Plant cell wall‐mediated immunity: cell wall changes trigger disease resistance responses

Summary Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence‐associat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology Jg. 93; H. 4; S. 614 - 636
Hauptverfasser: Bacete, Laura, Mélida, Hugo, Miedes, Eva, Molina, Antonio
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Blackwell Publishing Ltd 01.02.2018
Schlagworte:
ISSN:0960-7412, 1365-313X, 1365-313X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Summary Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence‐associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane‐resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant‐derived ligands, such as peptides or wall glycans, known as damage‐associated molecular patterns (DAMPs). These DAMPs function as ‘danger’ alert signals activating DAMP‐triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non‐self microbe‐associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR–DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. Significance Statement The plant cell wall has emerged as an essential component of plant stress‐monitoring systems, thus expanding its function as a passive defensive barrier. Here we review current knowledge about the systems that monitor plant cell wall integrity and their functions in triggering specific disease resistance and growth responses.
AbstractList Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence‐associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity ( CWI ) which comprises a diverse set of plasma membrane‐resident sensors and pattern recognition receptors ( PRR s). The PRR s perceive plant‐derived ligands, such as peptides or wall glycans, known as damage‐associated molecular patterns ( DAMP s). These DAMP s function as ‘danger’ alert signals activating DAMP ‐triggered immunity ( DTI ), which shares signalling components and responses with the immune pathways triggered by non‐self microbe‐associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/ PRR s and DAMP s have been characterized. The identification of these CWI sensors and PRR – DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. The plant cell wall has emerged as an essential component of plant stress‐monitoring systems, thus expanding its function as a passive defensive barrier. Here we review current knowledge about the systems that monitor plant cell wall integrity and their functions in triggering specific disease resistance and growth responses.
Summary Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence‐associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane‐resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant‐derived ligands, such as peptides or wall glycans, known as damage‐associated molecular patterns (DAMPs). These DAMPs function as ‘danger’ alert signals activating DAMP‐triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non‐self microbe‐associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR–DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. Significance Statement The plant cell wall has emerged as an essential component of plant stress‐monitoring systems, thus expanding its function as a passive defensive barrier. Here we review current knowledge about the systems that monitor plant cell wall integrity and their functions in triggering specific disease resistance and growth responses.
Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence‐associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane‐resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant‐derived ligands, such as peptides or wall glycans, known as damage‐associated molecular patterns (DAMPs). These DAMPs function as ‘danger’ alert signals activating DAMP‐triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non‐self microbe‐associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR–DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance.
Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance.Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance.
SummaryPlants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance.Significance StatementThe plant cell wall has emerged as an essential component of plant stress-monitoring systems, thus expanding its function as a passive defensive barrier. Here we review current knowledge about the systems that monitor plant cell wall integrity and their functions in triggering specific disease resistance and growth responses.
Author Mélida, Hugo
Molina, Antonio
Bacete, Laura
Miedes, Eva
Author_xml – sequence: 1
  givenname: Laura
  orcidid: 0000-0003-3171-8181
  surname: Bacete
  fullname: Bacete, Laura
  organization: UPM
– sequence: 2
  givenname: Hugo
  orcidid: 0000-0003-1792-0113
  surname: Mélida
  fullname: Mélida, Hugo
  organization: Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)
– sequence: 3
  givenname: Eva
  orcidid: 0000-0003-2899-1494
  surname: Miedes
  fullname: Miedes, Eva
  organization: UPM
– sequence: 4
  givenname: Antonio
  orcidid: 0000-0003-3137-7938
  surname: Molina
  fullname: Molina, Antonio
  email: antonio.molina@upm.es
  organization: UPM
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29266460$$D View this record in MEDLINE/PubMed
BookMark eNqF0c1KxDAQAOAgiq6rB19ACl700DVp0qT1JuIvgh72IHgoaTpds7TpmqTI3nwEn9EnMev6A4KaHBLIN5NkZhOtms4AQjsEj0gYh342HRGaYbGCBoTyNKaE3q2iAc45jgUjyQbadG6KMRGUs3W0keQJ54zjAbq_baTxkYKmiZ5k07w-v7RQaemhinTb9kb7-dH3caQepJmAi7zVkwnYqNIOpIPIgtPOS6Pet7POOHBbaK2WjYPtj3WIxmen45OL-Prm_PLk-DpWLBMiJiWWKSsBl6wkNBG0Suu8lAKUylJSSZypMGuRsCxTPOW0EkrlPK9rDiWXdIj2l2lntnvswfmi1W7xYmmg612RYC6SXOSM_ktJYClOwlWB7v2g0663JvwjqEUuwWgW1O6H6stQt2JmdSvtvPgscAAHS6Bs55yF-osQXCyaV4TmFe_NC_bwh1XaS687463UzV8RT7qB-e-pi_Ht1TLiDeLAq7A
CitedBy_id crossref_primary_10_1093_pcp_pcz119
crossref_primary_10_1021_acs_jafc_5c05099
crossref_primary_10_1007_s00299_023_03074_x
crossref_primary_10_7717_peerj_16324
crossref_primary_10_1038_s41598_023_44163_x
crossref_primary_10_1016_j_rsci_2022_01_006
crossref_primary_10_1038_s41579_022_00710_3
crossref_primary_10_1007_s00438_020_01677_7
crossref_primary_10_3390_pathogens9040312
crossref_primary_10_1007_s00216_022_04134_z
crossref_primary_10_3389_fpls_2020_610377
crossref_primary_10_1128_spectrum_04824_22
crossref_primary_10_1146_annurev_arplant_081519_035846
crossref_primary_10_1111_tpj_14237
crossref_primary_10_1016_j_celrep_2024_114179
crossref_primary_10_1111_nph_18305
crossref_primary_10_1038_s41598_019_56401_2
crossref_primary_10_1093_plphys_kiac041
crossref_primary_10_3389_fpls_2019_00162
crossref_primary_10_3389_fpls_2022_824422
crossref_primary_10_1093_jxb_erab423
crossref_primary_10_1093_plphys_kiac165
crossref_primary_10_1186_s12870_020_02759_9
crossref_primary_10_1016_j_scienta_2024_113554
crossref_primary_10_1016_j_plaphy_2025_110497
crossref_primary_10_1186_s12870_024_04935_7
crossref_primary_10_3389_fpls_2021_738949
crossref_primary_10_1016_j_ijbiomac_2024_137358
crossref_primary_10_3390_agronomy12081847
crossref_primary_10_1016_j_cj_2023_09_007
crossref_primary_10_1016_j_scienta_2021_109898
crossref_primary_10_1007_s00425_020_03517_9
crossref_primary_10_2174_1381612826666200617165915
crossref_primary_10_1016_j_cell_2020_04_028
crossref_primary_10_1094_MPMI_05_24_0059_R
crossref_primary_10_3390_ijms241914737
crossref_primary_10_1093_plcell_koac040
crossref_primary_10_1016_j_compositesa_2025_109260
crossref_primary_10_1016_j_cpb_2024_100360
crossref_primary_10_1094_PHYTO_09_18_0334_IA
crossref_primary_10_1093_aesa_saaa032
crossref_primary_10_3390_biology13060421
crossref_primary_10_3389_fpls_2019_01138
crossref_primary_10_3390_plants14152337
crossref_primary_10_3389_fpls_2021_738880
crossref_primary_10_3390_plants11030385
crossref_primary_10_1186_s12864_021_08157_1
crossref_primary_10_1111_nph_18356
crossref_primary_10_1080_17429145_2022_2115157
crossref_primary_10_1073_pnas_2010243118
crossref_primary_10_1094_MPMI_06_20_0170_R
crossref_primary_10_3389_fpls_2020_01210
crossref_primary_10_1038_s41467_024_54470_0
crossref_primary_10_1186_s40793_024_00550_z
crossref_primary_10_1186_s40168_020_00966_y
crossref_primary_10_1007_s00425_022_03918_y
crossref_primary_10_1038_s41598_019_39928_2
crossref_primary_10_3390_molecules30071618
crossref_primary_10_1002_ps_6493
crossref_primary_10_1002_ps_6370
crossref_primary_10_3390_genes15030295
crossref_primary_10_1073_pnas_2119258119
crossref_primary_10_2478_s11756_018_0091_9
crossref_primary_10_3390_cells12010134
crossref_primary_10_1042_EBC20210095
crossref_primary_10_1080_07388551_2024_2370341
crossref_primary_10_1007_s11103_023_01394_w
crossref_primary_10_1016_j_ijbiomac_2025_146458
crossref_primary_10_3390_polym13091379
crossref_primary_10_1093_plphys_kiae025
crossref_primary_10_1038_s41588_019_0503_y
crossref_primary_10_1093_plphys_kiae144
crossref_primary_10_1007_s00299_021_02672_x
crossref_primary_10_1007_s11295_018_1288_3
crossref_primary_10_3390_ijms19082287
crossref_primary_10_1016_j_carbpol_2024_122149
crossref_primary_10_1111_pce_14973
crossref_primary_10_3390_horticulturae9010112
crossref_primary_10_1016_j_xplc_2025_101469
crossref_primary_10_3389_fpls_2020_594827
crossref_primary_10_3390_plants9040492
crossref_primary_10_1016_j_indcrop_2023_117511
crossref_primary_10_1093_pcp_pcad120
crossref_primary_10_1016_j_foodchem_2020_128050
crossref_primary_10_1007_s41348_025_01113_1
crossref_primary_10_1016_j_postharvbio_2023_112260
crossref_primary_10_3390_ijms222212319
crossref_primary_10_1242_dev_200363
crossref_primary_10_1007_s11295_020_01454_y
crossref_primary_10_3390_genes10070555
crossref_primary_10_3390_ijms232012553
crossref_primary_10_3390_ncrna6010008
crossref_primary_10_1016_j_jplph_2023_154045
crossref_primary_10_3389_fpls_2021_696955
crossref_primary_10_1016_j_devcel_2021_03_004
crossref_primary_10_3389_fpls_2024_1401265
crossref_primary_10_1016_j_scienta_2021_110814
crossref_primary_10_1038_s41598_019_54022_3
crossref_primary_10_1016_j_ijbiomac_2024_138748
crossref_primary_10_1094_MPMI_03_20_0057_R
crossref_primary_10_3390_ijms25105256
crossref_primary_10_1007_s10725_024_01211_4
crossref_primary_10_1111_jac_70012
crossref_primary_10_1186_s12284_019_0352_4
crossref_primary_10_1016_j_stress_2025_100783
crossref_primary_10_1186_s12870_022_03527_7
crossref_primary_10_3390_vaccines8030388
crossref_primary_10_3390_plants13202886
crossref_primary_10_1093_jxb_eraf281
crossref_primary_10_3389_fpls_2024_1501092
crossref_primary_10_3390_plants11243539
crossref_primary_10_3390_ijms242216063
crossref_primary_10_1111_nph_19465
crossref_primary_10_3390_ijms241814120
crossref_primary_10_1093_plphys_kiad095
crossref_primary_10_3390_ijms25094700
crossref_primary_10_3389_fpls_2023_1118313
crossref_primary_10_3390_plants10081744
crossref_primary_10_1111_nph_19468
crossref_primary_10_1371_journal_ppat_1008886
crossref_primary_10_1186_s12870_021_02927_5
crossref_primary_10_1186_s12870_021_03307_9
crossref_primary_10_1038_s41598_021_01867_2
crossref_primary_10_3390_horticulturae9080937
crossref_primary_10_3390_ijms21217875
crossref_primary_10_1038_s41477_019_0502_0
crossref_primary_10_1111_mpp_70075
crossref_primary_10_1186_s12870_023_04708_8
crossref_primary_10_1016_j_plaphy_2022_06_030
crossref_primary_10_1007_s11103_020_01041_8
crossref_primary_10_3389_fpls_2022_1025422
crossref_primary_10_1111_nph_20440
crossref_primary_10_1186_s12870_021_02992_w
crossref_primary_10_3390_cells10030685
crossref_primary_10_3389_fpls_2025_1672522
crossref_primary_10_1094_MPMI_07_24_0077_CM
crossref_primary_10_1007_s44154_025_00244_7
crossref_primary_10_1146_annurev_phyto_021621_120602
crossref_primary_10_1093_aob_mcad054
crossref_primary_10_1016_j_jbiotec_2020_10_023
crossref_primary_10_3390_agronomy14020250
crossref_primary_10_1007_s00122_024_04764_0
crossref_primary_10_1038_s41598_019_42084_2
crossref_primary_10_1007_s00344_022_10593_6
crossref_primary_10_1186_s12870_020_02501_5
crossref_primary_10_3390_plants12183216
crossref_primary_10_1007_s11816_022_00763_z
crossref_primary_10_1111_mpp_70125
crossref_primary_10_1007_s10658_024_02970_6
crossref_primary_10_1093_plcell_koaf088
crossref_primary_10_1016_j_ijbiomac_2025_142249
crossref_primary_10_3389_fpls_2024_1378748
crossref_primary_10_1002_pld3_579
crossref_primary_10_1016_j_ijbiomac_2025_141038
crossref_primary_10_1016_j_jprot_2019_103599
crossref_primary_10_1007_s00299_023_03068_9
crossref_primary_10_3390_ijms24044061
crossref_primary_10_3390_pr10122507
crossref_primary_10_1094_MPMI_07_18_0195_FI
crossref_primary_10_1186_s12870_021_03068_5
crossref_primary_10_3390_plants10081514
crossref_primary_10_1094_MPMI_12_19_0341_R
crossref_primary_10_3389_fpls_2022_931979
crossref_primary_10_3390_polym14163416
crossref_primary_10_1093_jxb_erz550
crossref_primary_10_1016_j_tcsw_2024_100124
crossref_primary_10_3390_polym14224840
crossref_primary_10_1007_s00299_024_03417_2
crossref_primary_10_1186_s12870_023_04685_y
crossref_primary_10_1111_ppl_14625
crossref_primary_10_1016_j_jare_2025_08_037
crossref_primary_10_1093_jxb_eraa414
crossref_primary_10_1186_s12870_022_03964_4
crossref_primary_10_3389_fmicb_2021_730543
crossref_primary_10_1016_j_pbi_2023_102455
crossref_primary_10_3390_plants9091061
crossref_primary_10_1016_j_jplph_2025_154611
crossref_primary_10_1111_nph_18166
crossref_primary_10_1038_s41580_022_00496_5
crossref_primary_10_1007_s11356_023_31641_y
crossref_primary_10_3390_biology8030060
crossref_primary_10_1002_pld3_309
crossref_primary_10_1186_s13765_021_00654_x
crossref_primary_10_3389_fpls_2021_663536
crossref_primary_10_1111_tpj_16088
crossref_primary_10_1111_jipb_13419
crossref_primary_10_1111_nph_70574
crossref_primary_10_3390_ijms21249720
crossref_primary_10_3389_fmicb_2022_888908
crossref_primary_10_1186_s12870_023_04255_2
crossref_primary_10_3389_fmicb_2022_902181
crossref_primary_10_1128_aem_00661_23
crossref_primary_10_3390_ijms24098390
crossref_primary_10_3389_fpls_2021_639769
crossref_primary_10_1111_tpj_13812
crossref_primary_10_1007_s00572_020_00934_2
crossref_primary_10_1016_j_ijbiomac_2025_144746
crossref_primary_10_1016_j_fm_2019_103395
crossref_primary_10_1016_j_pmpp_2020_101461
crossref_primary_10_1016_j_devcel_2024_11_010
crossref_primary_10_1007_s44154_023_00086_1
crossref_primary_10_3389_fpls_2025_1552926
crossref_primary_10_1093_jxb_erae467
crossref_primary_10_3389_fpls_2022_980424
crossref_primary_10_1016_j_ijbiomac_2023_127747
crossref_primary_10_1016_j_pmpp_2021_101729
crossref_primary_10_1002_advs_202002723
crossref_primary_10_3389_fpls_2025_1635078
crossref_primary_10_3390_plants9050574
crossref_primary_10_1002_pld3_246
crossref_primary_10_1007_s11103_022_01284_7
crossref_primary_10_1242_dev_199425
crossref_primary_10_1371_journal_pone_0241679
crossref_primary_10_1093_plphys_kiab400
crossref_primary_10_3389_fpls_2025_1510177
crossref_primary_10_1016_j_gene_2021_146049
crossref_primary_10_3390_ijms25137255
crossref_primary_10_3390_plants12051079
crossref_primary_10_1016_j_ijbiomac_2024_135859
crossref_primary_10_1016_j_hpj_2024_05_014
crossref_primary_10_1016_j_postharvbio_2025_113527
crossref_primary_10_1111_nph_16919
crossref_primary_10_1146_annurev_arplant_102820_095312
crossref_primary_10_1094_MPMI_34_10
crossref_primary_10_3389_fpls_2023_1163679
crossref_primary_10_3390_f12081090
crossref_primary_10_3390_plants10020399
crossref_primary_10_1016_j_postharvbio_2025_113404
crossref_primary_10_1111_pce_15060
crossref_primary_10_1093_jxb_erae368
crossref_primary_10_1016_j_scienta_2022_111344
crossref_primary_10_1007_s00344_020_10143_y
crossref_primary_10_1016_j_plantsci_2021_110833
crossref_primary_10_1016_j_ijbiomac_2024_132696
crossref_primary_10_1111_ppl_70291
crossref_primary_10_1016_j_carbpol_2020_116462
crossref_primary_10_1146_annurev_arplant_073019_025927
crossref_primary_10_3390_ijms23020814
crossref_primary_10_1007_s42360_024_00813_2
crossref_primary_10_1016_j_stress_2025_101040
crossref_primary_10_1111_jipb_13739
crossref_primary_10_3389_fpls_2020_00914
crossref_primary_10_1016_j_plaphy_2024_108794
crossref_primary_10_1002_fpf2_12021
crossref_primary_10_1038_s41467_021_22456_x
crossref_primary_10_1186_s12864_021_07549_7
crossref_primary_10_3390_ijms23179753
crossref_primary_10_1111_pbi_13190
crossref_primary_10_1007_s11103_022_01308_2
crossref_primary_10_1186_s12284_019_0301_2
crossref_primary_10_1371_journal_pone_0313878
crossref_primary_10_3389_fpls_2019_00971
crossref_primary_10_1007_s11105_024_01477_y
crossref_primary_10_1093_jxb_erz262
crossref_primary_10_1007_s11103_023_01345_5
crossref_primary_10_3389_fpls_2024_1381018
crossref_primary_10_3390_molecules30061392
crossref_primary_10_1186_s12915_023_01650_x
crossref_primary_10_1111_mpp_13225
crossref_primary_10_1016_j_pmpp_2022_101945
crossref_primary_10_3390_genes9060309
crossref_primary_10_1016_j_indcrop_2021_114332
crossref_primary_10_1007_s11103_022_01286_5
crossref_primary_10_3390_membranes13110855
crossref_primary_10_3390_ijms26062685
crossref_primary_10_1093_plphys_kiad505
crossref_primary_10_1016_j_tplants_2025_03_020
crossref_primary_10_1584_jpestics_W22_17
crossref_primary_10_1016_j_scienta_2023_111977
crossref_primary_10_1093_jxb_eraf145
crossref_primary_10_1038_s41598_020_70406_2
crossref_primary_10_1016_j_ijbiomac_2024_132790
crossref_primary_10_1016_j_plantsci_2019_04_013
crossref_primary_10_1139_cjps_2024_0215
crossref_primary_10_3390_ijms23020606
crossref_primary_10_1007_s00018_019_03388_8
crossref_primary_10_1016_j_indcrop_2024_118565
crossref_primary_10_1111_tpj_15185
crossref_primary_10_1016_j_ijbiomac_2024_133508
crossref_primary_10_1016_j_scienta_2022_111422
crossref_primary_10_1007_s13562_025_01014_2
crossref_primary_10_1007_s44154_021_00003_4
crossref_primary_10_1094_MPMI_06_18_0171_R
crossref_primary_10_1186_s12284_025_00836_x
crossref_primary_10_3389_fpls_2024_1401298
crossref_primary_10_1186_s12870_022_04009_6
crossref_primary_10_1093_jxb_erad080
crossref_primary_10_1016_j_plantsci_2020_110697
crossref_primary_10_5511_plantbiotechnology_25_0220a
crossref_primary_10_1016_j_pmpp_2022_101850
crossref_primary_10_1371_journal_ppat_1009080
crossref_primary_10_1094_PHYTO_05_20_0176_R
crossref_primary_10_1007_s11103_023_01379_9
crossref_primary_10_1007_s12155_024_10734_7
crossref_primary_10_1002_adma_202106945
crossref_primary_10_3389_fpls_2021_682439
crossref_primary_10_3389_fmicb_2020_603927
crossref_primary_10_1016_j_molp_2024_04_003
crossref_primary_10_1093_jxb_erad305
crossref_primary_10_1021_jasms_0c00439
crossref_primary_10_1016_j_tplants_2020_05_011
crossref_primary_10_1016_j_indcrop_2022_115237
crossref_primary_10_1186_s42483_023_00220_x
crossref_primary_10_3390_ijms24087417
crossref_primary_10_1016_j_plantsci_2025_112644
crossref_primary_10_1111_ppl_14088
crossref_primary_10_1007_s11104_020_04827_3
crossref_primary_10_1007_s42161_025_01986_z
crossref_primary_10_1111_pbi_70050
crossref_primary_10_1080_15592324_2021_2004026
crossref_primary_10_3390_biology11010124
crossref_primary_10_3390_ijms25147692
crossref_primary_10_1111_tpj_70439
crossref_primary_10_3390_app9235012
crossref_primary_10_3390_agronomy15040884
crossref_primary_10_3390_f13101618
crossref_primary_10_1007_s42161_025_02019_5
crossref_primary_10_1186_s12870_018_1616_7
crossref_primary_10_1111_mpp_12968
crossref_primary_10_3390_biom13101483
crossref_primary_10_1038_s42003_021_02226_7
crossref_primary_10_1093_plcell_koac218
crossref_primary_10_24072_pcjournal_225
crossref_primary_10_1016_j_indcrop_2025_121618
crossref_primary_10_1111_nph_18829
crossref_primary_10_1111_tpj_14196
crossref_primary_10_1016_j_pbi_2021_102120
crossref_primary_10_1111_tpj_15133
crossref_primary_10_1093_jxb_erab269
crossref_primary_10_1111_tpj_16226
crossref_primary_10_3390_ijms25126667
crossref_primary_10_3389_fpls_2021_785699
crossref_primary_10_1080_13102818_2024_2356867
crossref_primary_10_3389_fpls_2022_969343
crossref_primary_10_1111_pce_14252
crossref_primary_10_1093_hr_uhad225
crossref_primary_10_1242_dev_166678
crossref_primary_10_3390_genes11020177
crossref_primary_10_1186_s12284_021_00478_9
crossref_primary_10_1186_s12870_019_1934_4
crossref_primary_10_1093_plcell_koab230
crossref_primary_10_1016_j_molp_2024_07_008
crossref_primary_10_1093_jxb_erad310
crossref_primary_10_1111_tpj_16114
crossref_primary_10_1186_s12870_021_03149_5
crossref_primary_10_1111_tpj_17206
crossref_primary_10_3389_fpls_2025_1638073
crossref_primary_10_1093_jxb_erab373
crossref_primary_10_3390_plants10112524
crossref_primary_10_3389_fpls_2020_00651
crossref_primary_10_1016_j_ijbiomac_2025_141501
crossref_primary_10_1093_plphys_kiac312
crossref_primary_10_1111_pbi_14270
crossref_primary_10_1093_jxb_erae433
crossref_primary_10_1111_jipb_12923
crossref_primary_10_1093_plcell_koae317
crossref_primary_10_1094_MPMI_06_20_0161_CR
crossref_primary_10_1111_ppl_13194
crossref_primary_10_1186_s12934_024_02394_1
crossref_primary_10_3389_fmicb_2023_1059799
crossref_primary_10_1186_s42483_023_00188_8
crossref_primary_10_1016_j_plantsci_2024_111999
crossref_primary_10_1093_plphys_kiac387
crossref_primary_10_1111_nph_15007
crossref_primary_10_1111_pbi_70131
crossref_primary_10_3389_fpls_2023_1230438
crossref_primary_10_1371_journal_ppat_1011340
crossref_primary_10_1111_jph_12930
crossref_primary_10_1016_j_pmpp_2025_102740
crossref_primary_10_3389_fmicb_2021_656809
crossref_primary_10_1093_jxb_erad210
crossref_primary_10_3390_plants7040089
crossref_primary_10_1038_s41422_024_01058_4
crossref_primary_10_1016_j_molp_2020_09_007
crossref_primary_10_1002_bies_202400171
crossref_primary_10_20935_AcadMolBioGen7476
crossref_primary_10_1016_j_ijbiomac_2023_125090
crossref_primary_10_1094_PHYTO_01_25_0022_R
crossref_primary_10_1093_hr_uhac066
crossref_primary_10_3390_plants11030408
crossref_primary_10_3389_fpls_2020_593905
crossref_primary_10_3389_fpls_2022_1064628
crossref_primary_10_1093_jxb_eraf306
crossref_primary_10_3390_ijms22031252
crossref_primary_10_1093_plcell_koad325
crossref_primary_10_1111_tpj_16541
crossref_primary_10_3390_ijms24076307
crossref_primary_10_3390_ijms232416200
crossref_primary_10_1007_s11738_024_03655_7
crossref_primary_10_1093_jxb_erad362
crossref_primary_10_1016_j_gene_2022_146336
crossref_primary_10_1111_nph_16319
crossref_primary_10_3390_horticulturae11060620
crossref_primary_10_3390_agronomy14112520
crossref_primary_10_1016_j_indcrop_2020_112902
crossref_primary_10_1186_s40168_022_01236_9
crossref_primary_10_1093_jxb_erae442
crossref_primary_10_3390_biology10101070
crossref_primary_10_1093_jxb_erad110
crossref_primary_10_1016_j_biortech_2019_122558
crossref_primary_10_1038_s41477_020_0707_2
crossref_primary_10_1016_j_pld_2022_04_001
crossref_primary_10_1111_nph_18846
crossref_primary_10_3389_fpls_2020_00852
crossref_primary_10_1016_j_indcrop_2019_111742
crossref_primary_10_1016_j_postharvbio_2024_113019
Cites_doi 10.1016/j.phytochem.2014.11.008
10.1046/j.1365-313x.1998.00276.x
10.3389/fpls.2016.00984
10.1093/pcp/pce127
10.1094/MPMI-03-13-0077-R
10.3389/fpls.2013.00155
10.1371/journal.ppat.1006433
10.1104/pp.112.200154
10.1104/pp.113.227637
10.1111/j.1365-313X.2006.02994.x
10.1042/BJ20140666
10.1104/pp.105.066464
10.1105/tpc.113.110833
10.1104/pp.113.230698
10.1104/pp.110.168989
10.1126/science.aal2541
10.1105/tpc.108.063768
10.3389/fpls.2014.00446
10.1105/tpc.003509
10.1007/s00253-011-3405-1
10.1093/mp/ssq075
10.1016/j.it.2014.05.004
10.1201/9781420027952
10.1146/annurev-phyto-080614-120106
10.15252/embj.201591807
10.1073/pnas.0705147104
10.1111/nph.15007
10.1534/genetics.105.042218
10.1111/j.1365-313X.2005.02440.x
10.1111/tpj.13755
10.1046/j.1365-313X.2003.01877.x
10.1111/j.1365-313X.2009.04016.x
10.1111/j.1365-313X.2009.03956.x
10.1111/nph.14086
10.1111/j.1365-313X.2008.03744.x
10.1104/pp.109.135459
10.1104/pp.114.236901
10.1111/j.1365-3040.2008.01898.x
10.1111/j.1558-5646.2010.01146.x
10.3389/fpls.2014.00228
10.1016/j.febslet.2011.04.043
10.1093/mp/ssn019
10.1046/j.1365-313X.2003.01729.x
10.1007/s00425-010-1306-7
10.7554/eLife.03766
10.3389/fpls.2014.00168
10.1111/tpj.13660
10.1073/pnas.1322979111
10.1186/s12915-017-0403-5
10.1085/jgp.201411295
10.1111/nph.12974
10.1016/j.cub.2015.07.068
10.1111/j.1365-313X.2009.03926.x
10.1038/nrmicro.2015.21
10.1093/pcp/pci026
10.1016/j.plantsci.2012.12.019
10.1111/tpj.12689
10.1111/j.1364-3703.2004.00262.x
10.1111/j.1469-8137.2010.03385.x
10.1105/tpc.13.2.413
10.1094/MPMI-22-8-0953
10.1073/pnas.1220015110
10.1093/mp/ssp066
10.1038/cr.2014.161
10.1016/j.chom.2010.03.007
10.1371/journal.pone.0098193
10.1094/MPMI-01-14-0005-R
10.1146/annurev.phyto.45.062806.094325
10.1371/journal.pgen.1006832
10.1074/jbc.271.33.19789
10.1104/pp.16.01185
10.4161/psb.27408
10.1016/S0953-7562(09)80138-X
10.1126/science.1218867
10.1104/pp.16.01680
10.1111/j.1744-7909.2010.00935.x
10.1186/s12870-016-0959-1
10.1016/j.tplants.2016.12.006
10.1104/pp.113.233759
10.1093/jxb/err238
10.1104/pp.111.184663
10.1016/j.pbi.2012.07.003
10.1105/tpc.15.00404
10.3389/fpls.2017.00445
10.1146/annurev-arplant-042916-040957
10.1104/pp.106.085670
10.1104/pp.112.195198
10.1038/ni.3124
10.1104/pp.104.4.1113
10.1038/nplants.2015.140
10.1073/pnas.1504154112
10.1038/35092620
10.1016/j.tplants.2012.12.002
10.1073/pnas.1619033114
10.1016/S1097-2765(00)80265-8
10.4161/psb.4.8.9231
10.1073/pnas.0607703104
10.1007/s11103-008-9430-5
10.1111/nph.14065
10.1093/jxb/erv180
10.1105/tpc.002022
10.1080/07060669709501060
10.1093/aob/mcu043
10.1105/tpc.108.063354
10.3389/fpls.2012.00079
10.3389/fpls.2012.00280
10.1073/pnas.1502522112
10.1104/pp.011028
10.1534/genetics.111.128264
10.1016/j.tplants.2014.09.003
10.1111/jipb.12346
10.1146/annurev-arplant-042811-105449
10.1111/nph.13269
10.1105/tpc.13.5.1025
10.1104/pp.71.4.916
10.1371/journal.pone.0106509
10.1073/pnas.1016508108
10.1094/MPMI-10-12-0236-R
10.1105/tpc.112.095778
10.1023/A:1013679111111
10.1111/j.1469-8137.2005.01496.x
10.1111/tpj.13380
10.1093/mp/ssr082
10.1073/pnas.1000675107
10.1146/annurev-arplant-042811-105534
10.1104/pp.106.076950
10.1094/MPMI-07-10-0157
10.1016/S0031-9422(01)00113-3
10.1073/pnas.1007745107
10.1111/mpp.12419
10.1104/pp.16.01642
10.1105/tpc.107.056754
10.1016/j.bbapap.2003.08.012
10.1074/jbc.M109.097394
10.1094/MPMI-23-5-0549
10.4161/psb.4.11.9739
10.1105/tpc.016097
10.1104/pp.112.211011
10.1093/jxb/erv026
10.1105/tpc.105.031542
10.1111/j.1365-313X.1993.tb00007.x
10.1073/pnas.92.10.4095
10.1093/pcp/pcu164
10.1016/j.cell.2006.03.037
10.1104/pp.110.163212
10.1038/nature22009
10.1016/j.jplph.2012.05.006
10.1146/annurev-arplant-042809-112315
10.1105/tpc.112.099325
10.1104/pp.113.214460
10.1111/j.1365-313X.2011.04671.x
10.3389/fpls.2013.00049
10.3389/fpls.2014.00358
10.4161/psb.22598
10.3389/fpls.2012.00012
10.1126/science.1243825
10.1104/pp.111.174003
10.1016/j.cub.2012.07.036
10.1105/tpc.007872
10.1074/jbc.M109.096842
10.1038/415977a
10.1111/j.1365-313X.2004.02208.x
10.1007/s11010-007-9603-6
10.1007/978-3-642-03524-1_12
10.1038/msb.2011.66
10.1104/pp.110.171843
10.1002/biot.201100155
10.1111/pbi.12393
10.1093/jxb/ern344
10.1016/j.cub.2009.01.054
10.1111/ppl.12411
10.1104/pp.16.00667
10.1038/nature05999
10.1016/j.pbi.2008.03.006
10.1093/glycob/cww029
10.1111/tpj.12504
10.1038/nri.2016.77
10.1073/pnas.1112862108
10.1038/nmicrobiol.2016.43
10.1105/tpc.11.9.1743
10.1093/jxb/ert330
10.1093/jxb/ers362
10.1038/nrm1746
10.1016/j.phytochem.2006.03.009
10.1093/jxb/erv489
10.1111/j.1365-313X.2010.04224.x
10.1105/tpc.13.2.303
10.1105/tpc.16.00891
10.1038/srep30251
10.1146/annurev-arplant-042811-105518
10.3389/fpls.2012.00077
10.1111/nph.14638
10.1104/pp.111.175737
10.1371/journal.ppat.1002513
10.1146/annurev-phyto-102313-045831
10.1042/BCJ20160238
10.3389/fpls.2014.00178
10.1105/tpc.106.048058
10.1111/tpj.13057
10.1111/nph.14720
10.1038/nprot.2012.081
10.1105/tpc.109.068874
10.1074/jbc.M102390200
10.1038/ncomms6320
10.1111/mpp.12457
10.1104/pp.106.090803
10.1016/j.cub.2007.05.018
10.1105/tpc.111.084301
10.1126/science.1244454
10.1094/MPMI-06-14-0191-R
10.1146/annurev.cellbio.22.022206.160206
10.1126/science.1242468
10.1371/journal.ppat.1001327
10.15252/embr.201438801
10.1105/tpc.106.048041
10.1038/ncb2471
10.1105/tpc.12.12.2409
10.1111/j.1365-313X.2005.02452.x
10.1126/science.343.6168.290
10.1016/j.coi.2014.12.002
10.1111/tpj.12027
10.1094/MPMI-21-12-1643
10.1111/j.1438-8677.2011.00449.x
10.1073/pnas.0603727103
10.1093/mp/ssq015
10.1242/dev.00458
10.1038/ng.3170
10.1104/pp.109.147371
10.1093/jxb/ers100
10.1111/j.1365-2958.2008.06211.x
10.1093/jxb/erp245
10.1104/pp.68.5.1161
10.3389/fpls.2016.00897
10.1104/pp.112.212431
10.1016/j.devcel.2010.10.010
10.1111/mpp.12090
10.1016/j.cub.2014.06.064
10.1073/pnas.0706547105
10.1016/j.pbi.2017.08.010
10.1021/jf052922x
10.1126/science.1086716
10.1111/j.1365-313X.2004.02264.x
ContentType Journal Article
Copyright 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd
2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Copyright © 2018 John Wiley & Sons Ltd and the Society for Experimental Biology
Copyright_xml – notice: 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd
– notice: 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
– notice: Copyright © 2018 John Wiley & Sons Ltd and the Society for Experimental Biology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/tpj.13807
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA
MEDLINE - Academic
Genetics Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage 636
ExternalDocumentID 29266460
10_1111_tpj_13807
TPJ13807
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Spanish Ministry of Economy and Competitiveness (MINECO)
  funderid: BIO2015‐64077‐R; BES‐2013‐065010
– fundername: European Union
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
O8X
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
ESX
IPNFZ
NPM
WRC
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4877-1b0a54be0b4b13273d5f9ba7ecc851da08c8c8f72488c6563d7cc969ff6eb6a3
IEDL.DBID WIN
ISICitedReferencesCount 434
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424221200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-7412
1365-313X
IngestDate Fri Jul 11 18:24:16 EDT 2025
Fri Jul 11 07:46:23 EDT 2025
Fri Jul 25 11:09:37 EDT 2025
Tue Jan 21 03:22:13 EST 2025
Sat Nov 29 06:05:31 EST 2025
Tue Nov 18 21:22:26 EST 2025
Tue Nov 11 03:08:57 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords PRR
disease resistance
Arabidopsis
cell wall mutant
wall sensor
cell wall integrity
immunity
cell wall
DAMP
Language English
License 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4877-1b0a54be0b4b13273d5f9ba7ecc851da08c8c8f72488c6563d7cc969ff6eb6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3171-8181
0000-0003-1792-0113
0000-0003-2899-1494
0000-0003-3137-7938
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/tpj.13807
PMID 29266460
PQID 1994337438
PQPubID 31702
PageCount 23
ParticipantIDs proquest_miscellaneous_2067297943
proquest_miscellaneous_1979502724
proquest_journals_1994337438
pubmed_primary_29266460
crossref_primary_10_1111_tpj_13807
crossref_citationtrail_10_1111_tpj_13807
wiley_primary_10_1111_tpj_13807_TPJ13807
PublicationCentury 2000
PublicationDate February 2018
2018-02-00
20180201
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2018
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2005; 171
2015; 145
2013; 64
2017; 89
2010; 188
2012; 15
2012; 14
2001; 47
2011; 233
2016; 35
2001; 42
1998; 16
2000; 12
2014a; 343
2008; 21
2013; 110
2008; 20
2010; 3
2012; 24
2001; 57
2010; 7
2007; 17
2007; 19
2009; 69
2004; 40
2009; 60
2017; 68
2002; 415
2013; 342
2012b; 22
2010; 285
2013; 341
2011; 4
2016; 16
2016; 14
2011; 7
2001; 276
2016; 6
2016; 7
2016; 1
2017; 55
2015; 112
2016; 212
2005; 6
2016; 28
2016; 26
2006; 103
2017; 40
2013; 26
2007; 143
2013; 203
2008; 307
2008; 1
2017; 474
2017; 355
2017; 114
2010; 63
2010; 61
2013; 18
2014; 5
2014; 3
1994; 104
2000
2010; 154
1999; 11
2010; 152
2008; 68
2004; 1696
2014; 52
2014; 165
2014; 9
2001; 13
2012; 336
2014; 164
2006; 125
2015; 1
2017b; 68
2011
2010
2017; 22
1981; 68
2005
2017; 29
2017; 215
2013b; 25
2011; 108
2014; 80
2017; 15
2017; 17
2005; 168
1993; 97
2017; 13
2006; 141
2006; 140
2018
2017
2006; 142
2017; 18
2009; 4
2003; 301
2009; 2
2007; 45
2014; 78
2011; 585
2007; 49
2007; 104
2002; 14
2013; 4
2010; 107
2010; 19
2011; 62
2014; 27
2014; 24
2013; 8
2014b; 463
2010; 23
2010; 22
2017a
2015; 84
2006; 22
2016; 157
2014; 15
2011; 65
2011; 68
2009; 19
2001; 413
2015; 57
2015; 56
2007; 448
2006; 54
2009a; 60
2012a; 63
2003; 36
1983; 71
2012; 908
1992
2003; 34
2009b; 4
2015; 66
2002; 129
2013b; 4
2014; 35
2014a; 165
2016; 171
2005; 17
2017; 543
2010; 52
2017; 8
2011; 157
2000; 5
2015; 32
2012; 160
2003; 15
2009; 150
2013; 162
2012; 169
2013; 161
1993; 3
2011; 156
2011; 155
2014; 204
2009; 57
2015; 47
2006; 67
1997; 19
2011; 24
2011; 23
2009; 59
2012; 63
2009; 22
2013a; 73
1995; 92
2015; 16
2009; 21
2013a; 8
2005; 43
2017; 173
2008; 11
2015; 206
2014; 111
2014; 114
2005; 46
2003; 130
2012; 93
2015; 25
2012; 3
2009; 32
2017; 92
2017; 1578
2015; 20
1996; 271
2012; 7
2012; 159
2012; 5
2011; 189
2012; 8
2014; 343
2016; 67
e_1_2_9_79_1
e_1_2_9_254_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_239_1
e_1_2_9_33_1
e_1_2_9_216_1
e_1_2_9_231_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_22_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_204_1
e_1_2_9_227_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_242_1
e_1_2_9_111_1
Wood I.P. (e_1_2_9_238_1) 2017; 114
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_195_1
e_1_2_9_172_1
e_1_2_9_232_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
Chowdhury J. (e_1_2_9_45_1) 2017; 8
e_1_2_9_217_1
Lorenzo G. (e_1_2_9_51_1) 2011; 585
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_61_1
e_1_2_9_243_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_228_1
e_1_2_9_23_1
e_1_2_9_205_1
e_1_2_9_5_1
e_1_2_9_220_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
Pattathil S. (e_1_2_9_162_1) 2012; 908
e_1_2_9_233_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_218_1
e_1_2_9_16_1
e_1_2_9_185_1
Bacete L Mélida H. (e_1_2_9_12_1) 2017; 1578
e_1_2_9_89_1
e_1_2_9_221_1
e_1_2_9_244_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_206_1
e_1_2_9_8_1
e_1_2_9_81_1
Trusov Y. (e_1_2_9_210_1) 2010
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_136_1
Srivastava V. (e_1_2_9_197_1) 2017
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_229_1
e_1_2_9_174_1
e_1_2_9_234_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_219_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_245_1
e_1_2_9_222_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_82_1
Tsang D.L. (e_1_2_9_211_1) 2011; 156
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_207_1
e_1_2_9_173_1
e_1_2_9_196_1
Bellande K. (e_1_2_9_20_1) 2017
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_235_1
Horton M.W. (e_1_2_9_102_1) 2014; 5
e_1_2_9_212_1
e_1_2_9_90_1
e_1_2_9_250_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_223_1
e_1_2_9_246_1
Ramírez V. (e_1_2_9_168_1) 2011; 155
e_1_2_9_2_1
e_1_2_9_138_1
Sopeña‐Torres S. (e_1_2_9_194_1) 2018
e_1_2_9_115_1
e_1_2_9_199_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_208_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
Driouich A. (e_1_2_9_65_1) 2012; 3
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_213_1
Engelsdorf T. (e_1_2_9_70_1) 2017
e_1_2_9_236_1
e_1_2_9_76_1
e_1_2_9_91_1
Reinhard A. (e_1_2_9_171_1) 2017; 1578
e_1_2_9_251_1
e_1_2_9_148_1
Albersheim P. (e_1_2_9_4_1) 2011
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
Nothnagel E.A. (e_1_2_9_158_1) 1983; 71
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_224_1
e_1_2_9_201_1
e_1_2_9_247_1
e_1_2_9_80_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_198_1
e_1_2_9_27_1
e_1_2_9_209_1
Escudero V. (e_1_2_9_73_1) 2017; 92
e_1_2_9_50_1
e_1_2_9_35_1
e_1_2_9_214_1
e_1_2_9_96_1
e_1_2_9_237_1
e_1_2_9_252_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_202_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_225_1
e_1_2_9_248_1
e_1_2_9_240_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_170_1
e_1_2_9_74_1
Engelsdorf T. (e_1_2_9_71_1) 2017; 68
e_1_2_9_215_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_230_1
e_1_2_9_253_1
e_1_2_9_127_1
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_203_1
e_1_2_9_249_1
e_1_2_9_86_1
e_1_2_9_226_1
Stone B. (e_1_2_9_200_1) 1992
e_1_2_9_3_1
e_1_2_9_241_1
e_1_2_9_139_1
Carpita N. (e_1_2_9_38_1) 2000
e_1_2_9_116_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_192_1
References_xml – volume: 13
  start-page: 1025
  year: 2001
  end-page: 1033
  article-title: The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens
  publication-title: Plant Cell
– volume: 8
  start-page: e27408
  year: 2013a
  article-title: Perception of the novel MAMP eMax from different Xanthomonas species requires the Arabidopsis receptor‐like protein ReMAX and the receptor kinase SOBIR
  publication-title: Plant Signal. Behav.
– volume: 7
  start-page: e1001327
  year: 2011
  article-title: The lectin receptor kinase LecRK‐I.9 Is a Novel Phytophthora resistance component and a potential host target for a RXLR effector
  publication-title: PLoS Pathog.
– volume: 93
  start-page: 191
  year: 2012
  end-page: 201
  article-title: The purification and characterization of a novel hypersensitive‐like response‐inducing elicitor from Verticillium dahliae that induces resistance responses in tobacco
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 8
  start-page: 445
  year: 2017
  article-title: Altered expression of genes implicated in Xylan biosynthesis affects penetration resistance against powdery mildew
  publication-title: Front. Plant. Sci.
– volume: 108
  start-page: 5685
  year: 2011
  end-page: 5689
  article-title: Tradeoffs associated with constitutive and induced plant resistance against herbivory
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 13
  start-page: e1006433
  year: 2017
  article-title: L‐type lectin receptor kinases: New forces in plant immunity
  publication-title: PLoS Pathog.
– volume: 3
  start-page: 77
  year: 2012
  article-title: Plant cell wall integrity maintenance as an essential component of biotic stress response mechanisms
  publication-title: Front. Plant. Sci.
– volume: 463
  start-page: 429
  year: 2014b
  end-page: 437
  article-title: Extracellular ATP, a danger signal, is recognized by DORN1 in Arabidopsis
  publication-title: Biochem J
– volume: 343
  start-page: 290
  year: 2014a
  end-page: 294
  article-title: Identification of a plant receptor for extracellular ATP
  publication-title: Science
– volume: 108
  start-page: 19824
  year: 2011
  end-page: 19829
  article-title: Arabidopsis lysin‐motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 14
  start-page: 31
  year: 2012
  end-page: 38
  article-title: Transgenic expression of polygalacturonase‐inhibiting proteins in Arabidopsis and wheat increases resistance to the flower pathogen Fusarium graminearum
  publication-title: Plant Biology
– volume: 157
  start-page: 804
  year: 2011
  end-page: 814
  article-title: Arabidopsis MPK3 and MPK6 play different roles in basal and Oligogalacturonide‐ or Flagellin‐induced resistance against botrytis cinerea
  publication-title: Plant Physiol.
– volume: 143
  start-page: 1871
  year: 2007
  end-page: 1880
  article-title: Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea
  publication-title: Plant Physiol.
– volume: 26
  start-page: 950
  year: 2016
  end-page: 960
  article-title: Cell wall integrity signaling in plants: “To grow or not to grow that's the question”
  publication-title: Glycobiology
– volume: 215
  start-page: 1291
  year: 2017
  end-page: 1294
  article-title: A plant's balance of growth and defense – revisited
  publication-title: New Phytol.
– volume: 42
  start-page: 1017
  year: 2001
  end-page: 1023
  article-title: The Arabidopsis AHK4 histidine kinase is a cytokinin‐binding receptor that transduces cytokinin signals across the membrane
  publication-title: Plant Cell Physiol.
– volume: 3
  start-page: 15
  year: 2012
  article-title: Golgi‐mediated synthesis and secretion of matrix polysaccharides of the primary cell wall of higher plants
  publication-title: Front. Plant. Sci.
– volume: 47
  start-page: 693
  year: 2001
  end-page: 701
  article-title: Plant callose synthase complexes
  publication-title: Plant Mol. Biol.
– volume: 19
  start-page: 1665
  year: 2007
  end-page: 1681
  article-title: ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis
  publication-title: Plant Cell
– volume: 47
  start-page: 151
  year: 2015
  end-page: 157
  article-title: A maize wall‐associated kinase confers quantitative resistance to head smut
  publication-title: Nature Genet.
– volume: 1
  start-page: 423
  year: 2008
  end-page: 445
  article-title: Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings
  publication-title: Molecular Plant
– volume: 157
  start-page: 193
  year: 2016
  end-page: 204
  article-title: Early habituation of maize (Zea mays) suspension‐cultured cells to 2,6‐dichlorobenzonitrile is associated with the enhancement of antioxidant status
  publication-title: Physiol. Plant.
– volume: 130
  start-page: 2149
  year: 2003
  end-page: 2159
  article-title: The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception
  publication-title: Development
– volume: 4
  start-page: 1075
  year: 2009b
  end-page: 1077
  article-title: Arabidopsis proline‐rich extensin‐like receptor kinase 4 modulates the early event toward abscisic acid response in root tip growth
  publication-title: Plant Signal. Behav.
– volume: 160
  start-page: 2109
  year: 2012
  end-page: 2124
  article-title: Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the Necrotrophic Fungus Plectosphaerella cucumerina
  publication-title: Plant Physiol.
– volume: 24
  start-page: 1256
  year: 2012
  end-page: 1270
  article-title: The lectin receptor kinase‐VI.2 is required for priming and positively regulates Arabidopsis pattern‐triggered immunity
  publication-title: Plant Cell
– volume: 7
  start-page: 620
  year: 2012
  end-page: 634
  article-title: Recombinant protein expression and purification: A comprehensive review of affinity tags and microbial applications
  publication-title: Biotechnol. J.
– volume: 52
  start-page: 427
  year: 2014
  end-page: 451
  article-title: Plant cell wall‐degrading enzymes and their secretion in plant‐pathogenic fungi
  publication-title: Annu. Rev. Phytopathol.
– volume: 159
  start-page: 105
  year: 2012
  end-page: 117
  article-title: Osmosensitive changes of carbohydrate metabolism in response to cellulose biosynthesis inhibition
  publication-title: Plant Physiol.
– volume: 18
  start-page: 227
  year: 2013
  end-page: 233
  article-title: Plant mechanosensing and Ca2+ transport
  publication-title: Trends Plant Sci.
– start-page: 1
  year: 2017
  end-page: 17
  article-title: Plant cell walls
  publication-title: eLS
– volume: 43
  start-page: 273
  year: 2005
  end-page: 283
  article-title: Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis
  publication-title: Plant J.
– volume: 301
  start-page: 969
  year: 2003
  end-page: 972
  article-title: Loss of a callose synthase results in salicylic acid‐dependent disease resistance
  publication-title: Science
– volume: 14
  start-page: 163
  year: 2016
  end-page: 176
  article-title: Interactions of fungal pathogens with phagocytes
  publication-title: Nat. Rev. Microbiol.
– volume: 55
  start-page: 257
  year: 2017
  end-page: 286
  article-title: Function, discovery, and exploitation of plant pattern recognition receptors for broad‐spectrum disease resistance
  publication-title: Annu. Rev. Phytopathol.
– volume: 34
  start-page: 351
  year: 2003
  end-page: 362
  article-title: Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana
  publication-title: Plant J.
– volume: 11
  start-page: 266
  year: 2008
  end-page: 277
  article-title: Pectin structure and biosynthesis
  publication-title: Curr. Opin. Plant Biol.
– volume: 171
  start-page: 305
  year: 2005
  end-page: 321
  article-title: RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease‐resistance gene, is not race specific
  publication-title: Genetics
– volume: 23
  start-page: 2440
  year: 2011
  end-page: 2455
  article-title: The Arabidopsis Leucine‐rich repeat receptor‐like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to Hemibiotrophic and Biotrophic Pathogens
  publication-title: Plant Cell
– volume: 11
  start-page: 1743
  year: 1999
  end-page: 1754
  article-title: A transmembrane hybrid‐type histidine kinase in arabidopsis functions as an osmosensor
  publication-title: Plant Cell
– volume: 63
  start-page: 381
  year: 2012a
  end-page: 407
  article-title: Growth control and cell wall signaling in plants
  publication-title: Annu. Rev. Plant Biol.
– volume: 3
  start-page: 280
  year: 2012
  article-title: Cell wall integrity signaling and innate immunity in plants
  publication-title: Front. Plant. Sci.
– volume: 150
  start-page: 684
  year: 2009
  end-page: 699
  article-title: A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue‐like bundles
  publication-title: Plant Physiol.
– volume: 543
  start-page: 328
  year: 2017
  end-page: 336
  article-title: Plant signalling in symbiosis and immunity
  publication-title: Nature
– volume: 61
  start-page: 263
  year: 2010
  end-page: 289
  article-title: Hemicelluloses
  publication-title: Annu. Rev. Plant Biol.
– volume: 110
  start-page: 10010
  year: 2013
  end-page: 10015
  article-title: Receptor‐like kinase SOBIR1/EVR interacts with receptor‐like proteins in plant immunity against fungal infection
  publication-title: Proc. Natl Acad. Sci. USA
– year: 2017a
  article-title: Pattern‐triggered immunity and cell wall integrity maintenance jointly modulate plant stress responses
  publication-title: BioRxiv
– volume: 17
  start-page: 2281
  year: 2005
  end-page: 2295
  article-title: Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics
  publication-title: Plant Cell
– volume: 112
  start-page: 5533
  year: 2015
  end-page: 5538
  article-title: Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage‐associated molecular patterns
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 4
  start-page: 784
  year: 2009
  end-page: 786
  article-title: A family of receptor‐like kinases are regulated by BES1 and involved in plant growth in Arabidopsis thaliana
  publication-title: Plant Signal. Behav.
– year: 2018
  article-title: Non‐branched beta‐1,3‐glucan oligosaccharides trigger immune responses in Arabidopsis
  publication-title: Plant J
– volume: 92
  start-page: 13
  year: 2017
  article-title: Alteration of cell wall xylan acetylation triggers defense responses that counterbalance the immune deficiencies of plants impaired in the β‐subunit of the heterotrimeric G‐protein
  publication-title: Plant J.
– volume: 215
  start-page: 1533
  year: 2017
  end-page: 1547
  article-title: Regulation of growth‐defense balance by the JASMONATE ZIM‐DOMAIN (JAZ)‐MYC transcriptional module
  publication-title: New Phytol.
– volume: 8
  start-page: e1002513
  year: 2012
  article-title: The Arabidopsis lectin receptor kinase LecRK‐V.5 represses stomatal immunity induced by pseudomonas syringae pv. tomato DC3000
  publication-title: PLoS Pathog.
– volume: 7
  start-page: 290
  year: 2010
  end-page: 301
  article-title: Receptor‐like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector
  publication-title: Cell Host Microbe
– volume: 27
  start-page: 1390
  year: 2014
  end-page: 1402
  article-title: Phenotypic analyses of Arabidopsis T‐DNA insertion lines and expression profiling reveal that multiple L‐type lectin receptor kinases are involved in plant immunity
  publication-title: Mol. Plant Microbe Interact.
– volume: 7
  start-page: 1590
  year: 2012
  end-page: 1607
  article-title: Determining the polysaccharide composition of plant cell walls
  publication-title: Nature Protoc.
– volume: 63
  start-page: 451
  year: 2012
  end-page: 482
  article-title: Plant innate immunity: perception of conserved microbial signatures
  publication-title: Annu. Rev. Plant Biol.
– volume: 2
  start-page: 851
  year: 2009
  end-page: 860
  article-title: Homogalacturonan Methyl‐Esterification and plant development
  publication-title: Molecular Plant
– volume: 104
  start-page: 19613
  year: 2007
  end-page: 19618
  article-title: CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 68
  start-page: 701
  year: 2017b
  end-page: 713
  article-title: Cell wall composition and penetration resistance against the fungal pathogen Colletotrichum higginsianum are affected by impaired starch turnover in Arabidopsis mutants
  publication-title: J. Exp. Bot.
– volume: 285
  start-page: 9444
  year: 2010
  end-page: 9451
  article-title: Rapid Heteromerization and Phosphorylation of Ligand‐activated Plant Transmembrane Receptors and Their Associated Kinase BAK1
  publication-title: J. Biol. Chem.
– volume: 5
  start-page: 446
  year: 2014
  article-title: Extracellular ATP acts as a damage‐associated molecular pattern (DAMP) signal in plants
  publication-title: Front. Plant. Sci.
– volume: 107
  start-page: 9452
  year: 2010
  end-page: 9457
  article-title: A domain swap approach reveals a role of the plant wall‐associated kinase 1 (WAK1) as a receptor of oligogalacturonides
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 29
  start-page: 618
  year: 2017
  end-page: 637
  article-title: Receptor kinases in plant‐pathogen interactions: more than pattern recognition
  publication-title: Plant Cell
– volume: 355
  start-page: 287
  year: 2017
  end-page: 289
  article-title: The receptor kinase FER is a RALF‐regulated scaffold controlling plant immune signaling
  publication-title: Science
– volume: 114
  start-page: 6860
  year: 2017
  end-page: 6865
  article-title: Carbohydrate microarrays and their use for the identification of molecular markers for plant cell wall composition
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 22
  start-page: 508
  year: 2010
  end-page: 522
  article-title: PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis
  publication-title: Plant Cell
– volume: 14
  start-page: 2095
  year: 2002
  end-page: 2106
  article-title: PMR6, a pectate lyase‐like gene required for powdery mildew susceptibility in Arabidopsis
  publication-title: Plant Cell
– volume: 45
  start-page: 101
  year: 2007
  end-page: 127
  article-title: Cell wall ‐ Associated mechanisms of disease resistance and susceptibility
  publication-title: Annu. Rev. Phytopathol.
– volume: 111
  start-page: 15261
  year: 2014
  end-page: 15266
  article-title: A receptor‐like protein mediates the response to pectin modification by activating brassinosteroid signaling
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 69
  start-page: 337
  year: 2009
  end-page: 346
  article-title: A novel wall‐associated receptor‐like protein kinase gene, OsWAK1, plays important roles in rice blast disease resistance
  publication-title: Plant Mol. Biol.
– volume: 162
  start-page: 9
  year: 2013
  end-page: 23
  article-title: Arabidopsis and Brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of polysaccharide acetylation and increased resistance to pathogens
  publication-title: Plant Physiol.
– volume: 233
  start-page: 393
  year: 2011
  end-page: 406
  article-title: Change in wall composition of transfer and aleurone cells during wheat grain development
  publication-title: Planta
– volume: 67
  start-page: 533
  year: 2016
  end-page: 542
  article-title: Cellulose biosynthesis inhibitors ‐ a multifunctional toolbox
  publication-title: J. Exp. Bot.
– volume: 161
  start-page: 2146
  year: 2013
  end-page: 2158
  article-title: Heterotrimeric G proteins serve as a converging point in plant defense signaling activated by multiple receptor‐like kinases
  publication-title: Plant Physiol.
– volume: 84
  start-page: 1073
  year: 2015
  end-page: 1086
  article-title: Ethylene production in Botrytis cinerea‐ and oligogalacturonide‐induced immunity requires calcium‐dependent protein kinases
  publication-title: Plant J.
– volume: 114
  start-page: 1339
  issue: 6
  year: 2014
  end-page: 1347
  article-title: An update on receptor‐like kinase involvement in the maintenance of plant cell wall integrity
  publication-title: Ann. Bot.
– volume: 5
  start-page: 168
  year: 2014
  article-title: Callose‐mediated resistance to pathogenic intruders in plant defense‐related papillae
  publication-title: Front. Plant. Sci.
– volume: 17
  start-page: 19
  year: 2017
  article-title: Short oligogalacturonides induce pathogen resistance‐associated gene expression in Arabidopsis thaliana
  publication-title: BMC Plant Biol.
– volume: 68
  start-page: 838
  year: 2008
  end-page: 847
  article-title: LysM, a widely distributed protein motif for binding to (peptido)glycans
  publication-title: Mol. Microbiol.
– volume: 64
  start-page: 5309
  year: 2013
  end-page: 5321
  article-title: The family of Peps and their precursors in Arabidopsis: differential expression and localization but similar induction of pattern‐triggered immune responses
  publication-title: J. Exp. Bot.
– volume: 189
  start-page: 1145
  year: 2011
  end-page: 1175
  article-title: Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway
  publication-title: Genetics
– volume: 19
  start-page: 890
  year: 2007
  end-page: 903
  article-title: Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance
  publication-title: Plant Cell
– volume: 168
  start-page: 123
  year: 2005
  end-page: 140
  article-title: Comparison of lignin deposition in three ectopic lignification mutants
  publication-title: New Phytol.
– volume: 164
  start-page: 352
  year: 2014
  end-page: 364
  article-title: Fungal Endopolygalacturonases are recognized as microbe‐associated molecular patterns by the Arabidopsis receptor‐like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1
  publication-title: Plant Physiol.
– volume: 68
  start-page: 109
  year: 2017
  end-page: 137
  article-title: The structural basis of ligand perception and signal activation by receptor kinases
  publication-title: Annu. Rev. Plant Biol.
– volume: 129
  start-page: 455
  year: 2002
  end-page: 459
  article-title: The cell wall‐associated kinase (WAK) and WAK‐like kinase gene family
  publication-title: Plant Physiol.
– volume: 23
  start-page: 549
  year: 2010
  end-page: 557
  article-title: The role of callose deposition along plasmodesmata in nematode feeding sites
  publication-title: Mol. Plant Microbe Interact.
– volume: 212
  start-page: 434
  year: 2016
  end-page: 443
  article-title: Down‐regulation of the glucan synthase‐like 6 gene (HvGsl6) in barley leads to decreased callose accumulation and increased cell wall penetration by Blumeria graminis f. sp hordei
  publication-title: New Phytol.
– volume: 40
  start-page: 260
  year: 2004
  end-page: 275
  article-title: Novel cell wall architecture of isoxaben‐habituated Arabidopsis suspension‐cultured cells: global transcript profiling and cellular analysis
  publication-title: Plant J.
– volume: 13
  start-page: 303
  year: 2001
  end-page: 318
  article-title: Wall‐associated kinases are expressed throughout plant development and are required for cell expansion
  publication-title: Plant Cell
– volume: 154
  start-page: 1105
  year: 2010
  end-page: 1115
  article-title: Lack of alpha‐Xylosidase activity in Arabidopsis alters Xyloglucan composition and results in growth defects
  publication-title: Plant Physiol.
– volume: 26
  start-page: 991
  year: 2013
  end-page: 1003
  article-title: The role of Arabidopsis Heterotrimeric G‐protein subunits in MLO2 function and MAMP‐triggered immunity
  publication-title: Mol. Plant Microbe Interact.
– volume: 5
  start-page: 1003
  year: 2000
  end-page: 1011
  article-title: FLS2: An LRR receptor‐like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis
  publication-title: Mol. Cell
– volume: 13
  start-page: e1006832
  year: 2017
  article-title: The Arabidopsis leucine‐rich repeat receptor kinase MIK2/LRR‐KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses
  publication-title: PLoS Genet.
– volume: 585
  start-page: 1521
  year: 2011
  end-page: 1528
  article-title: Engineering plant resistance by constructing chimeric receptors that recognize damage‐associated molecular patterns (DAMPs)
  publication-title: FEBS Lett.
– volume: 26
  start-page: 686
  year: 2013
  end-page: 694
  article-title: Functional interplay between Arabidopsis NADPH oxidases and heterotrimeric G protein
  publication-title: Mol. Plant Microbe Interact.
– volume: 21
  start-page: 1643
  year: 2008
  end-page: 1653
  article-title: Galactinol is a signaling component of the induced systemic resistance caused by Pseudomonas chlororaphis O6 root colonization
  publication-title: Mol. Plant Microbe Interact.
– volume: 474
  start-page: 471
  year: 2017
  end-page: 492
  article-title: Plant cell wall signalling and receptor‐like kinases
  publication-title: Biochem J
– volume: 73
  start-page: 225
  year: 2013a
  end-page: 239
  article-title: Arabidopsis wat1 (walls are thin1)‐mediated resistance to the bacterial vascular pathogen, Ralstonia solanacearum, is accompanied by cross‐regulation of salicylic acid and tryptophan metabolism
  publication-title: Plant J.
– volume: 92
  start-page: 4095
  year: 1995
  end-page: 4098
  article-title: Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 22
  start-page: 1732
  year: 2012b
  end-page: 1737
  article-title: Plant cell wall homeostasis is mediated by brassinosteroid feedback signaling
  publication-title: Curr. Biol.
– volume: 60
  start-page: 314
  year: 2009a
  end-page: 327
  article-title: Plasma membrane‐associated proline‐rich extensin‐like receptor kinase 4, a novel regulator of Ca signalling, is required for abscisic acid responses in Arabidopsis thaliana
  publication-title: Plant J.
– volume: 15
  start-page: 59
  year: 2017
  article-title: Life behind the wall: sensing mechanical cues in plants
  publication-title: BMC Biol.
– volume: 40
  start-page: 968
  year: 2004
  end-page: 978
  article-title: Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition
  publication-title: Plant J.
– volume: 17
  start-page: 922
  year: 2007
  end-page: 931
  article-title: A receptor‐like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis
  publication-title: Curr. Biol.
– volume: 16
  start-page: 537
  year: 2016
  end-page: 552
  article-title: Regulation of pattern recognition receptor signalling in plants
  publication-title: Nat. Rev. Immunol.
– volume: 145
  start-page: 389
  year: 2015
  end-page: 394
  article-title: The ongoing search for the molecular basis of plant osmosensing
  publication-title: J. Gen. Physiol.
– volume: 3
  start-page: e03766
  year: 2014
  article-title: The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin‐induced complex with related kinase CERK1
  publication-title: Elife
– volume: 52
  start-page: 161
  year: 2010
  end-page: 175
  article-title: What Do We Really Know about Cellulose Biosynthesis in Higher Plants?
  publication-title: J. Integr. Plant Biol.
– volume: 342
  start-page: 624
  year: 2013
  end-page: 628
  article-title: Structural basis for flg22‐induced activation of the Arabidopsis FLS2‐BAK1 immune complex
  publication-title: Science
– volume: 161
  start-page: 1433
  year: 2013
  end-page: 1444
  article-title: Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis
  publication-title: Plant Physiol.
– volume: 271
  start-page: 19789
  year: 1996
  end-page: 19793
  article-title: A cell wall‐associated, receptor‐like protein kinase
  publication-title: J. Biol. Chem.
– volume: 107
  start-page: 17217
  year: 2010
  end-page: 17222
  article-title: Competition‐defense tradeoffs and the maintenance of plant diversity
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 14
  start-page: 387
  year: 2016
  end-page: 397
  article-title: Expression of fungal acetyl xylan esterase in Arabidopsis thaliana improves saccharification of stem lignocellulose
  publication-title: Plant Biotechnol. J.
– volume: 97
  start-page: 497
  year: 1993
  end-page: 505
  article-title: Cloning and characterization of a gene encoding the endopolygalacturonase of fusarium‐moniliforme
  publication-title: Mycol. Res.
– volume: 9
  start-page: e106509
  year: 2014
  article-title: Increased drought tolerance through the suppression of ESKMO1 gene and overexpression of CBF‐related genes in Arabidopsis
  publication-title: PLoS ONE
– volume: 36
  start-page: 353
  year: 2003
  end-page: 365
  article-title: ERECTA, an LRR receptor‐like kinase protein controlling development pleiotropically affects resistance to bacterial wilt
  publication-title: Plant J.
– volume: 78
  start-page: 715
  year: 2014
  end-page: 722
  article-title: Epitope detection chromatography: a method to dissect the structural heterogeneity and inter‐connections of plant cell‐wall matrix glycans
  publication-title: Plant J.
– volume: 71
  start-page: 916
  issue: 4
  year: 1983
  end-page: 926
  article-title: Host‐Pathogen Interactions: XXII. A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins
  publication-title: Plant Physiol.
– volume: 57
  start-page: 929
  year: 2001
  end-page: 967
  article-title: Pectins: structure, biosynthesis, and oligogalacturonide‐related signaling
  publication-title: Phytochemistry
– volume: 14
  start-page: 1557
  year: 2002
  end-page: 1566
  article-title: The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses
  publication-title: Plant Cell
– volume: 68
  start-page: 100
  year: 2011
  end-page: 113
  article-title: Interplay between calcium signalling and early signalling elements during defence responses to microbe‐ or damage‐associated molecular patterns
  publication-title: Plant J.
– volume: 16
  start-page: 63
  year: 1998
  end-page: 71
  article-title: High affinity RGD‐binding sites at the plasma membrane of Arabidopsis thaliana links the cell wall
  publication-title: Plant J.
– volume: 22
  start-page: 953
  year: 2009
  end-page: 963
  article-title: The ERECTA receptor‐like kinase regulates cell wall mediated resistance to pathogens in Arabidopsis thaliana
  publication-title: Mol. Plant Microbe Interact.
– volume: 908
  start-page: 61
  year: 2012
  end-page: 72
  article-title: Plant Pattern Recognition Receptors
  publication-title: Methods Mol. Biol.
– volume: 3
  start-page: 1
  year: 1993
  end-page: 30
  article-title: Structural models of primary‐cell walls in flowering plants ‐ consistency of molecular‐structure with the physical‐properties of the walls during growth
  publication-title: Plant J.
– volume: 18
  start-page: 937
  year: 2017
  end-page: 948
  article-title: The Arabidopsis thaliana lectin receptor kinase LecRK‐I.9 is required for full resistance to Pseudomonas syringae and affects jasmonate signalling
  publication-title: Mol. Plant Pathol.
– year: 2011
– volume: 54
  start-page: 2303
  year: 2006
  end-page: 2308
  article-title: Deposition of cell wall polysaccharides in wheat endosperm during grain development: Fourier transform‐infrared microspectroscopy study
  publication-title: J. Agric. Food Chem.
– volume: 19
  start-page: 765
  year: 2010
  end-page: 777
  article-title: Integration of Brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis
  publication-title: Dev. Cell
– volume: 104
  start-page: 1113
  year: 1994
  end-page: 1118
  article-title: Deconstructing the Cell Wall
  publication-title: Plant Physiol.
– year: 2005
– volume: 5
  start-page: 178
  year: 2014
  article-title: The role of the cell wall in plant immunity
  publication-title: Front. Plant. Sci.
– volume: 204
  start-page: 650
  year: 2014
  end-page: 660
  article-title: Differential accumulation of callose, arabinoxylan and cellulose in nonpenetrated versus penetrated papillae on leaves of barley infected with Blumeria graminis f. sp. hordei
  publication-title: New Phytol.
– volume: 413
  start-page: 36
  year: 2001
  end-page: 37
  article-title: Immune recognition: a new receptor for [beta]‐glucans
  publication-title: Nature
– volume: 25
  start-page: 2361
  year: 2015
  end-page: 2372
  article-title: Differential function of Arabidopsis SERK family receptor‐like kinases in stomatal patterning
  publication-title: Curr. Biol.
– volume: 157
  start-page: 1163
  year: 2011
  end-page: 1174
  article-title: Oligogalacturonide‐Auxin Antagonism does not require posttranscriptional gene silencing or stabilization of auxin response repressors in Arabidopsis
  publication-title: Plant Physiol.
– volume: 25
  start-page: 110
  year: 2015
  end-page: 120
  article-title: Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1
  publication-title: Cell Res.
– volume: 173
  start-page: 1844
  year: 2017
  end-page: 1863
  article-title: Three pectin Methylesterase inhibitors protect cell wall integrity for Arabidopsis immunity to botrytis
  publication-title: Plant Physiol.
– volume: 142
  start-page: 984
  year: 2006
  end-page: 992
  article-title: Extracellular ATP in plants. Visualization, localization, and analysis of physiological significance in growth and signaling
  publication-title: Plant Physiol.
– volume: 35
  start-page: 345
  year: 2014
  end-page: 351
  article-title: Plant pattern‐recognition receptors
  publication-title: Trends Immunol.
– volume: 60
  start-page: 955
  year: 2009
  end-page: 965
  article-title: Thaxtomin A affects CESA‐complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings
  publication-title: J. Exp. Bot.
– volume: 16
  start-page: 107
  year: 2015
  end-page: 115
  article-title: Functional analysis of related CrRLK1L receptor‐like kinases in pollen tube reception
  publication-title: EMBO Rep.
– volume: 448
  start-page: 497
  year: 2007
  end-page: U412
  article-title: A flagellin‐induced complex of the receptor FLS2 and BAK1 initiates plant defence
  publication-title: Nature
– volume: 18
  start-page: 582
  year: 2017
  end-page: 595
  article-title: Immune responses induced by oligogalacturonides are differentially affected by AvrPto and loss of BAK1/BKK1 and PEPR1/PEPR2
  publication-title: Mol. Plant Pathol.
– volume: 5
  start-page: 98
  year: 2012
  end-page: 114
  article-title: Arabidopsis heterotrimeric G‐protein regulates cell wall defense and resistance to necrotrophic fungi
  publication-title: Molecular Plant
– volume: 103
  start-page: 10098
  year: 2006
  end-page: 10103
  article-title: An endogenous peptide signal in Arabidopsis activates components of the innate immune response
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 1
  start-page: 16043
  year: 2016
  article-title: A fungal pathogen secretes plant alkalinizing peptides to increase infection
  publication-title: Nat. Microbiol.
– volume: 35
  start-page: 46
  year: 2016
  end-page: 61
  article-title: Danger peptide receptor signaling in plants ensures basal immunity upon pathogen‐induced depletion of BAK1
  publication-title: EMBO J.
– volume: 64
  start-page: 747
  year: 2013
  end-page: 749
  article-title: Evolving views of pectin biosynthesis
  publication-title: Annu. Rev. Plant Biol.
– volume: 3
  start-page: 626
  year: 2010
  end-page: 640
  article-title: FERONIA is a key modulator of brassinosteroid and ethylene responsiveness in Arabidopsis hypocotyls
  publication-title: Molecular Plant
– volume: 4
  start-page: 49
  year: 2013
  article-title: Oligogalacturonides: plant damage‐associated molecular patterns and regulators of growth and development
  publication-title: Front. Plant. Sci.
– volume: 24
  start-page: 432
  year: 2011
  end-page: 440
  article-title: Pectin methylesterase is induced in Arabidopsis upon infection and is necessary for a successful colonization by necrotrophic pathogens
  publication-title: Mol. Plant Microbe Interact.
– volume: 155
  start-page: 1920
  issue: 4
  year: 2011
  end-page: 1935
  article-title: MYB46 modulates disease susceptibility to in Arabidopsis
  publication-title: Plant Physiol.
– volume: 415
  start-page: 977
  year: 2002
  end-page: 983
  article-title: MAP kinase signalling cascade in Arabidopsis innate immunity
  publication-title: Nature
– volume: 173
  start-page: 2383
  year: 2017
  end-page: 2398
  article-title: Cellulose‐derived oligomers act as damage‐associated molecular patterns and trigger defense‐like responses
  publication-title: Plant Physiol.
– volume: 188
  start-page: 464
  year: 2010
  end-page: 477
  article-title: Variation and fitness costs for tolerance to different types of herbivore damage in Boechera stricta genotypes with contrasting glucosinolate structures
  publication-title: New Phytol.
– volume: 169
  start-page: 1623
  year: 2012
  end-page: 1630
  article-title: Methyl esterification of pectin plays a role during plant‐pathogen interactions and affects plant resistance to diseases
  publication-title: J. Plant Physiol.
– volume: 40
  start-page: 106
  year: 2017
  end-page: 113
  article-title: Regulation of cellulose synthesis in response to stress
  publication-title: Curr. Opin. Plant Biol.
– volume: 7
  start-page: 532
  year: 2011
  article-title: Arabidopsis G‐protein interactome reveals connections to cell wall carbohydrates and morphogenesis
  publication-title: Mol. Syst. Biol.
– volume: 164
  start-page: 1093
  year: 2014
  end-page: 1107
  article-title: Arabidopsis PECTIN METHYLESTERASEs Contribute to Immunity against Pseudomonas syringae
  publication-title: Plant Physiol.
– volume: 104
  start-page: 3639
  year: 2007
  end-page: 3644
  article-title: Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 7
  start-page: 984
  year: 2016
  article-title: The plant cell wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions
  publication-title: Front. Plant. Sci.
– volume: 66
  start-page: 1123
  year: 2015
  end-page: 1132
  article-title: Growth control: brassinosteroid activity gets context
  publication-title: J. Exp. Bot.
– volume: 89
  start-page: 250
  year: 2017
  end-page: 263
  article-title: IDL6‐HAE/HSL2 impacts pectin degradation and resistance to Pseudomonas syringae pv tomato DC3000 in Arabidopsis leaves
  publication-title: Plant J.
– volume: 67
  start-page: 1068
  year: 2006
  end-page: 1079
  article-title: In vitro characterization of the homogalacturonan‐binding domain of the wall‐associated kinase WAK1 using site‐directed mutagenesis
  publication-title: Phytochemistry
– volume: 5
  start-page: 228
  year: 2014
  article-title: Plant cell wall dynamics and wall‐related susceptibility in plant‐pathogen interactions
  publication-title: Front. Plant. Sci.
– volume: 173
  start-page: 970
  year: 2017
  end-page: 983
  article-title: Functional analysis of cellulose synthase (CESA) protein class specificity
  publication-title: Plant Physiol.
– volume: 1
  start-page: 15140
  year: 2015
  article-title: An RLP23‐SOBIR1‐BAK1 complex mediates NLP‐triggered immunity
  publication-title: Nature Plants
– year: 1992
– start-page: 221
  year: 2010
  end-page: 250
– year: 2018
  article-title: YODA MAP3K kinase regulates plant immune responses conferring broad‐spectrum disease resistance
  publication-title: New Phytol.
– volume: 156
  start-page: 596
  year: 2011
  end-page: 604
  article-title: Cell Wall Integrity Controls Root Elongation via a General 1‐Aminocyclopropane‐1‐Carboxylic Acid‐Dependent
  publication-title: Ethylene‐Independent Pathway. Plant Physiol.
– volume: 56
  start-page: 215
  year: 2015
  end-page: 223
  article-title: The plant cell wall integrity maintenance mechanism‐concepts for organization and mode of action
  publication-title: Plant Cell Physiol.
– volume: 203
  start-page: 98
  year: 2013
  end-page: 106
  article-title: Overexpression of L‐type lectin‐like protein kinase 1 confers pathogen resistance and regulates salinity response in Arabidopsis thaliana
  publication-title: Plant Sci.
– volume: 156
  start-page: 1364
  year: 2011
  end-page: 1374
  article-title: Cell wall damage‐induced lignin biosynthesis is regulated by a reactive oxygen species‐ and jasmonic acid‐dependent process in Arabidopsis
  publication-title: Plant Physiol.
– volume: 5
  start-page: 358
  year: 2014
  end-page: 358
  article-title: The role of the secondary cell wall in plant resistance to pathogens
  publication-title: Front. Plant. Sci.
– start-page: 18
  year: 2017
– volume: 28
  start-page: 537
  year: 2016
  end-page: 556
  article-title: Pectin biosynthesis is critical for cell wall integrity and immunity in Arabidopsis thaliana
  publication-title: Plant Cell
– volume: 4
  start-page: 212
  year: 2011
  end-page: 219
  article-title: Cell wall biology: perspectives from cell wall imaging
  publication-title: Molecular Plant
– volume: 1578
  start-page: 13
  year: 2017
  end-page: 23
  article-title: Plant pattern recognition receptors
  publication-title: Methods Mol. Biol
– volume: 125
  start-page: 749
  year: 2006
  end-page: 760
  article-title: Perception of the bacterial PAMP EF‐Tu by the receptor EFR restricts Agrobacterium‐mediated transformation
  publication-title: Cell
– volume: 19
  start-page: 423
  year: 2009
  end-page: 429
  article-title: AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants
  publication-title: Curr. Biol.
– volume: 20
  start-page: 12
  year: 2015
  end-page: 19
  article-title: Trade‐off between growth and immunity: role of brassinosteroids
  publication-title: Trends Plant Sci.
– volume: 49
  start-page: 786
  year: 2007
  end-page: 799
  article-title: Arabidopsis ESK1 encodes a novel regulator of freezing tolerance
  publication-title: Plant J.
– volume: 57
  start-page: 1015
  year: 2009
  end-page: 1026
  article-title: Identification of cell‐wall stress as a hexose‐dependent and osmosensitive regulator of plant responses
  publication-title: Plant J.
– volume: 6
  start-page: 850
  year: 2005
  end-page: 861
  article-title: Growth of the plant cell wall
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 57
  start-page: 357
  year: 2015
  end-page: 372
  article-title: Ectopic lignification in primary cellulose‐deficient cell walls of maize cell suspension cultures
  publication-title: J. Integr. Plant Biol.
– volume: 4
  start-page: 155
  year: 2013b
  article-title: Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs
  publication-title: Front. Plant. Sci.
– volume: 32
  start-page: 21
  year: 2015
  end-page: 27
  article-title: C‐type lectins in immunity: recent developments
  publication-title: Curr. Opin. Immunol.
– volume: 21
  start-page: 216
  year: 2009
  end-page: 233
  article-title: ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are Polygalacturonases required for cell separation during reproductive development in Arabidopsis
  publication-title: Plant Cell
– volume: 59
  start-page: 930
  year: 2009
  end-page: 939
  article-title: Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis
  publication-title: Plant J.
– volume: 64
  start-page: 665
  year: 2013
  end-page: 674
  article-title: Signalling of Arabidopsis thaliana response to Pieris brassicae eggs shares similarities with PAMP‐triggered immunity
  publication-title: J. Exp. Bot.
– volume: 15
  start-page: 19
  year: 2003
  end-page: 32
  article-title: The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion
  publication-title: Plant Cell
– volume: 12
  start-page: 2409
  year: 2000
  end-page: 2423
  article-title: PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark‐grown hypocotyls of arabidopsis
  publication-title: Plant Cell
– volume: 276
  start-page: 45669
  year: 2001
  end-page: 45676
  article-title: Sensitivity of different ecotypes and mutants of Arabidopsis thaliana toward the bacterial elicitor flagellin correlates with the presence of receptor‐binding sites
  publication-title: J. Biol. Chem.
– volume: 62
  start-page: 5571
  year: 2011
  end-page: 5580
  article-title: Evidence for the localization of the Arabidopsis cytokinin receptors AHK3 and AHK4 in the endoplasmic reticulum
  publication-title: J. Exp. Bot.
– volume: 60
  start-page: 3615
  year: 2009
  end-page: 3635
  article-title: Plant cell walls throughout evolution: towards a molecular understanding of their design principles
  publication-title: J. Exp. Bot.
– volume: 165
  start-page: 1188
  year: 2014a
  end-page: 1202
  article-title: The Arabidopsis NUCLEUS‐ AND PHRAGMOPLAST‐LOCALIZED KINASE1‐related protein kinases are required for elicitor‐induced oxidative burst and immunity
  publication-title: Plant Physiol.
– volume: 8
  start-page: e22598
  year: 2013
  article-title: Role of LysM receptors in chitin‐triggered plant innate immunity
  publication-title: Plant Signal. Behav.
– volume: 19
  start-page: 358
  year: 1997
  end-page: 365
  article-title: Production and regulation of polygalacturonase isozymes in Canadian isolates of Leptosphaeria maculans differing in virulence
  publication-title: Can. J. Plant Pathol.
– volume: 15
  start-page: 265
  year: 2014
  end-page: 274
  article-title: Transgenic expression of pectin methylesterase inhibitors limits tobamovirus spread in tobacco and Arabidopsis
  publication-title: Mol. Plant Pathol.
– volume: 63
  start-page: 3523
  year: 2012
  end-page: 3543
  article-title: The interaction of plant biotic and abiotic stresses: from genes to the field
  publication-title: J. Exp. Bot.
– volume: 80
  start-page: 926
  year: 2014
  end-page: 935
  article-title: Matrix‐assisted laser desorption/ionization mass spectrometry imaging: a powerful tool for probing the molecular topology of plant cutin polymer
  publication-title: Plant J.
– volume: 14
  start-page: 548
  year: 2012
  end-page: U214
  article-title: SPEECHLESS integrates brassinosteroid and stomata signalling pathways
  publication-title: Nat. Cell Biol.
– volume: 104
  start-page: 20623
  year: 2007
  end-page: 20628
  article-title: Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 307
  start-page: 249
  year: 2008
  end-page: 264
  article-title: Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies
  publication-title: Mol. Cell. Biochem.
– volume: 22
  start-page: 329
  year: 2017
  end-page: 337
  article-title: Dynamic plant‐plant‐herbivore interactions govern plant growth‐defence integration
  publication-title: Trends Plant Sci.
– volume: 336
  start-page: 1160
  year: 2012
  end-page: 1164
  article-title: Chitin‐Induced Dimerization Activates a Plant Immune Receptor
  publication-title: Science
– volume: 341
  start-page: 889
  year: 2013
  end-page: 892
  article-title: Molecular mechanism for plant steroid receptor activation by Somatic Embryogenesis co‐receptor kinases
  publication-title: Science
– volume: 20
  start-page: 471
  year: 2008
  end-page: 481
  article-title: A LysM receptor‐like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis
  publication-title: Plant Cell
– volume: 66
  start-page: 5183
  year: 2015
  end-page: 5193
  article-title: Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development
  publication-title: J. Exp. Bot.
– volume: 206
  start-page: 522
  year: 2015
  end-page: 540
  article-title: The molecular circuitry of brassinosteroid signaling
  publication-title: New Phytol.
– volume: 6
  start-page: 43
  year: 2005
  end-page: 51
  article-title: Evaluation of tolerance to Pierce's disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene
  publication-title: Mol. Plant Pathol.
– volume: 343
  start-page: 408
  year: 2014
  end-page: 411
  article-title: A peptide hormone and its receptor protein kinase regulate plant cell expansion
  publication-title: Science
– volume: 141
  start-page: 557
  year: 2006
  end-page: 564
  article-title: Polygalacturonase‐inhibiting protein interacts with pectin through a binding site formed by four clustered residues of arginine and lysine
  publication-title: Plant Physiol.
– volume: 140
  start-page: 81
  year: 2006
  end-page: 90
  article-title: Lectin receptor kinases participate in protein‐protein interactions to mediate plasma membrane‐cell wall adhesions in Arabidopsis
  publication-title: Plant Physiol.
– volume: 6
  start-page: 30251
  year: 2016
  article-title: Arabidopsis AtERF014 acts as a dual regulator that differentially modulates immunity against Pseudomonas syringae pv. tomato and Botrytis cinerea
  publication-title: Sci. Rep.
– volume: 3
  start-page: 12
  year: 2012
  article-title: O‐acetylation of plant cell wall polysaccharides
  publication-title: Front. Plant. Sci.
– volume: 24
  start-page: 1887
  year: 2014
  end-page: 1892
  article-title: The receptor‐like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings
  publication-title: Curr. Biol.
– volume: 171
  start-page: 2379
  year: 2016
  end-page: 2392
  article-title: FERONIA and Her Pals: Functions and Mechanisms
  publication-title: Plant Physiol.
– volume: 9
  start-page: e98193
  year: 2014
  article-title: Alterations in Auxin Homeostasis suppress defects in cell wall function
  publication-title: PLoS ONE
– volume: 5
  start-page: 7
  year: 2014
  article-title: Genome‐wide association study of Arabidopsis thaliana leaf microbial community
  publication-title: Nat. Commun.
– volume: 15
  start-page: 659
  year: 2012
  end-page: 669
  article-title: CrRLK1L receptor‐like kinases: not just another brick in the wall
  publication-title: Curr. Opin. Plant Biol.
– volume: 165
  start-page: 262
  year: 2014
  end-page: 276
  article-title: The Arabidopsis LYSIN MOTIF‐CONTAINING RECEPTOR‐LIKE KINASE3 Regulates the Cross Talk between Immunity and Abscisic Acid Responses
  publication-title: Plant Physiol.
– volume: 152
  start-page: 1284
  year: 2010
  end-page: 1296
  article-title: MCA1 and MCA2 that mediate Ca2+ uptake have distinct and overlapping roles in Arabidopsis
  publication-title: Plant Physiol.
– year: 2000
– volume: 1578
  start-page: 81
  year: 2017
  end-page: 108
  article-title: Plant Pattern Recognition Receptors
  publication-title: Methods Mol. Biol.
– volume: 60
  start-page: 974
  year: 2009
  end-page: 982
  article-title: Pectin activation of MAP kinase and gene expression is WAK2 dependent
  publication-title: Plant J.
– volume: 25
  start-page: 2330
  year: 2013b
  end-page: 2340
  article-title: The receptor‐like protein ReMAX of Arabidopsis detects the microbe‐associated molecular pattern eMax from Xanthomonas
  publication-title: Plant Cell
– volume: 43
  start-page: 165
  year: 2005
  end-page: 180
  article-title: ERECTA receptor‐like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus
  publication-title: Plant J.
– volume: 155
  start-page: 1068
  year: 2011
  end-page: 1078
  article-title: Loss‐of‐function mutation of REDUCED WALL ACETYLATION2 in Arabidopsis leads to reduced cell wall acetylation and increased resistance to Botrytis cinerea
  publication-title: Plant Physiol.
– volume: 20
  start-page: 3065
  year: 2008
  end-page: 3079
  article-title: Two leucine‐rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis
  publication-title: Plant Cell
– volume: 68
  start-page: 1161
  year: 1981
  end-page: 1169
  article-title: Host‐pathogen interactions.19. The endogenous elicitor, a fragment of a plant‐cell wall polysaccharide that elicits phytoalexin accumulation in soybeans
  publication-title: Plant Physiol.
– volume: 46
  start-page: 268
  year: 2005
  end-page: 278
  article-title: Wall‐associated kinase WAK1 interacts with cell wall pectins in a calcium‐induced conformation
  publication-title: Plant Cell Physiol.
– volume: 13
  start-page: 413
  year: 2001
  end-page: 424
  article-title: Plasma membrane‐cell wall adhesion is required for expression of plant defense responses during fungal penetration
  publication-title: Plant Cell
– volume: 24
  start-page: 2624
  year: 2012
  end-page: 2634
  article-title: Demethylesterification of the primary wall by PECTIN METHYLESTERASE35 provides mechanical support to the Arabidopsis stem
  publication-title: Plant Cell
– volume: 212
  start-page: 421
  year: 2016
  end-page: 433
  article-title: The barley (Hordeum vulgare) cellulose synthase‐like D2 gene (HvCslD2) mediates penetration resistance to host‐adapted and nonhost isolates of the powdery mildew fungus
  publication-title: New Phytol.
– volume: 32
  start-page: 95
  year: 2009
  end-page: 108
  article-title: Metabolome and water status phenotyping of Arabidopsis under abiotic stress cues reveals new insight into ESK1 function
  publication-title: Plant, Cell Environ.
– volume: 22
  start-page: 53
  year: 2006
  end-page: 78
  article-title: Cellulose synthesis in higher plants
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 112
  start-page: 8780
  year: 2015
  end-page: 8785
  article-title: The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall‐associated receptor‐like kinase
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 27
  start-page: 901
  year: 2014
  end-page: 912
  article-title: A distinct role of pectate lyases in the formation of feeding structures induced by cyst and root‐knot nematodes
  publication-title: Mol. Plant Microbe Interact.
– volume: 285
  start-page: 13471
  year: 2010
  end-page: 13479
  article-title: Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2
  publication-title: J. Biol. Chem.
– volume: 16
  start-page: 426
  year: 2015
  end-page: 433
  article-title: A lectin S‐domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana
  publication-title: Nat. Immunol.
– volume: 15
  start-page: 2503
  year: 2003
  end-page: 2513
  article-title: An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation
  publication-title: Plant Cell
– volume: 7
  start-page: 897
  year: 2016
  article-title: ERECTA and BAK1 receptor like kinases interact to regulate immune responses in Arabidopsis
  publication-title: Front. Plant Sci.
– volume: 63
  start-page: 115
  year: 2010
  end-page: 127
  article-title: Tryptophan‐derived secondary metabolites in Arabidopsis thaliana confer non‐host resistance to necrotrophic Plectosphaerella cucumerina fungi
  publication-title: Plant J.
– volume: 112
  start-page: 63
  year: 2015
  end-page: 71
  article-title: Interplays between the cell wall and phytohormones in interaction between plants and necrotrophic pathogens
  publication-title: Phytochemistry
– volume: 1696
  start-page: 237
  year: 2004
  end-page: 244
  article-title: Polygalacturonases, polygalacturonase‐inhibiting proteins and pectic oligomers in plant‐pathogen interactions.
  publication-title: Biophys. Acta, Proteins Proteomics
– volume: 65
  start-page: 512
  year: 2011
  end-page: 522
  article-title: Partial resistance in the Linum‐Melampsora host‐pathogen system: does partial resistance make the red queen run slower?
  publication-title: Evolution
– ident: e_1_2_9_155_1
  doi: 10.1016/j.phytochem.2014.11.008
– ident: e_1_2_9_34_1
  doi: 10.1046/j.1365-313x.1998.00276.x
– ident: e_1_2_9_103_1
  doi: 10.3389/fpls.2016.00984
– ident: e_1_2_9_243_1
  doi: 10.1093/pcp/pce127
– ident: e_1_2_9_139_1
  doi: 10.1094/MPMI-03-13-0077-R
– ident: e_1_2_9_56_1
  doi: 10.3389/fpls.2013.00155
– ident: e_1_2_9_226_1
  doi: 10.1371/journal.ppat.1006433
– ident: e_1_2_9_180_1
  doi: 10.1104/pp.112.200154
– ident: e_1_2_9_23_1
  doi: 10.1104/pp.113.227637
– ident: e_1_2_9_240_1
  doi: 10.1111/j.1365-313X.2006.02994.x
– ident: e_1_2_9_42_1
  doi: 10.1042/BJ20140666
– ident: e_1_2_9_82_1
  doi: 10.1104/pp.105.066464
– ident: e_1_2_9_111_1
  doi: 10.1105/tpc.113.110833
– ident: e_1_2_9_249_1
  doi: 10.1104/pp.113.230698
– ident: e_1_2_9_144_1
  doi: 10.1104/pp.110.168989
– ident: e_1_2_9_198_1
  doi: 10.1126/science.aal2541
– ident: e_1_2_9_160_1
  doi: 10.1105/tpc.108.063768
– ident: e_1_2_9_204_1
  doi: 10.3389/fpls.2014.00446
– volume-title: Cell walls and plant‐microbe interactions
  year: 2011
  ident: e_1_2_9_4_1
– volume-title: The cell wall
  year: 2000
  ident: e_1_2_9_38_1
– ident: e_1_2_9_218_1
  doi: 10.1105/tpc.003509
– ident: e_1_2_9_227_1
  doi: 10.1007/s00253-011-3405-1
– ident: e_1_2_9_125_1
  doi: 10.1093/mp/ssq075
– ident: e_1_2_9_251_1
  doi: 10.1016/j.it.2014.05.004
– ident: e_1_2_9_127_1
  doi: 10.1201/9781420027952
– ident: e_1_2_9_26_1
  doi: 10.1146/annurev-phyto-080614-120106
– ident: e_1_2_9_244_1
  doi: 10.15252/embj.201591807
– ident: e_1_2_9_153_1
  doi: 10.1073/pnas.0705147104
– year: 2018
  ident: e_1_2_9_194_1
  article-title: YODA MAP3K kinase regulates plant immune responses conferring broad‐spectrum disease resistance
  publication-title: New Phytol.
  doi: 10.1111/nph.15007
– ident: e_1_2_9_61_1
  doi: 10.1534/genetics.105.042218
– ident: e_1_2_9_138_1
  doi: 10.1111/j.1365-313X.2005.02440.x
– ident: e_1_2_9_149_1
  doi: 10.1111/tpj.13755
– ident: e_1_2_9_80_1
  doi: 10.1046/j.1365-313X.2003.01877.x
– ident: e_1_2_9_119_1
  doi: 10.1111/j.1365-313X.2009.04016.x
– ident: e_1_2_9_13_1
  doi: 10.1111/j.1365-313X.2009.03956.x
– ident: e_1_2_9_44_1
  doi: 10.1111/nph.14086
– ident: e_1_2_9_92_1
  doi: 10.1111/j.1365-313X.2008.03744.x
– ident: e_1_2_9_191_1
  doi: 10.1104/pp.109.135459
– ident: e_1_2_9_184_1
  doi: 10.1104/pp.114.236901
– ident: e_1_2_9_141_1
  doi: 10.1111/j.1365-3040.2008.01898.x
– ident: e_1_2_9_7_1
  doi: 10.1111/j.1558-5646.2010.01146.x
– ident: e_1_2_9_21_1
  doi: 10.3389/fpls.2014.00228
– volume: 585
  start-page: 1521
  year: 2011
  ident: e_1_2_9_51_1
  article-title: Engineering plant resistance by constructing chimeric receptors that recognize damage‐associated molecular patterns (DAMPs)
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2011.04.043
– ident: e_1_2_9_58_1
  doi: 10.1093/mp/ssn019
– ident: e_1_2_9_33_1
  doi: 10.1046/j.1365-313X.2003.01729.x
– ident: e_1_2_9_173_1
  doi: 10.1007/s00425-010-1306-7
– ident: e_1_2_9_35_1
  doi: 10.7554/eLife.03766
– ident: e_1_2_9_220_1
  doi: 10.3389/fpls.2014.00168
– volume: 92
  start-page: 13
  year: 2017
  ident: e_1_2_9_73_1
  article-title: Alteration of cell wall xylan acetylation triggers defense responses that counterbalance the immune deficiencies of plants impaired in the β‐subunit of the heterotrimeric G‐protein
  publication-title: Plant J.
  doi: 10.1111/tpj.13660
– ident: e_1_2_9_237_1
  doi: 10.1073/pnas.1322979111
– ident: e_1_2_9_93_1
  doi: 10.1186/s12915-017-0403-5
– ident: e_1_2_9_95_1
  doi: 10.1085/jgp.201411295
– ident: e_1_2_9_43_1
  doi: 10.1111/nph.12974
– ident: e_1_2_9_151_1
  doi: 10.1016/j.cub.2015.07.068
– ident: e_1_2_9_196_1
  doi: 10.1111/j.1365-313X.2009.03926.x
– ident: e_1_2_9_72_1
  doi: 10.1038/nrmicro.2015.21
– ident: e_1_2_9_52_1
  doi: 10.1093/pcp/pci026
– ident: e_1_2_9_104_1
  doi: 10.1016/j.plantsci.2012.12.019
– ident: e_1_2_9_214_1
  doi: 10.1111/tpj.12689
– ident: e_1_2_9_3_1
  doi: 10.1111/j.1364-3703.2004.00262.x
– volume: 1578
  start-page: 13
  year: 2017
  ident: e_1_2_9_12_1
  article-title: Plant pattern recognition receptors
  publication-title: Methods Mol. Biol
– ident: e_1_2_9_146_1
  doi: 10.1111/j.1469-8137.2010.03385.x
– ident: e_1_2_9_150_1
  doi: 10.1105/tpc.13.2.413
– ident: e_1_2_9_178_1
  doi: 10.1094/MPMI-22-8-0953
– ident: e_1_2_9_130_1
  doi: 10.1073/pnas.1220015110
– ident: e_1_2_9_234_1
  doi: 10.1093/mp/ssp066
– ident: e_1_2_9_205_1
  doi: 10.1038/cr.2014.161
– ident: e_1_2_9_248_1
  doi: 10.1016/j.chom.2010.03.007
– ident: e_1_2_9_199_1
  doi: 10.1371/journal.pone.0098193
– ident: e_1_2_9_231_1
  doi: 10.1094/MPMI-01-14-0005-R
– ident: e_1_2_9_106_1
  doi: 10.1146/annurev.phyto.45.062806.094325
– ident: e_1_2_9_213_1
  doi: 10.1371/journal.pgen.1006832
– ident: e_1_2_9_96_1
  doi: 10.1074/jbc.271.33.19789
– volume: 908
  start-page: 61
  year: 2012
  ident: e_1_2_9_162_1
  article-title: Plant Pattern Recognition Receptors
  publication-title: Methods Mol. Biol.
– ident: e_1_2_9_135_1
  doi: 10.1104/pp.16.01185
– ident: e_1_2_9_110_1
  doi: 10.4161/psb.27408
– ident: e_1_2_9_36_1
  doi: 10.1016/S0953-7562(09)80138-X
– ident: e_1_2_9_136_1
  doi: 10.1126/science.1218867
– ident: e_1_2_9_11_1
  doi: 10.1104/pp.16.01680
– ident: e_1_2_9_87_1
  doi: 10.1111/j.1744-7909.2010.00935.x
– ident: e_1_2_9_50_1
  doi: 10.1186/s12870-016-0959-1
– ident: e_1_2_9_222_1
  doi: 10.1016/j.tplants.2016.12.006
– ident: e_1_2_9_161_1
  doi: 10.1104/pp.113.233759
– ident: e_1_2_9_32_1
  doi: 10.1093/jxb/err238
– ident: e_1_2_9_183_1
  doi: 10.1104/pp.111.184663
– ident: e_1_2_9_131_1
  doi: 10.1016/j.pbi.2012.07.003
– ident: e_1_2_9_24_1
  doi: 10.1105/tpc.15.00404
– volume: 8
  start-page: 445
  year: 2017
  ident: e_1_2_9_45_1
  article-title: Altered expression of genes implicated in Xylan biosynthesis affects penetration resistance against powdery mildew
  publication-title: Front. Plant. Sci.
  doi: 10.3389/fpls.2017.00445
– ident: e_1_2_9_100_1
  doi: 10.1146/annurev-arplant-042916-040957
– ident: e_1_2_9_116_1
  doi: 10.1104/pp.106.085670
– ident: e_1_2_9_239_1
  doi: 10.1104/pp.112.195198
– ident: e_1_2_9_170_1
  doi: 10.1038/ni.3124
– ident: e_1_2_9_224_1
  doi: 10.1104/pp.104.4.1113
– ident: e_1_2_9_5_1
  doi: 10.1038/nplants.2015.140
– ident: e_1_2_9_22_1
  doi: 10.1073/pnas.1504154112
– ident: e_1_2_9_28_1
  doi: 10.1038/35092620
– ident: e_1_2_9_123_1
  doi: 10.1016/j.tplants.2012.12.002
– volume: 114
  start-page: 6860
  year: 2017
  ident: e_1_2_9_238_1
  article-title: Carbohydrate microarrays and their use for the identification of molecular markers for plant cell wall composition
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1619033114
– ident: e_1_2_9_81_1
  doi: 10.1016/S1097-2765(00)80265-8
– ident: e_1_2_9_88_1
  doi: 10.4161/psb.4.8.9231
– ident: e_1_2_9_156_1
  doi: 10.1073/pnas.0607703104
– ident: e_1_2_9_128_1
  doi: 10.1007/s11103-008-9430-5
– ident: e_1_2_9_63_1
  doi: 10.1111/nph.14065
– ident: e_1_2_9_16_1
  doi: 10.1093/jxb/erv180
– ident: e_1_2_9_68_1
  doi: 10.1105/tpc.002022
– ident: e_1_2_9_6_1
  doi: 10.1080/07060669709501060
– ident: e_1_2_9_69_1
  doi: 10.1093/aob/mcu043
– ident: e_1_2_9_241_1
  doi: 10.1105/tpc.108.063354
– volume: 3
  start-page: 15
  year: 2012
  ident: e_1_2_9_65_1
  article-title: Golgi‐mediated synthesis and secretion of matrix polysaccharides of the primary cell wall of higher plants
  publication-title: Front. Plant. Sci.
  doi: 10.3389/fpls.2012.00079
– ident: e_1_2_9_159_1
  doi: 10.3389/fpls.2012.00280
– ident: e_1_2_9_108_1
  doi: 10.1073/pnas.1502522112
– ident: e_1_2_9_215_1
  doi: 10.1104/pp.011028
– ident: e_1_2_9_126_1
  doi: 10.1534/genetics.111.128264
– ident: e_1_2_9_140_1
  doi: 10.1016/j.tplants.2014.09.003
– ident: e_1_2_9_148_1
  doi: 10.1111/jipb.12346
– ident: e_1_2_9_235_1
  doi: 10.1146/annurev-arplant-042811-105449
– ident: e_1_2_9_19_1
  doi: 10.1111/nph.13269
– ident: e_1_2_9_67_1
  doi: 10.1105/tpc.13.5.1025
– volume: 71
  start-page: 916
  issue: 4
  year: 1983
  ident: e_1_2_9_158_1
  article-title: Host‐Pathogen Interactions: XXII. A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins
  publication-title: Plant Physiol.
  doi: 10.1104/pp.71.4.916
– ident: e_1_2_9_242_1
  doi: 10.1371/journal.pone.0106509
– ident: e_1_2_9_113_1
  doi: 10.1073/pnas.1016508108
– ident: e_1_2_9_208_1
  doi: 10.1094/MPMI-10-12-0236-R
– ident: e_1_2_9_192_1
  doi: 10.1105/tpc.112.095778
– ident: e_1_2_9_216_1
  doi: 10.1023/A:1013679111111
– ident: e_1_2_9_174_1
  doi: 10.1111/j.1469-8137.2005.01496.x
– ident: e_1_2_9_229_1
  doi: 10.1111/tpj.13380
– ident: e_1_2_9_54_1
  doi: 10.1093/mp/ssr082
– ident: e_1_2_9_30_1
  doi: 10.1073/pnas.1000675107
– ident: e_1_2_9_10_1
  doi: 10.1146/annurev-arplant-042811-105534
– ident: e_1_2_9_195_1
  doi: 10.1104/pp.106.076950
– ident: e_1_2_9_167_1
  doi: 10.1094/MPMI-07-10-0157
– ident: e_1_2_9_172_1
  doi: 10.1016/S0031-9422(01)00113-3
– ident: e_1_2_9_217_1
  doi: 10.1073/pnas.1007745107
– ident: e_1_2_9_85_1
  doi: 10.1111/mpp.12419
– ident: e_1_2_9_122_1
  doi: 10.1104/pp.16.01642
– ident: e_1_2_9_225_1
  doi: 10.1105/tpc.107.056754
– ident: e_1_2_9_64_1
  doi: 10.1016/j.bbapap.2003.08.012
– ident: e_1_2_9_120_1
  doi: 10.1074/jbc.M109.097394
– ident: e_1_2_9_99_1
  doi: 10.1094/MPMI-23-5-0549
– ident: e_1_2_9_14_1
  doi: 10.4161/psb.4.11.9739
– ident: e_1_2_9_109_1
  doi: 10.1105/tpc.016097
– ident: e_1_2_9_66_1
  doi: 10.1104/pp.112.211011
– ident: e_1_2_9_190_1
  doi: 10.1093/jxb/erv026
– ident: e_1_2_9_29_1
  doi: 10.1105/tpc.105.031542
– ident: e_1_2_9_37_1
  doi: 10.1111/j.1365-313X.1993.tb00007.x
– ident: e_1_2_9_62_1
  doi: 10.1073/pnas.92.10.4095
– ident: e_1_2_9_91_1
  doi: 10.1093/pcp/pcu164
– ident: e_1_2_9_253_1
  doi: 10.1016/j.cell.2006.03.037
– ident: e_1_2_9_177_1
  doi: 10.1104/pp.110.163212
– ident: e_1_2_9_252_1
  doi: 10.1038/nature22009
– ident: e_1_2_9_133_1
  doi: 10.1016/j.jplph.2012.05.006
– ident: e_1_2_9_185_1
  doi: 10.1146/annurev-arplant-042809-112315
– ident: e_1_2_9_101_1
  doi: 10.1105/tpc.112.099325
– ident: e_1_2_9_166_1
  doi: 10.1104/pp.113.214460
– ident: e_1_2_9_169_1
  doi: 10.1111/j.1365-313X.2011.04671.x
– ident: e_1_2_9_76_1
  doi: 10.3389/fpls.2013.00049
– ident: e_1_2_9_152_1
  doi: 10.3389/fpls.2014.00358
– ident: e_1_2_9_203_1
  doi: 10.4161/psb.22598
– ident: e_1_2_9_78_1
  doi: 10.3389/fpls.2012.00012
– volume: 68
  start-page: 701
  year: 2017
  ident: e_1_2_9_71_1
  article-title: Cell wall composition and penetration resistance against the fungal pathogen Colletotrichum higginsianum are affected by impaired starch turnover in Arabidopsis mutants
  publication-title: J. Exp. Bot.
– ident: e_1_2_9_202_1
  doi: 10.1126/science.1243825
– ident: e_1_2_9_77_1
  doi: 10.1104/pp.111.174003
– ident: e_1_2_9_236_1
  doi: 10.1016/j.cub.2012.07.036
– ident: e_1_2_9_188_1
  doi: 10.1105/tpc.007872
– ident: e_1_2_9_186_1
  doi: 10.1074/jbc.M109.096842
– ident: e_1_2_9_8_1
  doi: 10.1038/415977a
– ident: e_1_2_9_145_1
  doi: 10.1111/j.1365-313X.2004.02208.x
– ident: e_1_2_9_176_1
  doi: 10.1007/s11010-007-9603-6
– start-page: 221
  volume-title: Integrated G Proteins Signaling in Plants
  year: 2010
  ident: e_1_2_9_210_1
  doi: 10.1007/978-3-642-03524-1_12
– ident: e_1_2_9_118_1
  doi: 10.1038/msb.2011.66
– volume: 155
  start-page: 1920
  issue: 4
  year: 2011
  ident: e_1_2_9_168_1
  article-title: MYB46 modulates disease susceptibility to Botrytis cinerea in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.171843
– ident: e_1_2_9_247_1
  doi: 10.1002/biot.201100155
– ident: e_1_2_9_163_1
  doi: 10.1111/pbi.12393
– ident: e_1_2_9_25_1
  doi: 10.1093/jxb/ern344
– ident: e_1_2_9_79_1
  doi: 10.1016/j.cub.2009.01.054
– ident: e_1_2_9_124_1
  doi: 10.1111/ppl.12411
– ident: e_1_2_9_129_1
  doi: 10.1104/pp.16.00667
– ident: e_1_2_9_40_1
  doi: 10.1038/nature05999
– ident: e_1_2_9_154_1
  doi: 10.1016/j.pbi.2008.03.006
– ident: e_1_2_9_221_1
  doi: 10.1093/glycob/cww029
– ident: e_1_2_9_46_1
  doi: 10.1111/tpj.12504
– ident: e_1_2_9_48_1
  doi: 10.1038/nri.2016.77
– ident: e_1_2_9_232_1
  doi: 10.1073/pnas.1112862108
– start-page: 18
  volume-title: Plant Lectins and Lectin Receptor‐Like Kinases: How Do They Sense the Outside?
  year: 2017
  ident: e_1_2_9_20_1
– ident: e_1_2_9_147_1
  doi: 10.1038/nmicrobiol.2016.43
– ident: e_1_2_9_212_1
  doi: 10.1105/tpc.11.9.1743
– ident: e_1_2_9_17_1
  doi: 10.1093/jxb/ert330
– ident: e_1_2_9_83_1
  doi: 10.1093/jxb/ers362
– ident: e_1_2_9_47_1
  doi: 10.1038/nrm1746
– ident: e_1_2_9_53_1
  doi: 10.1016/j.phytochem.2006.03.009
– ident: e_1_2_9_207_1
  doi: 10.1093/jxb/erv489
– ident: e_1_2_9_179_1
  doi: 10.1111/j.1365-313X.2010.04224.x
– ident: e_1_2_9_223_1
  doi: 10.1105/tpc.13.2.303
– ident: e_1_2_9_206_1
  doi: 10.1105/tpc.16.00891
– ident: e_1_2_9_250_1
  doi: 10.1038/srep30251
– ident: e_1_2_9_187_1
  doi: 10.1146/annurev-arplant-042811-105518
– ident: e_1_2_9_90_1
  doi: 10.3389/fpls.2012.00077
– ident: e_1_2_9_142_1
  doi: 10.1111/nph.14638
– ident: e_1_2_9_57_1
  doi: 10.1104/pp.111.175737
– ident: e_1_2_9_59_1
  doi: 10.1371/journal.ppat.1002513
– ident: e_1_2_9_121_1
  doi: 10.1146/annurev-phyto-102313-045831
– ident: e_1_2_9_233_1
  doi: 10.1042/BCJ20160238
– ident: e_1_2_9_143_1
  doi: 10.3389/fpls.2014.00178
– ident: e_1_2_9_98_1
  doi: 10.1105/tpc.106.048058
– ident: e_1_2_9_84_1
  doi: 10.1111/tpj.13057
– ident: e_1_2_9_230_1
  doi: 10.1111/nph.14720
– ident: e_1_2_9_164_1
  doi: 10.1038/nprot.2012.081
– ident: e_1_2_9_245_1
  doi: 10.1105/tpc.109.068874
– volume: 1578
  start-page: 81
  year: 2017
  ident: e_1_2_9_171_1
  article-title: Plant Pattern Recognition Receptors
  publication-title: Methods Mol. Biol.
– ident: e_1_2_9_18_1
  doi: 10.1074/jbc.M102390200
– volume: 5
  start-page: 7
  year: 2014
  ident: e_1_2_9_102_1
  article-title: Genome‐wide association study of Arabidopsis thaliana leaf microbial community
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6320
– ident: e_1_2_9_15_1
  doi: 10.1111/mpp.12457
– ident: e_1_2_9_132_1
  doi: 10.1104/pp.106.090803
– ident: e_1_2_9_97_1
  doi: 10.1016/j.cub.2007.05.018
– ident: e_1_2_9_175_1
  doi: 10.1105/tpc.111.084301
– ident: e_1_2_9_94_1
  doi: 10.1126/science.1244454
– ident: e_1_2_9_228_1
  doi: 10.1094/MPMI-06-14-0191-R
– ident: e_1_2_9_193_1
  doi: 10.1146/annurev.cellbio.22.022206.160206
– ident: e_1_2_9_181_1
  doi: 10.1126/science.1242468
– ident: e_1_2_9_27_1
  doi: 10.1371/journal.ppat.1001327
– ident: e_1_2_9_114_1
  doi: 10.15252/embr.201438801
– ident: e_1_2_9_2_1
  doi: 10.1105/tpc.106.048041
– ident: e_1_2_9_86_1
  doi: 10.1038/ncb2471
– ident: e_1_2_9_74_1
  doi: 10.1105/tpc.12.12.2409
– ident: e_1_2_9_39_1
  doi: 10.1111/j.1365-313X.2005.02452.x
– ident: e_1_2_9_41_1
  doi: 10.1126/science.343.6168.290
– ident: e_1_2_9_49_1
  doi: 10.1016/j.coi.2014.12.002
– ident: e_1_2_9_55_1
  doi: 10.1111/tpj.12027
– ident: e_1_2_9_117_1
  doi: 10.1094/MPMI-21-12-1643
– ident: e_1_2_9_75_1
  doi: 10.1111/j.1438-8677.2011.00449.x
– ident: e_1_2_9_107_1
  doi: 10.1073/pnas.0603727103
– ident: e_1_2_9_60_1
  doi: 10.1093/mp/ssq015
– ident: e_1_2_9_105_1
  doi: 10.1242/dev.00458
– volume: 156
  start-page: 596
  year: 2011
  ident: e_1_2_9_211_1
  article-title: Cell Wall Integrity Controls Root Elongation via a General 1‐Aminocyclopropane‐1‐Carboxylic Acid‐Dependent
  publication-title: Ethylene‐Independent Pathway. Plant Physiol.
– start-page: 1
  year: 2017
  ident: e_1_2_9_197_1
  article-title: Plant cell walls
  publication-title: eLS
– volume-title: Chemistry and Biology of (1→3)‐β‐Glucans
  year: 1992
  ident: e_1_2_9_200_1
– ident: e_1_2_9_254_1
  doi: 10.1038/ng.3170
– ident: e_1_2_9_246_1
  doi: 10.1104/pp.109.147371
– ident: e_1_2_9_9_1
  doi: 10.1093/jxb/ers100
– ident: e_1_2_9_31_1
  doi: 10.1111/j.1365-2958.2008.06211.x
– ident: e_1_2_9_182_1
  doi: 10.1093/jxb/erp245
– year: 2017
  ident: e_1_2_9_70_1
  article-title: Pattern‐triggered immunity and cell wall integrity maintenance jointly modulate plant stress responses
  publication-title: BioRxiv
– ident: e_1_2_9_89_1
  doi: 10.1104/pp.68.5.1161
– ident: e_1_2_9_112_1
  doi: 10.3389/fpls.2016.00897
– ident: e_1_2_9_137_1
  doi: 10.1104/pp.112.212431
– ident: e_1_2_9_201_1
  doi: 10.1016/j.devcel.2010.10.010
– ident: e_1_2_9_134_1
  doi: 10.1111/mpp.12090
– ident: e_1_2_9_189_1
  doi: 10.1016/j.cub.2014.06.064
– ident: e_1_2_9_209_1
  doi: 10.1073/pnas.0706547105
– ident: e_1_2_9_115_1
  doi: 10.1016/j.pbi.2017.08.010
– ident: e_1_2_9_165_1
  doi: 10.1021/jf052922x
– ident: e_1_2_9_157_1
  doi: 10.1126/science.1086716
– ident: e_1_2_9_219_1
  doi: 10.1111/j.1365-313X.2004.02264.x
SSID ssj0017364
Score 2.6781838
SecondaryResourceType review_article
Snippet Summary Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different...
Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different...
SummaryPlants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 614
SubjectTerms Arabidopsis
Biosensors
Biosynthesis
breeding
cell wall
Cell Wall - immunology
Cell Wall - metabolism
Cell Wall - microbiology
cell wall integrity
cell wall mutant
Cell walls
Cellulose - biosynthesis
Colonization
Crop diseases
cultivars
Damage patterns
DAMP
Disease resistance
Disease Resistance - physiology
Environmental changes
Glucans - metabolism
Hazards
Host-Pathogen Interactions
immune response
Immunity
Integrity
ligands
Moisture content
monitoring
Monitoring systems
Morphogenesis
mutants
Pathogen-Associated Molecular Pattern Molecules - immunology
Pathogen-Associated Molecular Pattern Molecules - metabolism
pathogens
Pattern recognition
Pattern recognition receptors
Pectins - metabolism
Peptides
Pests
Plant breeding
Plant Cells - immunology
Plant Cells - metabolism
Plant Cells - microbiology
Plant diseases
Plant Diseases - immunology
Plant Immunity - physiology
Plant monitoring
Plant pathology
Plant resistance
Plant stress
Plants
Polysaccharides
Polysaccharides - metabolism
Proteins
PRR
Receptors
Receptors, Pattern Recognition - immunology
Sensors
Signal transduction
Signaling
wall sensor
Title Plant cell wall‐mediated immunity: cell wall changes trigger disease resistance responses
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.13807
https://www.ncbi.nlm.nih.gov/pubmed/29266460
https://www.proquest.com/docview/1994337438
https://www.proquest.com/docview/1979502724
https://www.proquest.com/docview/2067297943
Volume 93
WOSCitedRecordID wos000424221200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1365-313X
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0017364
  issn: 0960-7412
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-313X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017364
  issn: 0960-7412
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFD54e_DF1fU2qw5Z2Yd9KcykaZPok7fBXWSQZVwHfChJmoowzMi07uKbP8Hf6C_xJO1URQVB-hLoCaTn0nwn5xKAHxELRZQqGVChWMBkqAMhUxvIWCB-TSOmfbjg7wnvdkW_L0-nYHdSC1P2h6gP3Jxl-P-1M3Cl82dGXly7HC3hK8nbzBvl-a9uHUHgYdk6ChF6gLsmrboKuSyeeubLvegVwHyJV_2G0_nyqaUuwkKFM8leqRhLMGWHX2Fuf4RY8HYZLtxdRQVxp_bkvxoMHu7ufQkJwk9y5StGitudp9ekLA_OSYG-_KUdkyqsQ9BXd_gTFccNXbKtzVeg1znqHRwH1TULgUFvhQdt3VIoE9vSTKNvysM0yqRWHIWLcCxVLWHwyThFWzcI_8KUGyNjmWWx1bEKV2FmOBradSBGG8GszlIXJo5ioWiGU22bqqitLM0a8HPC78RULcjdTRiDZOKKIKcSz6kGbNek12XfjbeINidCSyrTyxPX7DgMERiJBnyvX6PROKapoR3dOBouI3TIKXufxvW1p9L1z2vAWqkQ9UqoRFzD4hZ-kJf7-0tMeqe__eDbx0k3YB5hmShzwzdhphjf2C2YM_-Kq3zchGneF02YPfzTOTtpeqV_BFZ_A9Q
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD7IKtiXamu12646ig99CexOJslM8cXbonZdRFYRfAgzk0kRll3ZjZZ960_wN_pLPCfJRqUKQsnLQM7A5Fwy35lzGYCtQPgySLTyuNTCE8o3nlSJ81QoEb8mgTB5uOCiE3W78vJSnc7A9rQWpugPUR24kWXk_2sycDqQfmbl2Q0laUkqJZ8VqEZBDWb3z9rnnSqKEPlF-yhE6R7unLzsLESZPNXkl_vRPyDzJWbNN532wv8tdxE-lmCT7RTa8Qlm3OAzzO0OERBOluCKLizKGB3dsz-633_4e5_XkSAGZdd52Ug2-fn0mhU1wmOWoUP_241YGdth6LATCEXtoSFl3LrxF-i1D3p7h15514Jn0WWJvJZpahSMaxph0EGN_CRIldERShgxWaKb0uKTRhwN3iIG9JPIWhWqNA2dCbW_DLXBcOC-ArPGSuFMmlCsOAil5ilOdS2ug5Z2PK3DjynDY1v2IafrMPrx1B9BTsU5p-qwWZHeFM03XiNqTKUWl_Y3jqnjse8jOpJ12Kheo-UQ0_TADW-JJlIBeuVcvE1Dze25oiZ6dVgpNKJaCVcIbkTYxA_KBf_2EuPe6XE--PZ-0nWYP-yddOLOUffXd_iAOE0WyeINqGWjW7cKc_Yuux6P1kqtfwReNAaY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-NAFD6IlcUX13VX7a6uo_jgS6CdTJKZxRcvW7yUUqSKsA9hZjIRobSljbv0zZ_gb_SXeE6SZldcQZC8DOQMTM4l8505lwHYDYQvg0Qrj0stPKF840mVOE-FEvFrEgiThwuu2lGnI6-vVXcO9me1MEV_iOrAjSwj_1-TgbtRkv5j5dmIkrQklZLXRKBCNMva8UXrsl1FESK_aB-FKN3DnZOXnYUok6ea_Hw_egEyn2PWfNNpfXzfcpdhqQSb7KDQjk8w5wYrsHA4REA4_Qy_6MKijNHRPfuj-_3H-4e8jgQxKLvNy0ay6Y-_r1lRIzxhGTr0N27MytgOQ4edQChqDw0p49ZNvkCv9bN3dOKVdy14Fl2WyGuahkbBuIYRBh3UyE-CVBkdoYQRkyW6IS0-acTR4C1iQD-JrFWhStPQmVD7qzA_GA7cOjBrrBTOpAnFioNQap7iVNfkOmhqx9M67M0YHtuyDzldh9GPZ_4IcirOOVWHnYp0VDTf-B_RxkxqcWl_k5g6Hvs-oiNZh-3qNVoOMU0P3PCOaCIVoFfOxes01NyeK2qiV4e1QiOqlXCF4EaEDfygXPCvLzHudc_ywde3k27Bh-5xK26fds6_wSLCNFnkim_AfDa-c5uwYH9nt5Px91LpnwDgtQYT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+cell+wall%E2%80%90mediated+immunity%3A+cell+wall+changes+trigger+disease+resistance+responses&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Bacete%2C+Laura&rft.au=M%C3%A9lida%2C+Hugo&rft.au=Miedes%2C+Eva&rft.au=Molina%2C+Antonio&rft.date=2018-02-01&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=93&rft.issue=4&rft.spage=614&rft.epage=636&rft_id=info:doi/10.1111%2Ftpj.13807&rft.externalDBID=10.1111%252Ftpj.13807&rft.externalDocID=TPJ13807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon