-title: Identification of methylosome components as negative regulators of plant immunity using chemical genetics publication-title: Mol. Plant – volume: 4 start-page: 478 year: 2003 end-page: 484 article-title: The Drosophila immune system detects bacteria through specific peptidoglycan recognition publication-title: Nat. Immunol. – volume: 23 start-page: 1639 year: 2011 end-page: 1653 article-title: Phosphorylation of a WRKY transcription factor by two pathogen‐responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis publication-title: Plant Cell – volume: 7 start-page: e1000139 year: 2009 article-title: RIN4 functions with plasma membrane H ‐ATPases to regulate stomatal apertures during pathogen attack publication-title: PLoS Biol. – volume: 190 start-page: 2858 year: 2008 end-page: 2870 article-title: Naturally occurring nonpathogenic isolates of the plant pathogen lack a type III secretion system and effector gene orthologues publication-title: J. Bacteriol. – volume: 1 start-page: 423 year: 2008 end-page: 445 article-title: Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings publication-title: Mol. Plant – volume: 102 start-page: 12990 year: 2005 end-page: 12995 article-title: Flagellin induces innate immunity in nonhost interactions that is suppressed by effectors publication-title: Proc. Natl Acad. Sci. USA – volume: 106 start-page: 8067 year: 2009 end-page: 8072 article-title: Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in via ethylene signaling publication-title: Proc. Natl Acad. Sci. USA – volume: 5 start-page: e13568 year: 2016 article-title: Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor publication-title: eLife – volume: 183 start-page: 555 year: 1989 end-page: 563 article-title: Structure and activity of proteins from pathogenic fungi eliciting necrosis and acquired resistance in tobacco publication-title: Eur. J. Biochem. – volume: 164 start-page: 352 year: 2014 end-page: 364 article-title: Fungal endopolygalacturonases are recognized as microbe‐associated molecular patterns by the arabidopsis receptor‐like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1 publication-title: Plant Physiol. – volume: 7 start-page: 290 year: 2010 end-page: 301 article-title: Receptor‐like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a effector publication-title: Cell Host Microbe – volume: 185 start-page: 6658 year: 2003 end-page: 6665 article-title: Flagellin glycosylation island in pv. glycinea and its role in host specificity publication-title: J. Bacteriol. – volume: 110 start-page: 6205 year: 2013 end-page: 6210 article-title: BIK1 interacts with PEPRs to mediate ethylene‐induced immunity publication-title: Proc. Natl Acad. Sci. USA – volume: 3 start-page: e03766 year: 2014 article-title: The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin‐induced complex with related kinase CERK1 publication-title: eLife – volume: 121 start-page: 749 year: 2005 end-page: 759 article-title: Two type III effectors inhibit RIN4‐regulated basal defense in Arabidopsis publication-title: Cell – volume: 283 start-page: 8885 year: 2008 end-page: 8892 article-title: Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca and phosphorylation publication-title: J. Biol. Chem. – volume: 301 start-page: 969 year: 2003 end-page: 972 article-title: Loss of a callose synthase results in salicylic acid‐dependent disease resistance publication-title: Science – volume: 103 start-page: 10104 year: 2006 end-page: 10109 article-title: The cell surface leucine‐rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells publication-title: Proc. Natl Acad. Sci. USA – volume: 55 start-page: 257 year: 2017 end-page: 286 article-title: Function, discovery, and exploitation of plant pattern recognition receptors for broad‐spectrum disease resistance publication-title: Annu. Rev. Phytopathol. – volume: 67 start-page: 1081 year: 2011 end-page: 1093 article-title: BON1 interacts with the protein kinases BIR1 and BAK1 in modulation of temperature‐dependent plant growth and cell death in Arabidopsis publication-title: Plant J. – volume: 71 start-page: 194 year: 2012 end-page: 204 article-title: The peptide growth factor, phytosulfokine, attenuates pattern‐triggered immunity publication-title: Plant J. – volume: 13 start-page: 347 year: 2013 end-page: 357 article-title: A receptor‐like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity publication-title: Cell Host Microbe – volume: 38 start-page: 92 year: 2017 end-page: 100 article-title: Apoplastic ROS signaling in plant immunity publication-title: Curr. Opin. Plant Biol. – volume: 201 start-page: 1371 year: 2014 end-page: 1384 article-title: The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin‐derived epitopes from the endophytic growth‐promoting bacterium and plant pathogenic bacteria publication-title: New Phytol. – volume: 18 start-page: 1396 year: 2008 end-page: 1401 article-title: Negative regulation of PAMP‐triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis publication-title: Curr. Biol. – volume: 61 start-page: 3839 year: 2010 end-page: 3845 article-title: NSP‐interacting kinase, NIK: a transducer of plant defence signalling publication-title: J. Exp. Bot. – volume: 27 start-page: 2214 year: 2008 end-page: 2221 article-title: Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus publication-title: EMBO J. – volume: 12 start-page: e1361076 year: 2017 article-title: Chitin receptor‐mediated activation of MAP kinases and ROS production in rice and Arabidopsis publication-title: Plant Signal. Behav. – volume: 285 start-page: 1435 year: 2010 end-page: 1445 article-title: Structure of the N‐terminal regulatory domain of a plant NADPH oxidase and its functional implications publication-title: J. Biol. Chem. – volume: 354 start-page: 1427 year: 2016a end-page: 1430 article-title: Regulation of sugar transporter activity for antibacterial defense in Arabidopsis publication-title: Science – volume: 6 start-page: e231 year: 2008 article-title: Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21‐mediated innate immunity publication-title: PLoS Biol. – volume: 210 start-page: 627 year: 2016 end-page: 642 article-title: Avr4 promotes Cf‐4 receptor‐like protein association with the BAK1/SERK3 receptor‐like kinase to initiate receptor endocytosis and plant immunity publication-title: New Phytol. – volume: 65 start-page: 169 year: 2011 end-page: 180 article-title: From defense to symbiosis: limited alterations in the kinase domain of LysM receptor‐like kinases are crucial for evolution of legume‐Rhizobium symbiosis publication-title: Plant J. – volume: 5 start-page: 65 year: 2014 article-title: ER‐mediated control for abundance, quality, and signaling of transmembrane immune receptors in plants publication-title: Front. Plant Sci. – volume: 543 start-page: 328 year: 2017 end-page: 336 article-title: Plant signalling in symbiosis and immunity publication-title: Nature – volume: 200 start-page: 847 year: 2013 end-page: 860 article-title: Allelic variation in two distinct flagellin epitopes modulates the strength of plant immune responses but not bacterial motility publication-title: New Phytol. – volume: 41 start-page: 165 year: 2003 end-page: 174 article-title: Differential effects of flagellins from pv. tabaci, tomato and glycinea on plant defense response publication-title: Plant Physiol. Biochem. – volume: 49 start-page: 607 year: 2007 end-page: 618 article-title: Early events in the pathogenicity of on publication-title: Plant J. – volume: 341 start-page: 889 year: 2013 end-page: 892 article-title: Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co‐receptor kinases publication-title: Science – volume: 77 start-page: 748 year: 2014 end-page: 756 article-title: Regulation of SOBIR1 accumulation and activation of defense responses in by specific components of ER quality control publication-title: Plant J. – volume: 54 start-page: 212 year: 2014 end-page: 223 article-title: A cross‐disciplinary perspective on the innate immune responses to bacterial lipopolysaccharide publication-title: Mol. Cell – volume: 51 start-page: 931 year: 2007 end-page: 940 article-title: Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses publication-title: Plant J. – volume: 10 start-page: 619 year: 2017 end-page: 633 article-title: OsCERK1‐mediated chitin perception and immune signaling requires receptor‐like cytoplasmic kinase 185 to activate an MAPK cascade in rice publication-title: Mol. Plant – volume: 7 start-page: 12151 year: 2016 article-title: Host genotype and age shape the leaf and root microbiomes of a wild perennial plant publication-title: Nat. Commun. – volume: 25 start-page: 1143 year: 2013 end-page: 1157 article-title: BR‐SIGNALING KINASE1 physically associates with FLAGELLIN SENSING2 and regulates plant innate immunity in Arabidopsis publication-title: Plant Cell – volume: 125 start-page: 749 year: 2006 end-page: 760 article-title: Perception of the bacterial PAMP EF‐Tu by the receptor EFR restricts ‐mediated transformation publication-title: Cell – volume: 96 start-page: 1756 year: 1999 end-page: 1760 article-title: A wound‐ and systemin‐inducible polygalacturonase in tomato leaves publication-title: Proc. Natl Acad. Sci. USA – volume: 169 start-page: 2950 year: 2015 end-page: 2962 article-title: PBL13 is a serine/threonine protein kinase that negatively regulates Arabidopsis immune responses publication-title: Plant Physiol. – volume: 98 start-page: 759 year: 2001 end-page: 764 article-title: Essential role of the small GTPase Rac in disease resistance of rice publication-title: Proc. Natl Acad. Sci. USA – volume: 92 start-page: 2338 year: 1995 end-page: 2342 article-title: Covalent cross‐linking of the oligopeptide elicitor to its receptor in parsley membranes publication-title: Proc. Natl Acad. Sci. USA – volume: 68 start-page: 137 year: 2014 end-page: 154 article-title: The medium is the message: interspecies and interkingdom signaling by peptidoglycan and related bacterial glycans publication-title: Annu. Rev. Microbiol. – volume: 55 start-page: 412 year: 2014 end-page: 425 article-title: The Arabidopsis tandem zinc finger 9 protein binds RNA and mediates pathogen‐associated molecular pattern‐triggered immune responses publication-title: Plant Cell Physiol. – volume: 11 start-page: e1004809 year: 2015 article-title: Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand‐dependent activation of defense responses publication-title: PLoS Pathog. – volume: 104 start-page: 19613 year: 2007 end-page: 19618 article-title: CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis publication-title: Proc. Natl Acad. Sci. USA – volume: 107 start-page: 9452 year: 2010 end-page: 9457 article-title: A domain swap approach reveals a role of the plant wall‐associated kinase 1 (WAK1) as a receptor of oligogalacturonides publication-title: Proc. Natl Acad. Sci. USA – volume: 29 start-page: 618 year: 2017 end-page: 637 article-title: Receptor kinases in plant‐pathogen interactions: more than pattern recognition publication-title: Plant Cell – volume: 103 start-page: 11086 year: 2006 end-page: 11091 article-title: Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor publication-title: Proc. Natl Acad. Sci. USA – volume: 111 start-page: 16955 year: 2014 end-page: 16960 article-title: Nep1‐like proteins from three kingdoms of life act as a microbe‐associated molecular pattern in Arabidopsis publication-title: Proc. Natl Acad. Sci. USA – volume: 107 start-page: 21193 year: 2010 end-page: 21198 article-title: Ca signaling by plant Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP‐activated Ca channels publication-title: Proc. Natl Acad. Sci. USA – volume: 2 start-page: e00983 year: 2013 article-title: The transcriptional regulator BZR1 mediates trade‐off between plant innate immunity and growth publication-title: eLife – volume: 53 start-page: 1696 year: 2012 end-page: 1706 article-title: Functional characterization of CEBiP and CERK1 homologs in arabidopsis and rice reveals the presence of different chitin receptor systems in plants publication-title: Plant Cell Physiol. – volume: 206 start-page: 127 year: 2015 end-page: 132 article-title: Inhibitory effects of extracellular self‐DNA: a general biological process? publication-title: New Phytol. – volume: 198 start-page: 875 year: 2013 end-page: 886 article-title: NFP, a LysM protein controlling Nod factor perception, also intervenes in resistance to pathogens publication-title: New Phytol. – volume: 355 start-page: 287 year: 2017 end-page: 289 article-title: The receptor kinase FER is a RALF‐regulated scaffold controlling plant immune signaling publication-title: Science – volume: 4 start-page: 416 year: 2011 end-page: 427 article-title: The role of the plasma membrane H ‐ATPase in plant‐microbe interactions publication-title: Mol. Plant – volume: 78 start-page: 449 year: 1994 end-page: 460 article-title: High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses publication-title: Cell – volume: 12 start-page: e1005811 year: 2016 article-title: The Arabidopsis protein phosphatase PP2C38 negatively regulates the central immune kinase BIK1 publication-title: PLoS Pathog. – volume: 22 start-page: 508 year: 2010 end-page: 522 article-title: PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis publication-title: Plant Cell – volume: 15 start-page: R87 year: 2014 article-title: Functional analysis of Arabidopsis immune‐related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences publication-title: Genome Biol. – volume: 11 start-page: 252 year: 2013 end-page: 263 article-title: Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants publication-title: Nat. Rev. Microbiol. – volume: 14 start-page: 374 year: 2014 article-title: Microbe‐associated molecular pattern‐induced calcium signaling requires the receptor‐like cytoplasmic kinases, PBL1 and BIK1 publication-title: BMC Plant Biol. – volume: 204 start-page: 873 year: 2014 end-page: 881 article-title: Cytosolic calcium signals elicited by the pathogen‐associated molecular pattern flg22 in stomatal guard cells are of an oscillatory nature publication-title: New Phytol. – volume: 64 start-page: 204 year: 2010 end-page: 214 article-title: Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice publication-title: Plant J. – volume: 6 start-page: 24 year: 2001 end-page: 30 article-title: Perception of lipo‐chitooligosaccharidic Nod factors in legumes publication-title: Trends Plant Sci. – volume: 15 start-page: 329 year: 2014b end-page: 338 article-title: The FLS2‐associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity publication-title: Cell Host Microbe – volume: 39 start-page: 447 year: 2014 end-page: 456 article-title: The growth‐defense pivot: crisis management in plants mediated by LRR‐RK surface receptors publication-title: Trends Biochem. Sci. – volume: 81 start-page: 258 year: 2015b end-page: 267 article-title: The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling publication-title: Plant J. – volume: 1 start-page: 15140 year: 2015 article-title: An RLP23‐SOBIR1‐BAK1 complex mediates NLP‐triggered immunity publication-title: Nat. Plants – volume: 62 start-page: 367 year: 2010 end-page: 378 article-title: Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca ‐associated opening of plasma membrane anion channels publication-title: Plant J. – volume: 165 start-page: 464 year: 2016 end-page: 474 article-title: Root endophyte confers plant fitness benefits that are phosphate status dependent publication-title: Cell – volume: 57 start-page: 1791 year: 2016 end-page: 1800 article-title: Effector‐triggered immunity determines host genotype‐specific incompatibility in legume‐rhizobium symbiosis publication-title: Plant Cell Physiol. – volume: 35 start-page: 46 year: 2016c end-page: 61 article-title: Danger peptide receptor signaling in plants ensures basal immunity upon pathogen‐induced depletion of BAK1 publication-title: EMBO J. – volume: 6 start-page: e25114 year: 2017 article-title: Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains publication-title: eLife – volume: 64 start-page: 5309 year: 2013 end-page: 5321 article-title: The family of Peps and their precursors in Arabidopsis: differential expression and localization but similar induction of pattern‐triggered immune responses publication-title: J. Exp. Bot. – volume: 161 start-page: 2023 year: 2013 end-page: 2035 article-title: The anticipation of danger: microbe‐associated molecular pattern perception enhances AtPep‐triggered oxidative burst publication-title: Plant Physiol. – volume: 107 start-page: 496 year: 2010 end-page: 501 article-title: A receptor‐like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity publication-title: Proc. Natl Acad. Sci. USA – volume: 1 start-page: e1500245 year: 2015 article-title: The rice immune receptor XA21 recognizes a tyrosine‐sulfated protein from a Gram‐negative bacterium publication-title: Sci. Adv. – volume: 12 start-page: 49 year: 2011 article-title: Transcriptome profiling of the rice blast fungus during invasive plant infection and stresses publication-title: BMC Genom. – volume: 16 start-page: 1604 year: 2004 end-page: 1615 article-title: The receptor for the fungal elicitor ethylene‐inducing xylanase is a member of a resistance‐like gene family in tomato publication-title: Plant Cell – volume: 12 start-page: e1005596 year: 2016 article-title: Immune sensing of lipopolysaccharide in plants and animals: same but different publication-title: PLoS Pathog. – volume: 38 start-page: 173 year: 2017 end-page: 183 article-title: Calcium signatures and signaling events orchestrate plant‐microbe interactions publication-title: Curr. Opin. Plant Biol. – volume: 27 start-page: 975 year: 2014 end-page: 982 article-title: Targeted gene disruption of OsCERK1 reveals its indispensable role in chitin perception and involvement in the peptidoglycan response and immunity in rice publication-title: Mol. Plant Microbe Interact. – volume: 23 start-page: 2831 year: 2011 end-page: 2849 article-title: Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS‐INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP‐triggered immunity in Arabidopsis publication-title: Plant Cell – volume: 6 start-page: 911 year: 2015 article-title: Transcriptome analysis reveals regulatory networks underlying differential susceptibility to in response to nitrogen availability in publication-title: Front. Plant Sci. – volume: 38 start-page: 696 year: 2017 end-page: 704 article-title: Lipopolysaccharide detection across the kingdoms of life publication-title: Trends Immunol. – volume: 10 start-page: e0120245 year: 2015a article-title: ER quality control components UGGT and STT3a are required for activation of defense responses in bir1‐1 publication-title: PLoS ONE – volume: 539 start-page: 524 year: 2016 end-page: 529 article-title: Bacteria establish an aqueous living space in plants crucial for virulence publication-title: Nature – volume: 207 start-page: 482 year: 2015 end-page: 485 article-title: Growth inhibition by self‐DNA: a phenomenon and its multiple explanations publication-title: New Phytol. – volume: 23 start-page: 1531 year: 2010 end-page: 1536 article-title: Understanding the plant immune system publication-title: Mol. Plant Microbe Interact. – volume: 6 start-page: 34 year: 2009 end-page: 44 article-title: Regulation of cell death and innate immunity by two receptor‐like kinases in Arabidopsis publication-title: Cell Host Microbe – volume: 171 start-page: 1344 year: 2016 end-page: 1354 article-title: Two redundant receptor‐like cytoplasmic kinases function downstream of pattern recognition receptors to regulate activation of SA biosynthesis publication-title: Plant Physiol. – volume: 53 start-page: 541 year: 2015 end-page: 563 article-title: Understanding plant immunity as a surveillance system to detect invasion publication-title: Annu. Rev. Phytopathol. – volume: 13 start-page: e1006832 year: 2017 article-title: The Arabidopsis leucine‐rich repeat receptor kinase MIK2/LRR‐KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses publication-title: PLoS Genet. – volume: 58 start-page: 993 year: 2017 end-page: 1002 article-title: Conservation of chitin‐induced MAPK signaling pathways in rice and Arabidopsis publication-title: Plant Cell Physiol. – volume: 64 start-page: 539 year: 2007 end-page: 547 article-title: Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities publication-title: Plant Mol. Biol. – volume: 154 start-page: 233 year: 2010 end-page: 244 article-title: Plant immunity directly or indirectly restricts the injection of type III effectors by the type III secretion system publication-title: Plant Physiol. – volume: 10 start-page: 1915 year: 1998 end-page: 1925 article-title: The tomato Cf‐5 disease resistance gene and six homologs show pronounced allelic variation in leucine‐rich repeat copy number publication-title: Plant Cell – volume: 109 start-page: 19852 year: 2012 end-page: 19857 article-title: Linking ligand perception by PEPR pattern recognition receptors to cytosolic Ca elevation and downstream immune signaling in plants publication-title: Proc. Natl Acad. Sci. USA – volume: 33 start-page: 2069 year: 2014 end-page: 2079 article-title: Negative control of BAK1 by protein phosphatase 2A during plant innate immunity publication-title: EMBO J. – volume: 16 start-page: 575 year: 2013 end-page: 582 article-title: ROS signaling loops – production, perception, regulation publication-title: Curr. Opin. Plant Biol. – volume: 18 start-page: 277 year: 1999 end-page: 284 article-title: A single locus determines sensitivity to bacterial flagellin in publication-title: Plant J. – volume: 16 start-page: 3496 year: 2004 end-page: 3507 article-title: The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants publication-title: Plant Cell – volume: 4 start-page: 138 year: 2013 article-title: The dendritic cell response to classic, emerging, and homeostatic danger signals. Implications for autoimmunity publication-title: Front Immunol. – volume: 520 start-page: 679 year: 2015 end-page: 682 article-title: NIK1‐mediated translation suppression functions as a plant antiviral immunity mechanism publication-title: Nature – volume: 285 start-page: 2996 year: 2010 end-page: 3004 article-title: Direct binding of a plant LysM receptor‐like kinase, LysM RLK1/CERK1, to chitin publication-title: J. Biol. Chem. – volume: 104 start-page: 997 year: 2007 end-page: 1002 article-title: A critical role for peptidoglycan N‐deacetylation in Listeria evasion from the host innate immune system publication-title: Proc. Natl Acad. Sci. USA – volume: 2 start-page: 16185 year: 2016a article-title: The pattern‐recognition receptor CORE of Solanaceae detects bacterial cold‐shock protein publication-title: Nat. Plants – volume: 282 start-page: 32338 year: 2007 end-page: 32348 article-title: Bacteria‐derived peptidoglycans constitute pathogen‐associated molecular patterns triggering innate immunity in Arabidopsis publication-title: J. Biol. Chem. – volume: 7 start-page: 11362 year: 2016 article-title: Survival trade‐offs in plant roots during colonization by closely related beneficial and pathogenic fungi publication-title: Nat. Commun. – volume: 23 start-page: 2440 year: 2011 end-page: 2455 article-title: The Arabidopsis leucine‐rich repeat receptor‐like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens publication-title: Plant Cell – volume: 19 start-page: 4022 year: 2007 end-page: 4034 article-title: Regulation of rice NADPH oxidase by binding of Rac GTPase to its N‐terminal extension publication-title: Plant Cell – volume: 17 start-page: 922 year: 2007 end-page: 931 article-title: A receptor‐like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis publication-title: Curr. Biol. – volume: 9 start-page: e102245 year: 2014 article-title: LIK1, a CERK1‐interacting kinase, regulates plant immune responses in Arabidopsis publication-title: PLoS ONE – volume: 16 start-page: 537 year: 2016 end-page: 552 article-title: Regulation of pattern recognition receptor signalling in plants publication-title: Nat. Rev. Immunol. – volume: 20 start-page: 504 year: 2016a end-page: 514 article-title: Activation‐dependent destruction of a co‐receptor by a effector dampens plant immunity publication-title: Cell Host Microbe – volume: 521 start-page: 213 year: 2015 end-page: 216 article-title: Pathogen‐secreted proteases activate a novel plant immune pathway publication-title: Nature – volume: 5 start-page: 1003 year: 2000 end-page: 1011 article-title: FLS2: an LRR receptor‐like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis publication-title: Mol. Cell – volume: 106 start-page: 22522 year: 2009 end-page: 22527 article-title: Uncoupling of sustained MAMP receptor signaling from early outputs in an Arabidopsis endoplasmic reticulum glucosidase II allele publication-title: Proc. Natl Acad. Sci. USA – volume: 24 start-page: 4703 year: 2012 end-page: 4716 article-title: The ubiquitin ligase PUB22 targets a subunit of the exocyst complex required for PAMP‐triggered responses in Arabidopsis publication-title: Plant Cell – volume: 25 start-page: 4227 year: 2013 end-page: 4241 article-title: Arabidopsis receptor‐like protein30 and receptor‐like kinase suppressor of BIR1‐1/EVERSHED mediate innate immunity to necrotrophic fungi publication-title: Plant Cell – volume: 20 start-page: 537 year: 2006 end-page: 542 article-title: Ligand‐induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis publication-title: Genes Dev. – volume: 55 start-page: 565 year: 2017 end-page: 589 article-title: Interplay between innate immunity and the plant microbiota publication-title: Annu. Rev. Phytopathol. – volume: 342 start-page: 624 year: 2013 end-page: 628 article-title: Structural basis for flg22‐induced activation of the Arabidopsis FLS2‐BAK1 immune complex publication-title: Science – volume: 417 start-page: 959 year: 2002 end-page: 962 article-title: A plant receptor‐like kinase required for both bacterial and fungal symbiosis publication-title: Nature – volume: 32 start-page: 1660 year: 2013 end-page: 1664 article-title: Unconventional protein secretion: an evolving mechanism publication-title: EMBO J. – volume: 16 start-page: 553 year: 2003 end-page: 564 article-title: The endopolygalacturonase 1 from activates grapevine defense reactions unrelated to its enzymatic activity publication-title: Mol. Plant Microbe Interact. – volume: 25 start-page: 2330 year: 2013 end-page: 2340 article-title: The receptor‐like protein ReMAX of Arabidopsis detects the microbe‐associated molecular pattern eMax from Xanthomonas publication-title: Plant Cell – volume: 8 start-page: e1000280 year: 2010 article-title: Experimental evolution of a plant pathogen into a legume symbiont publication-title: PLoS Biol. – volume: 341 start-page: 1384 year: 2013 end-page: 1387 article-title: Nonlegumes respond to rhizobial Nod factors by suppressing the innate immune response publication-title: Science – volume: 8 start-page: e75039 year: 2013 article-title: Aphanomyces euteiches cell wall fractions containing novel glucan‐chitosaccharides induce defense genes and nuclear calcium oscillations in the plant host publication-title: PLoS ONE – volume: 10 start-page: e1004491 year: 2014 article-title: A conserved peptide pattern from a widespread microbial virulence factor triggers pattern‐induced immunity in Arabidopsis publication-title: PLoS Pathog. – volume: 203 start-page: 592 year: 2014 end-page: 606 article-title: The Arabidopsis thaliana mitogen‐activated protein kinases MPK3 and MPK6 target a subclass of ‘VQ‐motif’‐containing proteins to regulate immune responses publication-title: New Phytol. – volume: 7 start-page: e1002130 year: 2011 article-title: The plant pathogen pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity publication-title: PLoS Pathog. – volume: 104 start-page: 18333 year: 2007 end-page: 18338 article-title: Tyrosine‐sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis publication-title: Proc. Natl Acad. Sci. USA – volume: 12 start-page: 215 year: 2012 end-page: 225 article-title: Beyond pattern recognition: five immune checkpoints for scaling the microbial threat publication-title: Nat. Rev. Immunol. – volume: 54 start-page: 43 year: 2014 end-page: 55 article-title: Direct regulation of the NADPH oxidase RBOHD by the PRR‐associated kinase BIK1 during plant immunity publication-title: Mol. Cell – volume: 35 start-page: 747 year: 1999 end-page: 755 article-title: Oligoagars elicit a physiological response in (Rhodophyta) publication-title: J. Phycol. – volume: 531 start-page: 241 year: 2016b end-page: 244 article-title: A receptor heteromer mediates the male perception of female attractants in plants publication-title: Nature – volume: 343 start-page: 1509 year: 2014 end-page: 1512 article-title: A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation publication-title: Science – volume: 4 start-page: 2530 year: 2013 article-title: Plant immune response to pathogens differs with changing temperatures publication-title: Nat. Commun. – volume: 57 start-page: 649 year: 2006 end-page: 674 article-title: Peptide hormones in plants publication-title: Annu. Rev. Plant Biol. – volume: 113 start-page: 11034 year: 2016 end-page: 11039 article-title: Clathrin‐dependent endocytosis is required for immunity mediated by pattern recognition receptor kinases publication-title: Proc. Natl Acad. Sci. USA – volume: 28 start-page: 913 year: 2015 end-page: 926 article-title: Tomato SOBIR1/EVR homologs are involved in elicitin perception and plant defense against the oomycete pathogen publication-title: Mol. Plant Microbe Interact. – volume: 464 start-page: 418 year: 2010 end-page: 422 article-title: Differential innate immune signalling via Ca sensor protein kinases publication-title: Nature – volume: 68 start-page: 100 year: 2011 end-page: 113 article-title: Interplay between calcium signalling and early signalling elements during defence responses to microbe‐ or damage‐associated molecular patterns publication-title: Plant J. – volume: 18 start-page: 265 year: 1999 end-page: 276 article-title: Plants have a sensitive perception system for the most conserved domain of bacterial flagellin publication-title: Plant J. – volume: 16 start-page: 426 year: 2015 end-page: 433 article-title: A lectin S‐domain receptor kinase mediates lipopolysaccharide sensing in publication-title: Nat. Immunol. – volume: 164 start-page: 440 year: 2014 end-page: 454 article-title: Sensitivity to Flg22 is modulated by ligand‐induced degradation and synthesis of the endogenous flagellin‐receptor FLAGELLIN‐SENSING2 publication-title: Plant Physiol. – volume: 13 start-page: 465 year: 2013 end-page: 476 article-title: An OsCEBiP/OsCERK1‐OsRacGEF1‐OsRac1 module is an essential early component of chitin‐induced rice immunity publication-title: Cell Host Microbe – volume: 201 start-page: 961 year: 2014 end-page: 972 article-title: Evolution of a symbiotic receptor through gene duplications in the legume‐rhizobium mutualism publication-title: New Phytol. – volume: 113 start-page: 3389 year: 2016 end-page: 3394 article-title: NbCSPR underlies age‐dependent immune responses to bacterial cold shock protein in publication-title: Proc. Natl Acad. Sci. USA – volume: 79 start-page: 1048 year: 2013 end-page: 1051 article-title: The type III secretion system of USDA122 mediates symbiotic incompatibility with Rj2 soybean plants publication-title: Appl. Environ. Microbiol. – volume: 172 start-page: 626 year: 2009 end-page: 629 article-title: In‐field detection and quantification of extracellular DNA publication-title: J. Plant Nutr. Soil Sci. – volume: 8 start-page: pii: e25345 year: 2013 article-title: Presence of LYM2 dependent but CERK1 independent disease resistance in Arabidopsis publication-title: Plant Signal. Behav. – volume: 52 start-page: 19 year: 2014 end-page: 43 article-title: Harnessing population genomics to understand how bacterial pathogens emerge, adapt to crop hosts, and disseminate publication-title: Annu. Rev. Phytopathol. – volume: 1 start-page: 48 year: 2010 article-title: Mechanisms underlying beneficial plant‐fungus interactions in mycorrhizal symbiosis publication-title: Nat. Commun. – volume: 6 start-page: 1126 year: 2015 article-title: Comparative genomics of pathogenic and nonpathogenic strains of unveil molecular and evolutionary events linked to pathoadaptation publication-title: Front. Plant Sci. – volume: 330 start-page: 968 year: 2010 end-page: 971 article-title: Conserved molecular components for pollen tube reception and fungal invasion publication-title: Science – volume: 543 start-page: 513 year: 2017 end-page: 518 article-title: Root microbiota drive direct integration of phosphate stress and immunity publication-title: Nature – volume: 41 start-page: e553 issue: 555–570 year: 2017 article-title: Phosphate starvation‐dependent iron mobilization induces CLE14 expression to trigger root meristem differentiation through CLV2/PEPR2 signaling publication-title: Dev. Cell – volume: 63 start-page: 393 year: 2012 end-page: 401 article-title: Interplay of flg22‐induced defence responses and nodulation in publication-title: J. Exp. Bot. – volume: 14 start-page: 653 year: 2001 end-page: 662 article-title: Molecular characterization of a subtilase from the vascular wilt fungus publication-title: Mol. Plant Microbe Interact. – volume: 110 start-page: 6211 year: 2013 end-page: 6216 article-title: Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection publication-title: Proc. Natl Acad. Sci. USA – volume: 16 start-page: 232 year: 2016 article-title: DAMPs, MAMPs, and NAMPs in plant innate immunity publication-title: BMC Plant Biol. – volume: 266 start-page: 789 year: 1994 end-page: 793 article-title: Isolation of the tomato Cf‐9 gene for resistance to by transposon tagging publication-title: Science – volume: 211 start-page: 1008 year: 2016 end-page: 1019 article-title: Double‐stranded RNAs induce a pattern‐triggered immune signaling pathway in plants publication-title: New Phytol. – volume: 23 start-page: 58 year: 2010 end-page: 66 article-title: Improved characterization of nod factors and genetically based variation in LysM Receptor domains identify amino acids expendable for nod factor recognition in Lotus spp publication-title: Mol. Plant Microbe Interact. – volume: 255 start-page: 1570 year: 1992 end-page: 1573 article-title: Structure, expression, and antisense inhibition of the systemin precursor gene publication-title: Science – volume: 110 start-page: 5707 year: 2013 end-page: 5712 article-title: Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense publication-title: Proc. Natl Acad. Sci. USA – volume: 79 start-page: 56 year: 2014 end-page: 66 article-title: Selective regulation of the chitin‐induced defense response by the Arabidopsis receptor‐like cytoplasmic kinase PBL27 publication-title: Plant J. – volume: 275 start-page: 32347 year: 2000 end-page: 32356 article-title: Flagellin from an incompatible strain of induces a resistance response in cultured rice cells publication-title: J. Biol. Chem. – volume: 4 start-page: 49 year: 2013 article-title: Oligogalacturonides: plant damage‐associated molecular patterns and regulators of growth and development publication-title: Front. Plant Sci. – volume: 198 start-page: 190 year: 2013 end-page: 202 article-title: Short‐chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca spiking in roots and their production is enhanced by strigolactone publication-title: New Phytol. – volume: 130 start-page: 1155 year: 2017 end-page: 1168 article-title: Genetic dissection of the maize ( L.) MAMP response publication-title: Theor. Appl. Genet. – volume: 6 start-page: 763 year: 2008 end-page: 775 article-title: Arbuscular mycorrhiza: the mother of plant root endosymbioses publication-title: Nat. Rev. Microbiol. – volume: 113 start-page: 11028 year: 2016 end-page: 11033 article-title: Danger‐associated peptide signaling in Arabidopsis requires clathrin publication-title: Proc. Natl Acad. Sci. USA – volume: 212 start-page: 67 year: 1981 end-page: 69 article-title: Eicosapentaenoic and arachidonic acids from elicit fungitoxic sesquiterpenes in the potato publication-title: Science – volume: 523 start-page: 308 year: 2015 end-page: 312 article-title: Receptor‐mediated exopolysaccharide perception controls bacterial infection publication-title: Nature – volume: 477 start-page: 592 year: 2011 end-page: 595 article-title: Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity publication-title: Nature – volume: 332 start-page: 1439 year: 2011 end-page: 1442 article-title: Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity publication-title: Science – volume: 279 start-page: 1132 year: 2004 end-page: 1140 article-title: An ancient enzyme domain hidden in the putative beta‐glucan elicitor receptor of soybean may play an active part in the perception of pathogen‐associated molecular patterns during broad host resistance publication-title: J. Biol. Chem. – volume: 343 start-page: 290 year: 2014 end-page: 294 article-title: Identification of a plant receptor for extracellular ATP publication-title: Science – volume: 47 start-page: 6311 year: 2008 end-page: 6321 article-title: A cytoplasmic Ca functional assay for identifying and purifying endogenous cell signaling peptides in Arabidopsis seedlings: identification of AtRALF1 peptide publication-title: Biochemistry – volume: 6 start-page: 973 year: 2005 end-page: 979 article-title: Are innate immune signaling pathways in plants and animals conserved? publication-title: Nat. Immunol. – volume: 3 start-page: e01990 year: 2014 article-title: Host‐induced bacterial cell wall decomposition mediates pattern‐triggered immunity in Arabidopsis publication-title: eLife – volume: 20 start-page: 186 year: 2015 end-page: 194 article-title: Rhizobium‐legume symbioses: the crucial role of plant immunity publication-title: Trends Plant Sci. – volume: 117 start-page: 1373 year: 1998 end-page: 1380 article-title: Cutin monomers and surface wax constituents elicit H O in conditioned cucumber hypocotyl segments and enhance the activity of other H O elicitors publication-title: Plant Physiol. – volume: 4 start-page: 509 year: 2003 end-page: 516 article-title: Pathogenic fungi: leading or led by ambient pH? publication-title: Mol. Plant Pathol. – volume: 103 start-page: 10098 year: 2006 end-page: 10103 article-title: An endogenous peptide signal in Arabidopsis activates components of the innate immune response publication-title: Proc. Natl Acad. Sci. USA – volume: 1 start-page: 16043 year: 2016 article-title: A fungal pathogen secretes plant alkalinizing peptides to increase infection publication-title: Nat. Microbiol. – volume: 66 start-page: 5315 year: 2015 end-page: 5325 article-title: Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling publication-title: J. Exp. Bot. – volume: 16 start-page: 1220 year: 2004 end-page: 1234 article-title: Comparative analysis of the receptor‐like kinase family in Arabidopsis and rice publication-title: Plant Cell – volume: 26 start-page: 45 year: 2015 end-page: 50 article-title: Reconsidering mutualistic plant‐fungal interactions through the lens of effector biology publication-title: Curr. Opin. Plant Biol. – volume: 16 start-page: 489 year: 2013 end-page: 495 article-title: Root border cells and secretions as critical elements in plant host defense publication-title: Curr. Opin. Plant Biol. – volume: 173 start-page: 2383 year: 2017 end-page: 2398 article-title: Cellulose‐derived oligomers act as damage‐associated molecular patterns and trigger defense‐like responses publication-title: Plant Physiol. – volume: 207 start-page: 78 year: 2015 end-page: 90 article-title: The receptor‐like cytoplasmic kinase PCRK1 contributes to pattern‐triggered immunity against in publication-title: New Phytol. – volume: 440 start-page: 355 year: 2011 end-page: 365 article-title: Ionotropic glutamate receptor (iGluR)‐like channels mediate MAMP‐induced calcium influx in publication-title: Biochem. J. – volume: 428 start-page: 764 year: 2004 end-page: 767 article-title: Bacterial disease resistance in Arabidopsis through flagellin perception publication-title: Nature – volume: 278 start-page: 6201 year: 2003 end-page: 6208 article-title: Molecular sensing of bacteria in plants. The highly conserved RNA‐binding motif RNP‐1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco publication-title: J. Biol. Chem. – volume: 14 start-page: 2627 year: 2002 end-page: 2641 article-title: Analysis and effects of cytosolic free calcium increases in response to elicitors in cells publication-title: Plant Cell – volume: 26 start-page: 1271 year: 2013 end-page: 1280 article-title: The immunity regulator BAK1 contributes to resistance against diverse RNA viruses publication-title: Mol. Plant Microbe Interact. – volume: 111 start-page: 3632 year: 2014 end-page: 3637 article-title: Tyrosine phosphorylation of protein kinase complex BAK1/BIK1 mediates Arabidopsis innate immunity publication-title: Proc. Natl Acad. Sci. USA – volume: 90 start-page: 8273 year: 1993 end-page: 8276 article-title: Expression of an antisense prosystemin gene in tomato plants reduces resistance toward Manduca sexta larvae publication-title: Proc. Natl Acad. Sci. USA – volume: 14 start-page: 867 year: 2001 end-page: 876 article-title: No evidence for binding between resistance gene product Cf‐9 of tomato and avirulence gene product AVR9 of publication-title: Mol. Plant Microbe Interact. – volume: 107 start-page: 18735 year: 2010 end-page: 18740 article-title: R gene‐controlled host specificity in the legume‐rhizobia symbiosis publication-title: Proc. Natl Acad. Sci. USA – volume: 9 start-page: 183 year: 2009 article-title: Evolutionary genomics of LysM genes in land plants publication-title: BMC Evol. Biol. – volume: 21 start-page: 104 year: 2014 end-page: 111 article-title: Receptor like proteins associate with SOBIR1‐type of adaptors to form bimolecular receptor kinases publication-title: Curr. Opin. Plant Biol. – volume: 33 start-page: 62 year: 2014 end-page: 75 article-title: The Arabidopsis PEPR pathway couples local and systemic plant immunity publication-title: EMBO J. – volume: 318 start-page: 453 year: 2007 end-page: 456 article-title: Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling publication-title: Science – volume: 14 start-page: 351 year: 2011 end-page: 357 article-title: Endogenous peptide elicitors in higher plants publication-title: Curr. Opin. Plant Biol. – volume: 28 start-page: 3439 year: 2009 end-page: 3449 article-title: Receptor quality control in the endoplasmic reticulum for plant innate immunity publication-title: EMBO J. – volume: 111 start-page: E404 year: 2014 end-page: E413 article-title: Chitin‐induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich‐type dimerization publication-title: Proc. Natl Acad. Sci. USA – volume: 12 start-page: e1006068 year: 2016 article-title: Differentiation between MAMP triggered defenses in publication-title: PLoS Genet. – volume: 39 start-page: 313 year: 2001 end-page: 335 article-title: The role of polygalacturonase‐inhibiting proteins (PGIPs) in defense against pathogenic fungi publication-title: Annu. Rev. Phytopathol. – volume: 28 start-page: 1701 year: 2016 end-page: 1721 article-title: The Arabidopsis malectin‐like/LRR‐RLK IOS1 is critical for BAK1‐dependent and BAK1‐independent pattern‐triggered immunity publication-title: Plant Cell – volume: 6 start-page: 1198 year: 2007 end-page: 1214 article-title: Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis publication-title: Mol. Cell Proteomics – volume: 27 start-page: 2042 year: 2015 end-page: 2056 article-title: Phosphorylation of the plant immune regulator RPM1‐INTERACTING PROTEIN4 enhances plant plasma membrane H ‐ATPase activity and inhibits flagellin‐triggered immune responses in Arabidopsis publication-title: Plant Cell – volume: 155 start-page: 1325 year: 2011 end-page: 1338 article-title: ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance publication-title: Plant Physiol. – volume: 55 start-page: 109 year: 2017 end-page: 137 article-title: From chaos to harmony: responses and signaling upon microbial pattern recognition publication-title: Annu. Rev. Phytopathol. – volume: 89 start-page: 1195 year: 2017 end-page: 1209 article-title: The tomato I gene for Fusarium wilt resistance encodes an atypical leucine‐rich repeat receptor‐like protein whose function is nevertheless dependent on SOBIR1 and SERK3/BAK1 publication-title: Plant J. – volume: 174 start-page: 561 year: 2017 end-page: 571 article-title: Stomatal defense a decade later publication-title: Plant Physiol. – volume: 29 start-page: 2285 year: 2017 end-page: 2303 article-title: The Arabidopsis leucine‐rich repeat receptor kinase BIR3 negatively regulates BAK1 receptor complex formation and stabilizes BAK1 publication-title: Plant Cell – volume: 110 start-page: 9166 year: 2013 end-page: 9170 article-title: LYM2‐dependent chitin perception limits molecular flux via plasmodesmata publication-title: Proc. Natl Acad. Sci. USA – volume: 10 start-page: 375 year: 2009 end-page: 387 article-title: Microbe‐associated molecular pattern (MAMP) signatures, synergy, size and charge: influences on perception or mobility and host defence responses publication-title: Mol. Plant Pathol. – volume: 22 start-page: 779 year: 2017 end-page: 791 article-title: Sensing danger: key to activating plant immunity publication-title: Trends Plant Sci. – volume: 15 start-page: 127 year: 2007 end-page: 134 article-title: Peptidoglycan recognition proteins of the innate immune system publication-title: Trends Microbiol. – volume: 16 start-page: 3386 year: 2004 end-page: 3399 article-title: Phosphorylation of 1‐aminocyclopropane‐1‐carboxylic acid synthase by MPK6, a stress‐responsive mitogen‐activated protein kinase, induces ethylene biosynthesis in Arabidopsis publication-title: Plant Cell – volume: 410 start-page: 1099 year: 2001 end-page: 1103 article-title: The innate immune response to bacterial flagellin is mediated by Toll‐like receptor 5 publication-title: Nature – volume: 23 start-page: 1153 year: 2011 end-page: 1170 article-title: Phosphorylation of the WRKY8 transcription factor by MAPK functions in the defense response publication-title: Plant Cell – volume: 207 start-page: 488 year: 2015 end-page: 490 article-title: Self‐DNA: a blessing in disguise? publication-title: New Phytol. – volume: 28 start-page: 365 year: 2010 end-page: 369 article-title: Interfamily transfer of a plant pattern‐recognition receptor confers broad‐spectrum bacterial resistance publication-title: Nat. Biotechnol. – volume: 24 start-page: 1096 year: 2012 end-page: 1113 article-title: Probing the Arabidopsis flagellin receptor: FLS2‐FLS2 association and the contributions of specific domains to signaling function publication-title: Plant Cell – volume: 13 start-page: 199 year: 2013 end-page: 206 article-title: Effector‐triggered versus pattern‐triggered immunity: how animals sense pathogens publication-title: Nat. Rev. Immunol. – volume: 167 start-page: 1076 year: 2015 end-page: 1086 article-title: The Arabidopsis transcription factor BRASSINOSTEROID INSENSITIVE1‐ETHYL METHANESULFONATE‐SUPPRESSOR1 is a direct substrate of MITOGEN‐ACTIVATED PROTEIN KINASE6 and regulates immunity publication-title: Plant Physiol. – volume: 353 start-page: 478 year: 2016 end-page: 481 article-title: Detection of the plant parasite by a tomato cell surface receptor publication-title: Science – volume: 20 start-page: 12 year: 2015 end-page: 19 article-title: Trade‐off between growth and immunity: role of brassinosteroids publication-title: Trends Plant Sci. – volume: 204 start-page: 791 year: 2014 end-page: 802 article-title: Knowing your friends and foes – plant receptor‐like kinases as initiators of symbiosis or defence publication-title: New Phytol. – volume: 29 start-page: 726 year: 2017 end-page: 745 article-title: Changes in PUB22 ubiquitination modes triggered by MITOGEN‐ACTIVATED PROTEIN KINASE3 dampen the immune response publication-title: Plant Cell – volume: 162 start-page: 501 year: 2004 end-page: 510 article-title: The CBEL elicitor of var. nicotianae activates defence in via three different signalling pathways publication-title: New Phytol. – volume: 73 start-page: 469 year: 2013 end-page: 482 article-title: The tyrosine‐sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner publication-title: Plant J. – volume: 27 start-page: 113 year: 2014 end-page: 124 article-title: Two distinct EF‐Tu epitopes induce immune responses in rice and Arabidopsis publication-title: Mol. Plant Microbe Interact. – volume: 485 start-page: 114 year: 2012 end-page: 118 article-title: A Xanthomonas uridine 5’‐monophosphate transferase inhibits plant immune kinases publication-title: Nature – volume: 91 start-page: 601 year: 2013 end-page: 610 article-title: The interplay between pathogen‐associated and danger‐associated molecular patterns: an inflammatory code in cancer? publication-title: Immunol. Cell Biol. – volume: 204 start-page: 782 year: 2014 end-page: 790 article-title: Ca signalling in plant immune response: from pattern recognition receptors to Ca decoding mechanisms publication-title: New Phytol. – volume: 332 start-page: 974 year: 2011 end-page: 977 article-title: The Toll‐like receptor 2 pathway establishes colonization by a commensal of the human microbiota publication-title: Science – volume: 110 start-page: 12114 year: 2013 end-page: 12119 article-title: Inverse modulation of plant immune and brassinosteroid signaling pathways by the receptor‐like cytoplasmic kinase BIK1 publication-title: Proc. Natl Acad. Sci. USA – volume: 43 start-page: 18 year: 2017 end-page: 27 article-title: Structural insights into ligand recognition and activation of plant receptor kinases publication-title: Curr. Opin. Struct. Biol. – volume: 151 start-page: 820 year: 2009 end-page: 829 article-title: Extracellular DNA is required for root tip resistance to fungal infection publication-title: Plant Physiol. – volume: 7 start-page: 37 year: 2009 end-page: 46 article-title: Bioinformatic comparison of bacterial secretomes publication-title: Genom. Proteom. Bioinform. – volume: 336 start-page: 1160 year: 2012b end-page: 1164 article-title: Chitin‐induced dimerization activates a plant immune receptor publication-title: Science – volume: 5 start-page: 331 year: 2005 end-page: 342 article-title: High‐mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal publication-title: Nat. Rev. Immunol. – volume: 477 start-page: 596 year: 2011 end-page: 600 article-title: The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus publication-title: Nature – volume: 92 start-page: 4150 year: 1995 end-page: 4157 article-title: Oligopeptide elicitor‐mediated defense gene activation in cultured parsley cells publication-title: Proc. Natl Acad. Sci. USA – volume: 150 start-page: 1422 year: 2009 end-page: 1433 article-title: Isolation and characterization of hydroxyproline‐rich glycopeptide signals in black nightshade leaves publication-title: Plant Physiol. – volume: 5 start-page: 152 year: 2007 end-page: 156 article-title: The disease triangle: pathogens, the environment and society publication-title: Nat. Rev. Microbiol. – volume: 19 start-page: 1081 year: 2007 end-page: 1095 article-title: Death don't have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity publication-title: Plant Cell – volume: 109 start-page: 13859 year: 2012 end-page: 13864 article-title: Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding publication-title: Proc. Natl Acad. Sci. USA – volume: 469 start-page: 58 year: 2011 end-page: 63 article-title: Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza publication-title: Nature – volume: 72 start-page: 782 year: 2016b end-page: 787 article-title: X‐ray crystallographic studies of the extracellular domain of the first plant ATP receptor, DORN1, and the orthologous protein from publication-title: Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. – volume: 206 start-page: 606 year: 2015 end-page: 613 article-title: Arabidopsis EF‐Tu receptor enhances bacterial disease resistance in transgenic wheat publication-title: New Phytol. – volume: 20 start-page: 471 year: 2008 end-page: 481 article-title: A LysM receptor‐like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis publication-title: Plant Cell – volume: 66 start-page: 5183 year: 2015 end-page: 5193 article-title: Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development publication-title: J. Exp. Bot. – volume: 5 start-page: 585 year: 2014 article-title: Damaged‐self recognition in common bean ( ) shows taxonomic specificity and triggers signaling via reactive oxygen species (ROS) publication-title: Front. Plant Sci. – volume: 4 start-page: e06587 year: 2015b article-title: Glycosylphosphatidylinositol‐anchored proteins as chaperones and co‐receptors for FERONIA receptor kinase signaling in Arabidopsis publication-title: eLife – volume: 24 start-page: 275 year: 2012 end-page: 287 article-title: The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern‐triggered immunity publication-title: Plant Cell – volume: 343 start-page: 408 year: 2014 end-page: 411 article-title: A peptide hormone and its receptor protein kinase regulate plant cell expansion publication-title: Science – volume: 64 start-page: 3615 year: 2013 end-page: 3625 article-title: Pathogen‐associated molecular pattern‐triggered immunity and resistance to the root pathogen in Arabidopsis publication-title: J. Exp. Bot. – volume: 16 start-page: 605 year: 2014 end-page: 615 article-title: The calcium‐dependent protein kinase CPK28 buffers plant immunity and regulates BIK1 turnover publication-title: Cell Host Microbe – volume: 207 start-page: 106 year: 2015 end-page: 118 article-title: The tomato I‐3 gene: a novel gene for resistance to Fusarium wilt disease publication-title: New Phytol. – volume: 7 start-page: 906 year: 2016 article-title: Extracellular recognition of oomycetes during biotrophic infection of plants publication-title: Front. Plant Sci. – volume: 206 start-page: 497 year: 2015 end-page: 500 article-title: symbiosis mutants affected in the interaction with a biotrophic root pathogen publication-title: New Phytol. – volume: 5 start-page: 446 year: 2014 article-title: Extracellular ATP acts as a damage‐associated molecular pattern (DAMP) signal in plants publication-title: Front. Plant Sci. – volume: 12 start-page: e1005518 year: 2016 article-title: Activation of plant innate immunity by extracellular high mobility group box 3 and its inhibition by salicylic acid publication-title: PLoS Pathog. – volume: 51 start-page: 245 year: 2013 end-page: 266 article-title: MAPK cascades in plant disease resistance signaling publication-title: Annu. Rev. Phytopathol. – volume: 27 start-page: 2095 year: 2015 end-page: 2118 article-title: The plant peptidome: an expanding repertoire of structural features and biological functions publication-title: Plant Cell – volume: 110 start-page: 213 year: 2002 end-page: 222 article-title: BAK1, an Arabidopsis LRR receptor‐like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling publication-title: Cell – volume: 99 start-page: 9585 year: 2002 end-page: 9590 article-title: The systemin receptor SR160 from is a member of the LRR receptor kinase family publication-title: Proc. Natl Acad. Sci. USA – volume: 130 start-page: 2152 year: 2002 end-page: 2163 article-title: Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells publication-title: Plant Physiol. – volume: 56 start-page: 1472 year: 2015 end-page: 1480 article-title: Regulation of the NADPH oxidase RBOHD during plant immunity publication-title: Plant Cell Physiol. – volume: 16 start-page: 748 year: 2014a end-page: 758 article-title: Modulation of RNA polymerase II phosphorylation downstream of pathogen perception orchestrates plant immunity publication-title: Cell Host Microbe – volume: 38 start-page: 719 year: 2017 end-page: 732 article-title: DNA sensing across the tree of life publication-title: Trends Immunol. – volume: 253 start-page: 895 year: 1991 end-page: 897 article-title: A polypeptide from tomato leaves induces wound‐inducible proteinase inhibitor proteins publication-title: Science – volume: 27 start-page: 839 year: 2015a end-page: 856 article-title: Phosphorylation of trihelix transcriptional repressor ASR3 by MAP KINASE4 negatively regulates Arabidopsis immunity publication-title: Plant Cell – volume: 19 start-page: 123 year: 2014 end-page: 132 article-title: Two for all: receptor‐associated kinases SOBIR1 and BAK1 publication-title: Trends Plant Sci. – volume: 18 start-page: 764 year: 2006 end-page: 779 article-title: Within‐species flagellin polymorphism in pv campestris and its impact on elicitation of Arabidopsis FLAGELLIN SENSING2‐dependent defenses publication-title: Plant Cell – volume: 26 start-page: 828 year: 2014 end-page: 841 article-title: The bHLH transcription factor HBI1 mediates the trade‐off between growth and pathogen‐associated molecular pattern‐triggered immunity in Arabidopsis publication-title: Plant Cell – volume: 11 start-page: e1004602 year: 2015 article-title: The phylogenetically‐related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots publication-title: PLoS Pathog. – volume: 50 start-page: 413 year: 1998 end-page: 492 article-title: Receptors for purines and pyrimidines publication-title: Pharmacol. Rev. – volume: 13 start-page: 983 year: 2015 end-page: 992 article-title: The receptor‐like protein RLM2 is encoded by a second allele of the / blackleg resistance locus publication-title: Plant Biotechnol. J. – volume: 12 start-page: 192 year: 2016 end-page: 207 article-title: The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health publication-title: New Phytol. – volume: 197 start-page: 595 year: 2013 end-page: 605 article-title: The blackleg resistance gene encodes a receptor‐like protein triggered by the effector AVRLM1 publication-title: New Phytol. – volume: 110 start-page: 17131 year: 2013 end-page: 17136 article-title: Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system publication-title: Proc. Natl Acad. Sci. USA – year: 2017 article-title: Plant elicitor peptides promote plant defences against nematodes in soybean publication-title: Mol. Plant Pathol. – volume: 27 start-page: 2057 year: 2015 end-page: 2072 article-title: A glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP publication-title: Plant Cell – volume: 21 start-page: 1017 year: 2016 end-page: 1033 article-title: SERKing coreceptors for receptors publication-title: Trends Plant Sci. – volume: 17 start-page: 1109 year: 2007 end-page: 1115 article-title: BAK1 and BKK1 regulate brassinosteroid‐dependent growth and brassinosteroid‐independent cell‐death pathways publication-title: Curr. Biol. – volume: 207 start-page: 841 year: 2015 end-page: 857 article-title: Mutualistic root endophytism is not associated with the reduction of saprotrophic traits and requires a noncompromised plant innate immunity publication-title: New Phytol. – volume: 114 start-page: E8118 year: 2017 end-page: E8127 article-title: Receptor‐mediated chitin perception in legume roots is functionally separable from Nod factor perception publication-title: Proc. Natl Acad. Sci. USA – volume: 98 start-page: 12843 year: 2001 end-page: 12847 article-title: RALF, a 5‐kDa ubiquitous polypeptide in plants, arrests root growth and development publication-title: Proc. Natl Acad. Sci. USA – volume: 63 start-page: 791 year: 2010 end-page: 800 article-title: BAK1 is required for the attenuation of ethylene‐inducing xylanase (Eix)‐induced defense responses by the decoy receptor LeEix1 publication-title: Plant J. – volume: 17 start-page: 1116 year: 2007 end-page: 1122 article-title: The BRI1‐associated kinase 1, BAK1, has a brassinolide‐independent role in plant cell‐death control publication-title: Curr. Biol. – volume: 1 start-page: 175 year: 2007 end-page: 185 article-title: A effector inactivates MAPKs to suppress PAMP‐induced immunity in plants publication-title: Cell Host Microbe – volume: 104 start-page: 12217 year: 2007 end-page: 12222 article-title: The receptor‐like kinase SERK3/BAK1 is a central regulator of innate immunity in plants publication-title: Proc. Natl Acad. Sci. USA – volume: 26 start-page: 64 year: 2015 end-page: 71 article-title: Chitin‐mediated plant‐fungal interactions: catching, hiding and handshaking publication-title: Curr. Opin. Plant Biol. – volume: 285 start-page: 39140 year: 2010 end-page: 39149 article-title: PAMP (pathogen‐associated molecular pattern)‐induced changes in plasma membrane compartmentalization reveal novel components of plant immunity publication-title: J. Biol. Chem. – volume: 34 start-page: 593 year: 2015 end-page: 608 article-title: The mRNA decay factor PAT1 functions in a pathway including MAP kinase 4 and immune receptor SUMM2 publication-title: EMBO J. – volume: 335 start-page: 859 year: 2012 end-page: 864 article-title: Structural basis of TLR5‐flagellin recognition and signaling publication-title: Science – volume: 11 start-page: 253 year: 2012 end-page: 263 article-title: Disruption of PAMP‐induced MAP kinase cascade by a effector activates plant immunity mediated by the NB‐LRR protein SUMM2 publication-title: Cell Host Microbe – volume: 243 start-page: 26 year: 2011 end-page: 39 article-title: Two signal models in innate immunity publication-title: Immunol. Rev. – volume: 28 start-page: 648 year: 2015 end-page: 658 article-title: CD2‐1, the C‐terminal region of flagellin, modulates the induction of immune responses in rice publication-title: Mol. Plant Microbe Interact. – volume: 110 start-page: 203 year: 2002 end-page: 212 article-title: BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling publication-title: Cell – volume: 285 start-page: 28902 year: 2010 end-page: 28911 article-title: The lysin motif receptor‐like kinase (LysM‐RLK) CERK1 is a major chitin‐binding protein in and subject to chitin‐induced phosphorylation publication-title: J. Biol. Chem. – ident: e_1_2_17_323_1 doi: 10.1104/pp.109.142067 – ident: e_1_2_17_67_1 doi: 10.1038/icb.2013.58 – ident: e_1_2_17_104_1 doi: 10.1073/pnas.0705306104 – ident: e_1_2_17_170_1 doi: 10.1105/tpc.104.026609 – ident: e_1_2_17_336_1 doi: 10.1073/pnas.1011957107 – ident: e_1_2_17_2_1 doi: 10.1016/j.chom.2013.03.007 – ident: e_1_2_17_102_1 doi: 10.1038/35074106 – ident: e_1_2_17_208_1 doi: 10.1111/tpj.12050 – ident: e_1_2_17_70_1 doi: 10.1104/pp.117.4.1373 – ident: e_1_2_17_251_1 doi: 10.1111/nph.12198 – ident: e_1_2_17_291_1 doi: 10.1126/science.1243825 – ident: e_1_2_17_209_1 doi: 10.1186/s13059-016-0955-7 – ident: e_1_2_17_191_1 doi: 10.1038/emboj.2013.104 – ident: e_1_2_17_66_1 doi: 10.1093/mp/ssq083 – ident: e_1_2_17_312_1 doi: 10.1146/annurev-phyto-102313-045907 – ident: e_1_2_17_85_1 doi: 10.1111/nph.12146 – ident: e_1_2_17_37_1 doi: 10.1002/jpln.200900081 – ident: e_1_2_17_211_1 doi: 10.1016/S0092-8674(02)00814-0 – ident: e_1_2_17_38_1 doi: 10.3389/fpls.2015.01126 – volume: 169 start-page: 2950 year: 2015 ident: e_1_2_17_169_1 article-title: PBL13 is a serine/threonine protein kinase that negatively regulates Arabidopsis immune responses publication-title: Plant Physiol. – ident: e_1_2_17_29_1 doi: 10.1073/pnas.1000675107 – ident: e_1_2_17_243_1 doi: 10.1016/j.pbi.2017.04.022 – ident: e_1_2_17_147_1 doi: 10.1105/tpc.111.087122 – ident: e_1_2_17_151_1 doi: 10.1371/journal.pone.0102245 – ident: e_1_2_17_120_1 doi: 10.1111/j.1365-313X.2010.04155.x – ident: e_1_2_17_10_1 doi: 10.1111/j.1365-313X.2010.04282.x – ident: e_1_2_17_184_1 doi: 10.1094/MPMI.2001.14.7.867 – ident: e_1_2_17_172_1 doi: 10.1105/tpc.112.102475 – ident: e_1_2_17_188_1 doi: 10.1126/science.1248849 – ident: e_1_2_17_295_1 doi: 10.1128/JB.185.22.6658-6665.2003 – ident: e_1_2_17_351_1 doi: 10.1007/s00122-017-2876-6 – ident: e_1_2_17_130_1 doi: 10.1038/nature14611 – ident: e_1_2_17_138_1 doi: 10.1038/nature10394 – ident: e_1_2_17_240_1 doi: 10.1126/sciadv.1500245 – ident: e_1_2_17_347_1 doi: 10.1105/tpc.113.117010 – ident: e_1_2_17_95_1 doi: 10.1146/annurev-phyto-080516-035623 – ident: e_1_2_17_54_1 doi: 10.1111/nph.12549 – ident: e_1_2_17_115_1 doi: 10.1111/j.1365-313X.2012.04950.x – ident: e_1_2_17_83_1 doi: 10.1016/j.it.2017.07.012 – ident: e_1_2_17_269_1 doi: 10.1371/journal.pgen.1002046 – ident: e_1_2_17_4_1 doi: 10.1105/tpc.106.045096 – ident: e_1_2_17_39_1 doi: 10.1074/jbc.M004796200 – ident: e_1_2_17_113_1 doi: 10.1104/pp.110.166710 – ident: e_1_2_17_296_1 doi: 10.1016/j.molcel.2014.03.012 – year: 2017 ident: e_1_2_17_15_1 article-title: Phytaspase‐mediated precursor processing and maturation of the wound hormone systemin publication-title: New Phytol. – ident: e_1_2_17_35_1 doi: 10.1111/nph.13348 – ident: e_1_2_17_278_1 doi: 10.1016/j.pbi.2015.05.032 – ident: e_1_2_17_61_1 doi: 10.1038/nplants.2015.34 – ident: e_1_2_17_142_1 doi: 10.1094/MPMI-03-14-0068-R – ident: e_1_2_17_116_1 doi: 10.1074/jbc.M109.027540 – ident: e_1_2_17_239_1 doi: 10.1111/nph.13802 – ident: e_1_2_17_106_1 doi: 10.1016/j.cub.2007.05.018 – ident: e_1_2_17_342_1 doi: 10.1016/j.pbi.2017.06.003 – ident: e_1_2_17_185_1 doi: 10.1073/pnas.1205448109 – ident: e_1_2_17_355_1 doi: 10.1016/j.cell.2006.03.037 – ident: e_1_2_17_6_1 doi: 10.1111/nph.13117 – ident: e_1_2_17_321_1 doi: 10.1016/j.molp.2017.01.006 – ident: e_1_2_17_282_1 doi: 10.1016/j.sbi.2016.09.012 – ident: e_1_2_17_283_1 doi: 10.1104/pp.16.01680 – ident: e_1_2_17_158_1 doi: 10.1016/j.chom.2014.10.018 – ident: e_1_2_17_160_1 doi: 10.1105/tpc.114.134809 – ident: e_1_2_17_222_1 doi: 10.1038/nrmicro2990 – ident: e_1_2_17_304_1 doi: 10.1073/pnas.1216780110 – ident: e_1_2_17_248_1 doi: 10.1111/j.1365-313X.2011.04671.x – ident: e_1_2_17_21_1 doi: 10.1146/annurev.arplant.57.032905.105346 – ident: e_1_2_17_294_1 doi: 10.1094/MPMI-21-12-1635 – volume: 28 start-page: 1701 year: 2016 ident: e_1_2_17_339_1 article-title: The Arabidopsis malectin‐like/LRR‐RLK IOS1 is critical for BAK1‐dependent and BAK1‐independent pattern‐triggered immunity publication-title: Plant Cell – ident: e_1_2_17_345_1 doi: 10.1016/j.chom.2010.03.007 – ident: e_1_2_17_218_1 doi: 10.1073/pnas.92.6.2338 – ident: e_1_2_17_63_1 doi: 10.3389/fpls.2014.00585 – ident: e_1_2_17_53_1 doi: 10.1146/annurev.phyto.39.1.313 – ident: e_1_2_17_136_1 doi: 10.1016/j.cell.2005.03.025 – ident: e_1_2_17_281_1 doi: 10.1016/S1672-0229(08)60031-5 – ident: e_1_2_17_350_1 doi: 10.1111/tpj.12723 – ident: e_1_2_17_277_1 doi: 10.1111/tpj.12535 – ident: e_1_2_17_299_1 doi: 10.1105/tpc.15.00440 – ident: e_1_2_17_74_1 doi: 10.3389/fpls.2013.00049 – ident: e_1_2_17_190_1 doi: 10.1093/pcp/pct175 – ident: e_1_2_17_288_1 doi: 10.1038/nri3398 – ident: e_1_2_17_141_1 doi: 10.1094/MPMI-06-13-0179-R – ident: e_1_2_17_187_1 doi: 10.1016/j.tplants.2016.08.014 – ident: e_1_2_17_319_1 doi: 10.1038/nplants.2016.185 – ident: e_1_2_17_12_1 doi: 10.1093/jxb/ert330 – ident: e_1_2_17_186_1 doi: 10.1105/tpc.15.00390 – ident: e_1_2_17_268_1 doi: 10.1111/nph.13356 – ident: e_1_2_17_298_1 doi: 10.1105/tpc.16.00891 – ident: e_1_2_17_317_1 doi: 10.1016/j.cub.2012.09.043 – ident: e_1_2_17_164_1 doi: 10.1126/science.1242736 – ident: e_1_2_17_303_1 doi: 10.3389/fpls.2014.00065 – ident: e_1_2_17_356_1 doi: 10.1038/nature14171 – ident: e_1_2_17_23_1 doi: 10.1038/ncomms1046 – ident: e_1_2_17_171_1 doi: 10.1371/journal.pbio.1000139 – ident: e_1_2_17_308_1 doi: 10.1371/journal.pgen.1006832 – ident: e_1_2_17_117_1 doi: 10.1105/tpc.17.00376 – ident: e_1_2_17_292_1 doi: 10.1111/tpj.12425 – ident: e_1_2_17_82_1 doi: 10.3389/fimmu.2013.00138 – ident: e_1_2_17_301_1 doi: 10.1111/nph.13064 – ident: e_1_2_17_20_1 doi: 10.1371/journal.ppat.1004491 – ident: e_1_2_17_103_1 doi: 10.1016/j.cub.2007.05.036 – ident: e_1_2_17_327_1 doi: 10.1038/nature20166 – ident: e_1_2_17_143_1 doi: 10.1105/tpc.104.026765 – ident: e_1_2_17_125_1 doi: 10.1016/j.it.2017.05.001 – ident: e_1_2_17_247_1 doi: 10.1371/journal.ppat.1005596 – ident: e_1_2_17_234_1 doi: 10.1111/nph.12817 – ident: e_1_2_17_81_1 doi: 10.1094/MPMI-10-13-0304-R – ident: e_1_2_17_58_1 doi: 10.1105/tpc.10.11.1915 – ident: e_1_2_17_270_1 doi: 10.1371/journal.ppat.1004809 – ident: e_1_2_17_256_1 doi: 10.1105/tpc.022475 – ident: e_1_2_17_51_1 doi: 10.1016/S1360-1385(00)01810-0 – ident: e_1_2_17_144_1 doi: 10.1042/BJ20111112 – ident: e_1_2_17_168_1 doi: 10.1073/pnas.1318817111 – ident: e_1_2_17_337_1 doi: 10.1093/pcp/pcw104 – ident: e_1_2_17_214_1 doi: 10.1111/nph.13944 – ident: e_1_2_17_149_1 doi: 10.1111/pbi.12341 – ident: e_1_2_17_203_1 doi: 10.1146/annurev-phyto-082712-102314 – ident: e_1_2_17_152_1 doi: 10.1105/tpc.005579 – ident: e_1_2_17_274_1 doi: 10.1105/tpc.112.107904 – ident: e_1_2_17_210_1 doi: 10.1111/j.1365-313X.2010.04411.x – ident: e_1_2_17_22_1 doi: 10.1073/pnas.0609672104 – ident: e_1_2_17_71_1 doi: 10.1074/jbc.M209880200 – ident: e_1_2_17_261_1 doi: 10.15252/embj.201488645 – ident: e_1_2_17_19_1 doi: 10.1038/nri3167 – ident: e_1_2_17_217_1 doi: 10.1016/0092-8674(94)90423-5 – ident: e_1_2_17_309_1 doi: 10.3389/fpls.2015.00911 – ident: e_1_2_17_34_1 doi: 10.1038/nature21417 – ident: e_1_2_17_263_1 doi: 10.1126/science.1242468 – ident: e_1_2_17_56_1 doi: 10.1094/MPMI.2001.14.5.653 – ident: e_1_2_17_307_1 doi: 10.1128/AEM.03297-12 – ident: e_1_2_17_78_1 doi: 10.1104/pp.111.192575 – ident: e_1_2_17_40_1 doi: 10.1038/ncomms3530 – ident: e_1_2_17_89_1 doi: 10.1016/j.tim.2007.01.006 – ident: e_1_2_17_157_1 doi: 10.1073/pnas.0502425102 – ident: e_1_2_17_271_1 doi: 10.15252/embj.201488698 – ident: e_1_2_17_36_1 doi: 10.1111/tpj.13458 – ident: e_1_2_17_46_1 doi: 10.1111/nph.12408 – ident: e_1_2_17_111_1 doi: 10.1016/j.molp.2016.10.006 – ident: e_1_2_17_180_1 doi: 10.7554/eLife.00983 – ident: e_1_2_17_245_1 doi: 10.3389/fpls.2016.00906 – ident: e_1_2_17_276_1 doi: 10.1093/pcp/pcs113 – ident: e_1_2_17_139_1 doi: 10.1105/tpc.112.097253 – ident: e_1_2_17_79_1 doi: 10.1186/gb-2014-15-6-r87 – ident: e_1_2_17_197_1 doi: 10.1146/annurev.arplant.56.032604.144204 – ident: e_1_2_17_179_1 doi: 10.1016/j.tplants.2014.09.003 – ident: e_1_2_17_249_1 doi: 10.1186/s12870-014-0374-4 – ident: e_1_2_17_194_1 doi: 10.1371/journal.pbio.1000280 – ident: e_1_2_17_105_1 doi: 10.1126/science.aaf3919 – ident: e_1_2_17_273_1 doi: 10.1073/pnas.1614468114 – ident: e_1_2_17_333_1 doi: 10.1073/pnas.0603729103 – ident: e_1_2_17_41_1 doi: 10.1038/nature14243 – ident: e_1_2_17_340_1 doi: 10.1126/science.1215584 – ident: e_1_2_17_287_1 doi: 10.1038/nature00841 – ident: e_1_2_17_279_1 doi: 10.1105/tpc.020834 – ident: e_1_2_17_109_1 doi: 10.1371/journal.ppat.1004602 – ident: e_1_2_17_267_1 doi: 10.1038/nrmicro1596 – ident: e_1_2_17_332_1 doi: 10.1016/j.pbi.2011.05.001 – ident: e_1_2_17_225_1 doi: 10.1073/pnas.1410031111 – ident: e_1_2_17_236_1 doi: 10.1074/jbc.M110.116657 – ident: e_1_2_17_252_1 doi: 10.1111/nph.13233 – ident: e_1_2_17_17_1 doi: 10.1073/pnas.96.4.1756 – ident: e_1_2_17_212_1 doi: 10.1371/journal.pone.0075039 – ident: e_1_2_17_233_1 doi: 10.1104/pp.109.138669 – ident: e_1_2_17_253_1 doi: 10.1111/j.1432-1033.1989.tb21084.x – ident: e_1_2_17_230_1 doi: 10.1104/pp.110.154963 – ident: e_1_2_17_65_1 doi: 10.1146/annurev-micro-091213-112844 – ident: e_1_2_17_343_1 doi: 10.1016/j.chom.2007.03.006 – ident: e_1_2_17_69_1 doi: 10.1073/pnas.1203458110 – ident: e_1_2_17_47_1 doi: 10.1146/annurev-phyto-080614-120114 – ident: e_1_2_17_42_1 doi: 10.1038/nature05999 – ident: e_1_2_17_45_1 doi: 10.1371/journal.ppat.1005518 – ident: e_1_2_17_200_1 doi: 10.1073/pnas.1113893109 – ident: e_1_2_17_76_1 doi: 10.1104/pp.113.216077 – ident: e_1_2_17_316_1 doi: 10.1111/j.1365-313X.2011.04659.x – ident: e_1_2_17_320_1 doi: 10.1038/nature16975 – ident: e_1_2_17_62_1 doi: 10.1073/pnas.1221294110 – ident: e_1_2_17_28_1 doi: 10.1073/pnas.1205171109 – ident: e_1_2_17_220_1 doi: 10.1074/jbc.M708106200 – ident: e_1_2_17_118_1 doi: 10.1105/tpc.110.081794 – ident: e_1_2_17_192_1 doi: 10.1104/pp.113.234625 – ident: e_1_2_17_64_1 doi: 10.1111/nph.13542 – ident: e_1_2_17_167_1 doi: 10.1073/pnas.1302154110 – ident: e_1_2_17_108_1 doi: 10.1016/j.cell.2016.02.028 – ident: e_1_2_17_121_1 doi: 10.1038/nature05286 – ident: e_1_2_17_250_1 doi: 10.1038/ni.3124 – ident: e_1_2_17_193_1 doi: 10.1105/tpc.111.084996 – ident: e_1_2_17_244_1 doi: 10.1038/emboj.2008.147 – ident: e_1_2_17_182_1 doi: 10.1073/pnas.0909705107 – ident: e_1_2_17_50_1 doi: 10.1104/pp.110.159723 – ident: e_1_2_17_126_1 doi: 10.1073/pnas.0508882103 – ident: e_1_2_17_330_1 doi: 10.15252/embj.201591807 – ident: e_1_2_17_354_1 doi: 10.1038/nature02485 – ident: e_1_2_17_16_1 doi: 10.1074/mcp.M600429-MCP200 – ident: e_1_2_17_59_1 doi: 10.1126/science.1148110 – ident: e_1_2_17_285_1 doi: 10.1105/tpc.112.104463 – ident: e_1_2_17_302_1 doi: 10.1111/mpp.12444 – ident: e_1_2_17_122_1 doi: 10.1126/science.7973631 – ident: e_1_2_17_334_1 doi: 10.1105/tpc.109.068874 – ident: e_1_2_17_325_1 doi: 10.1105/tpc.107.055624 – ident: e_1_2_17_227_1 doi: 10.1073/pnas.1605588113 – ident: e_1_2_17_241_1 doi: 10.1046/j.1364-3703.2003.00196.x – ident: e_1_2_17_178_1 doi: 10.1038/nri1594 – ident: e_1_2_17_293_1 doi: 10.1016/S0981-9428(02)00018-9 – ident: e_1_2_17_352_1 doi: 10.1038/nature10510 – ident: e_1_2_17_30_1 doi: 10.7554/eLife.25114 – ident: e_1_2_17_159_1 doi: 10.1016/j.chom.2014.02.009 – ident: e_1_2_17_73_1 doi: 10.1038/nature10962 – volume: 8 start-page: pii: e25345 year: 2013 ident: e_1_2_17_213_1 article-title: Presence of LYM2 dependent but CERK1 independent disease resistance in Arabidopsis publication-title: Plant Signal. Behav. doi: 10.4161/psb.25345 – ident: e_1_2_17_87_1 doi: 10.1046/j.1365-313X.1999.00451.x – ident: e_1_2_17_275_1 doi: 10.1111/j.1365-313X.2010.04324.x – ident: e_1_2_17_322_1 doi: 10.1046/j.1529-8817.1999.3540747.x – ident: e_1_2_17_60_1 doi: 10.1016/j.pbi.2013.06.010 – ident: e_1_2_17_98_1 doi: 10.1111/j.1365-313X.2006.02981.x – ident: e_1_2_17_226_1 doi: 10.1073/pnas.90.17.8273 – ident: e_1_2_17_289_1 doi: 10.1105/tpc.105.037648 – ident: e_1_2_17_18_1 doi: 10.1073/pnas.0810206106 – ident: e_1_2_17_202_1 doi: 10.1104/pp.16.01853 – ident: e_1_2_17_183_1 doi: 10.1126/science.1204903 – ident: e_1_2_17_265_1 doi: 10.1073/pnas.1511847113 – ident: e_1_2_17_107_1 doi: 10.1038/nplants.2016.128 – ident: e_1_2_17_80_1 doi: 10.1105/tpc.16.00654 – ident: e_1_2_17_290_1 doi: 10.1105/tpc.112.095919 – ident: e_1_2_17_311_1 doi: 10.1371/journal.pgen.1006068 – ident: e_1_2_17_25_1 doi: 10.1038/nature08794 – ident: e_1_2_17_329_1 doi: 10.15252/embj.201694248 – ident: e_1_2_17_43_1 doi: 10.1186/s12870-016-0921-2 – ident: e_1_2_17_77_1 doi: 10.1111/j.1600-065X.2011.01037.x – ident: e_1_2_17_324_1 doi: 10.1073/pnas.1112862108 – ident: e_1_2_17_84_1 doi: 10.1016/j.chom.2009.05.019 – ident: e_1_2_17_33_1 doi: 10.7554/eLife.03766 – ident: e_1_2_17_91_1 doi: 10.1074/jbc.M704886200 – ident: e_1_2_17_235_1 doi: 10.1094/MPMI-12-14-0405-R – ident: e_1_2_17_310_1 doi: 10.1111/nph.13425 – ident: e_1_2_17_7_1 doi: 10.1111/j.1364-3703.2009.00537.x – ident: e_1_2_17_119_1 doi: 10.1105/tpc.113.110833 – volume: 50 start-page: 413 year: 1998 ident: e_1_2_17_246_1 article-title: Receptors for purines and pyrimidines publication-title: Pharmacol. Rev. doi: 10.1016/S0031-6997(24)01373-5 – ident: e_1_2_17_286_1 doi: 10.1126/science.aal2541 – ident: e_1_2_17_114_1 doi: 10.1073/pnas.1214668110 – ident: e_1_2_17_264_1 doi: 10.1093/jxb/erq219 – ident: e_1_2_17_123_1 doi: 10.1016/j.molcel.2014.02.021 – ident: e_1_2_17_94_1 doi: 10.1038/ncomms11362 – ident: e_1_2_17_124_1 doi: 10.1093/pcp/pcv063 – ident: e_1_2_17_26_1 doi: 10.1146/annurev-phyto-080614-120106 – ident: e_1_2_17_68_1 doi: 10.1105/tpc.113.121111 – ident: e_1_2_17_27_1 doi: 10.1073/pnas.1706795114 – ident: e_1_2_17_306_1 doi: 10.1016/j.cub.2008.07.085 – ident: e_1_2_17_199_1 doi: 10.1073/pnas.1606004113 – ident: e_1_2_17_14_1 doi: 10.1016/j.tibs.2014.06.006 – ident: e_1_2_17_75_1 doi: 10.1074/jbc.M308552200 – ident: e_1_2_17_156_1 doi: 10.1016/S0092-8674(02)00812-7 – ident: e_1_2_17_328_1 doi: 10.1126/science.aah5692 – ident: e_1_2_17_331_1 doi: 10.1093/pcp/pcx042 – ident: e_1_2_17_8_1 doi: 10.1038/ni1253 – volume: 171 start-page: 1344 year: 2016 ident: e_1_2_17_140_1 article-title: Two redundant receptor‐like cytoplasmic kinases function downstream of pattern recognition receptors to regulate activation of SA biosynthesis publication-title: Plant Physiol. – ident: e_1_2_17_153_1 doi: 10.1105/tpc.114.132308 – year: 2017 ident: e_1_2_17_154_1 article-title: Plant elicitor peptides promote plant defences against nematodes in soybean publication-title: Mol. Plant Pathol. – ident: e_1_2_17_349_1 doi: 10.1371/journal.pone.0120245 – ident: e_1_2_17_133_1 doi: 10.1016/j.cub.2007.05.046 – ident: e_1_2_17_353_1 doi: 10.1038/nature22009 – ident: e_1_2_17_166_1 doi: 10.1016/j.tplants.2013.10.003 – ident: e_1_2_17_176_1 doi: 10.1093/jxb/err291 – ident: e_1_2_17_205_1 doi: 10.1093/pcp/pcu129 – ident: e_1_2_17_238_1 doi: 10.1094/MPMI.2003.16.6.553 – ident: e_1_2_17_24_1 doi: 10.1126/science.212.4490.67 – ident: e_1_2_17_97_1 doi: 10.1016/j.cub.2013.11.047 – ident: e_1_2_17_90_1 doi: 10.1016/j.pbi.2014.07.007 – ident: e_1_2_17_9_1 doi: 10.1038/ni.2406 – ident: e_1_2_17_127_1 doi: 10.1104/pp.114.250985 – ident: e_1_2_17_173_1 doi: 10.1126/science.1218867 – ident: e_1_2_17_32_1 doi: 10.1371/journal.ppat.1002130 – ident: e_1_2_17_92_1 doi: 10.1016/j.tplants.2017.07.005 – ident: e_1_2_17_134_1 doi: 10.1126/science.1195211 – ident: e_1_2_17_344_1 doi: 10.1186/1471-2148-9-183 – ident: e_1_2_17_110_1 doi: 10.1371/journal.ppat.1004331 – ident: e_1_2_17_224_1 doi: 10.1073/pnas.98.2.759 – ident: e_1_2_17_196_1 doi: 10.1186/1471-2164-12-49 – ident: e_1_2_17_335_1 doi: 10.1016/j.chom.2013.02.007 – ident: e_1_2_17_161_1 doi: 10.7554/eLife.06587 – ident: e_1_2_17_99_1 doi: 10.1021/bi8001488 – ident: e_1_2_17_314_1 doi: 10.1038/ncomms12151 – ident: e_1_2_17_177_1 doi: 10.1093/jxb/erv236 – ident: e_1_2_17_348_1 doi: 10.1104/pp.113.230698 – ident: e_1_2_17_259_1 doi: 10.1126/science.1206095 – ident: e_1_2_17_195_1 doi: 10.1038/nmicrobiol.2016.43 – ident: e_1_2_17_3_1 doi: 10.1038/nplants.2015.140 – ident: e_1_2_17_13_1 doi: 10.1094/MPMI-23-1-0058 – ident: e_1_2_17_145_1 doi: 10.1038/nbt.1613 – ident: e_1_2_17_266_1 doi: 10.1073/pnas.132266499 – ident: e_1_2_17_132_1 doi: 10.1074/jbc.M110.160531 – ident: e_1_2_17_55_1 doi: 10.1093/mp/ssn019 – ident: e_1_2_17_318_1 doi: 10.1111/tpj.12450 – ident: e_1_2_17_181_1 doi: 10.1073/pnas.0907711106 – ident: e_1_2_17_206_1 doi: 10.1128/JB.01757-07 – ident: e_1_2_17_88_1 doi: 10.1016/j.tplants.2014.11.008 – ident: e_1_2_17_131_1 doi: 10.1080/15592324.2017.1361076 – ident: e_1_2_17_232_1 doi: 10.1073/pnas.201416998 – ident: e_1_2_17_326_1 doi: 10.1016/j.pbi.2013.07.002 – ident: e_1_2_17_260_1 doi: 10.1105/tpc.111.084301 – ident: e_1_2_17_284_1 doi: 10.1111/nph.13345 – ident: e_1_2_17_5_1 doi: 10.1073/pnas.0706403104 – ident: e_1_2_17_100_1 doi: 10.1126/science.1244454 – ident: e_1_2_17_228_1 doi: 10.1371/journal.pbio.0060231 – ident: e_1_2_17_148_1 doi: 10.1111/nph.12043 – ident: e_1_2_17_146_1 doi: 10.1111/nph.13411 – ident: e_1_2_17_231_1 doi: 10.1126/science.253.5022.895 – ident: e_1_2_17_346_1 doi: 10.1016/j.chom.2012.01.015 – ident: e_1_2_17_101_1 doi: 10.1073/pnas.1312099111 – ident: e_1_2_17_219_1 doi: 10.1074/jbc.M109.058909 – ident: e_1_2_17_255_1 doi: 10.1007/s11103-007-9173-8 – ident: e_1_2_17_128_1 doi: 10.1094/MPMI-04-10-0099 – ident: e_1_2_17_11_1 doi: 10.1093/jxb/erv180 – ident: e_1_2_17_135_1 doi: 10.1111/j.1469-8137.2004.01043.x – ident: e_1_2_17_162_1 doi: 10.1016/j.chom.2016.09.007 – ident: e_1_2_17_31_1 doi: 10.1371/journal.ppat.1003080 – ident: e_1_2_17_155_1 doi: 10.1038/ni922 – ident: e_1_2_17_49_1 doi: 10.1371/journal.ppat.1005811 – ident: e_1_2_17_272_1 doi: 10.1111/nph.13031 – ident: e_1_2_17_137_1 doi: 10.1104/pp.012187 – ident: e_1_2_17_254_1 doi: 10.1101/gad.366506 – ident: e_1_2_17_44_1 doi: 10.1126/science.343.6168.290 – ident: e_1_2_17_221_1 doi: 10.1073/pnas.1302360110 – ident: e_1_2_17_174_1 doi: 10.1073/pnas.1215543110 – ident: e_1_2_17_258_1 doi: 10.1002/embj.201284303 – ident: e_1_2_17_215_1 doi: 10.1126/science.1086716 – ident: e_1_2_17_262_1 doi: 10.1038/emboj.2009.263 – ident: e_1_2_17_86_1 doi: 10.1016/S1097-2765(00)80265-8 – ident: e_1_2_17_96_1 doi: 10.1073/pnas.92.10.4150 – volume: 72 start-page: 782 year: 2016 ident: e_1_2_17_163_1 article-title: X‐ray crystallographic studies of the extracellular domain of the first plant ATP receptor, DORN1, and the orthologous protein from Camelina sativa publication-title: Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. doi: 10.1107/S2053230X16014278 – ident: e_1_2_17_165_1 doi: 10.7554/eLife.13568 – ident: e_1_2_17_198_1 doi: 10.1111/nph.13306 – ident: e_1_2_17_237_1 doi: 10.1016/j.pbi.2015.06.001 – ident: e_1_2_17_201_1 doi: 10.1126/science.1549783 – ident: e_1_2_17_229_1 doi: 10.1038/nrmicro1987 – ident: e_1_2_17_204_1 doi: 10.1073/pnas.0705147104 – ident: e_1_2_17_48_1 doi: 10.1038/nri.2016.77 – ident: e_1_2_17_315_1 doi: 10.1105/tpc.107.056754 – ident: e_1_2_17_300_1 doi: 10.1105/tpc.9.12.2209 – volume: 41 start-page: e553 issue: 555 year: 2017 ident: e_1_2_17_93_1 article-title: Phosphate starvation‐dependent iron mobilization induces CLE14 expression to trigger root meristem differentiation through CLV2/PEPR2 signaling publication-title: Dev. Cell – ident: e_1_2_17_189_1 doi: 10.1038/nature09622 – ident: e_1_2_17_305_1 doi: 10.1111/nph.12592 – ident: e_1_2_17_150_1 doi: 10.1093/jxb/ert195 – ident: e_1_2_17_207_1 doi: 10.1016/j.chom.2014.10.007 – ident: e_1_2_17_216_1 doi: 10.1111/j.1365-313X.2007.03192.x – ident: e_1_2_17_112_1 doi: 10.1073/pnas.0603727103 – ident: e_1_2_17_297_1 doi: 10.3389/fpls.2014.00446 – ident: e_1_2_17_338_1 doi: 10.1016/j.pbi.2017.04.007 – ident: e_1_2_17_242_1 doi: 10.1073/pnas.1000191107 – ident: e_1_2_17_223_1 doi: 10.1038/nplants.2015.218 – ident: e_1_2_17_280_1 doi: 10.1104/pp.113.229179 – ident: e_1_2_17_257_1 doi: 10.1126/science.1111404 – ident: e_1_2_17_175_1 doi: 10.7554/eLife.01990 – ident: e_1_2_17_52_1 doi: 10.1105/tpc.111.093039 – ident: e_1_2_17_72_1 doi: 10.1046/j.1365-313X.1999.00265.x – ident: e_1_2_17_129_1 doi: 10.1094/MPMI-11-14-0372-R – ident: e_1_2_17_341_1 doi: 10.1146/annurev-phyto-080516-035649 – ident: e_1_2_17_57_1 doi: 10.1016/S0092-8674(00)81290-8 – volume: 12 start-page: 192 year: 2016 ident: e_1_2_17_313_1 article-title: The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health publication-title: New Phytol. doi: 10.1111/nph.14036 – reference: 29607591 - Plant J. 2018 Apr;94(2):405 |
| SSID | ssj0017364 |
| Score | 2.6679134 |
| SecondaryResourceType | review_article |
| Snippet | Summary
Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of... Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe‐... Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe-... Summary Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 592 |
| SubjectTerms | Biological evolution Colonization Commensals convergent evolution Damage detection Damage patterns damage‐associated molecular patterns Disease Resistance Host-Pathogen Interactions Immunity Innate immunity Intracellular signalling inventories Kinases microbe‐associated molecular patterns Microorganisms Oomycetes - pathogenicity Pathogen-Associated Molecular Pattern Molecules - metabolism Pathogens Pattern recognition Pattern recognition receptors phosphotransferases (kinases) Plant Diseases - immunology Plant Diseases - microbiology plant immunity Plant Immunity - physiology plant–microbe interactions plasticity Proteins Receptors Receptors, Pattern Recognition receptor‐like kinase receptor‐like protein Regulatory mechanisms (biology) Signal Transduction signaling Symbionts Variation |
| Title | Pattern recognition receptors and signaling in plant–microbe interactions |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.13808 https://www.ncbi.nlm.nih.gov/pubmed/29266555 https://www.proquest.com/docview/1994337982 https://www.proquest.com/docview/1979510521 https://www.proquest.com/docview/2067287740 |
| Volume | 93 |
| WOSCitedRecordID | wos000424221200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1365-313X dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0017364 issn: 0960-7412 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-313X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017364 issn: 0960-7412 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS-QwEB9E98EXT-_UW12lig--FLZtspnik97dcn9kWQ7FfStJmoKg3WV3FXzzO_gN_STOpN2i3AkH91KmdAppkkl-08z8BuBIx0XacxZDnYgkFD3pQtTMRcjOB_aiwgnri02owQBHo3S4BCeLXJiKH6L54caW4ddrNnBtZq-MfD7hGC3kRN-ViAWmdRbD5ghBJRV3FEH0kLbNuKYV4jCe5tW3m9EfCPMtYPU7Tv_Df7V1HdZqoBmcVjNjA5Zc-RFaZ2MCgw-f4NfQ82qWQRNANPaym3D1nUCXecCRHZqT1YPrMpjc0Ag8Pz7dcvyecQGzTEyrnIjZJlz2v118-R7WdRVCS-4Jhuwz5WiNKZQVKQpdxHkupJZolEXZ7dq0ELHWpC2NUrnJhZVSq9Q6slmXJFuwXI5L9xkCZ2mNMAZRGBSRjlONkcpzRV5XIYzsteF40cGZrUnHufbFTbZwPqhrMt81bThsVCcV08bflDqLUcpqY5tlTG-cJCrFuA0HzWMyEz770KUb37GO8lgyjt7XYSZ7ciCV6LZhu5oBTUvilJCMlJI-yA_0-03MLoY_vbDz76q7sEpADKto8A4sz6d3bg9a9n5-PZvu-3lNVzXCfVj5-rt_eU53Vz8GL2ct_rE |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kFfTi-7E-q3jwUti2ySYFLyqKz2UPK3orSZrCgnaX3VXw5n_wH_pLnEm7RVFB8BbolKaTTPJNMvMNwL4Ks7hpjfRVxCKfNbn1pSIuQnI-ZDPILDOu2IRoteT9fdyegMNxLkzBD1EduJFluPWaDJwOpD9Z-ahPQVqSMn0n8SMNKtxwd9Gq7hBEVJBHIUb3cd8MS14hiuOpXv26G32DmF8Rq9tyzub-19l5mC2hpndUzI0FmLD5Ikwd9xAOvizBVdsxa-ZeFULUc23bp_o7nspTj2I7FKWre93c6z_gGLy_vj1SBJ-2HvFMDIqsiOEy3J6ddk7O_bKygm_QQZE-eU2pNFpnwrBYMpWFacq44lILI1GVJs5YqBRKcy1EqlNmOFciNhat1kbRCtTyXm7XwLMGVwmtpWRaskCFsZKBSFOBflfGNG_W4WCs4cSUtONU_eIhGbsfqJrEqaYOe5Vov-Da-EloczxMSWluw4QIjqNIxDKsw271GA2Fbj9UbntPJCMcmgyD32WIyx5dSMEadVgtpkDVkzBGLMM5xx9yI_17F5NO-9I11v8uugPT552b6-T6onW1ATMIy2QRG74JtdHgyW7BlHkedYeDbTfJPwA67_9y |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kinjx_ajPKB68BNpkt7sBL76Kj1KKtOAt7CtQ0DS0VfDmf_Af-kvc2aRB0YLgbSET2OzM7H6TnfkG4FgESdQwivsiJKFPGtT4XCAXIQYfvFFPDFGu2QRrt_nDQ9SZgdNJLUzOD1H-cEPPcPs1OrjJdPLFy8cZJmlxrPSdJdhEpgKzl_fNXqu8RWBhTh9lUbpvT86gYBbCTJ7y5e_n0Q-Q-R2zukOnufS_6S7DYgE2vbPcOlZgxqSrMHc-sIDwdQ3uOo5bM_XKJKKBG5sMO_B4ItUeZncILFj3-qmXPVotfLy9P2EOnzQeMk0M87qI0Tr0mlfdi2u_6K3gKxuicB_jJs2VlAlTJOJEJIHWhArKJVOc1moqSkgghJWmkjEtNVGUChYpY_3WhOEGVNJBarbAM8ruE1JyTiQndRFEgteZ1sxGXgmRtFGFk8kKx6ogHsf-F4_xJACxSxO7panCUSma5WwbvwntTtQUFw43ipHiOAxZxIMqHJaPravg_YdIzeAZZZjDk0F9ugyy2dsgkpFaFTZzEyhnEkQWzVBK7Qc5TU-fYtzt3LrB9t9FD2C-c9mMWzftux1YsLiM58nhu1AZD5_NHsypl3F_NNwvrPwT0x0AKg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pattern+recognition+receptors+and+signaling+in+plant-microbe+interactions&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Saijo%2C+Yusuke&rft.au=Loo%2C+Eliza+Po-Iian&rft.au=Yasuda%2C+Shigetaka&rft.date=2018-02-01&rft.issn=1365-313X&rft.eissn=1365-313X&rft.volume=93&rft.issue=4&rft.spage=592&rft_id=info:doi/10.1111%2Ftpj.13808&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |