Plant cell wall‐mediated immunity: cell wall changes trigger disease resistance responses
Summary Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence‐associat...
Uloženo v:
| Vydáno v: | The Plant journal : for cell and molecular biology Ročník 93; číslo 4; s. 614 - 636 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Blackwell Publishing Ltd
01.02.2018
|
| Témata: | |
| ISSN: | 0960-7412, 1365-313X, 1365-313X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Summary
Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence‐associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane‐resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant‐derived ligands, such as peptides or wall glycans, known as damage‐associated molecular patterns (DAMPs). These DAMPs function as ‘danger’ alert signals activating DAMP‐triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non‐self microbe‐associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR–DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance.
Significance Statement
The plant cell wall has emerged as an essential component of plant stress‐monitoring systems, thus expanding its function as a passive defensive barrier. Here we review current knowledge about the systems that monitor plant cell wall integrity and their functions in triggering specific disease resistance and growth responses. |
|---|---|
| AbstractList | Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence‐associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (
CWI
) which comprises a diverse set of plasma membrane‐resident sensors and pattern recognition receptors (
PRR
s). The
PRR
s perceive plant‐derived ligands, such as peptides or wall glycans, known as damage‐associated molecular patterns (
DAMP
s). These
DAMP
s function as ‘danger’ alert signals activating
DAMP
‐triggered immunity (
DTI
), which shares signalling components and responses with the immune pathways triggered by non‐self microbe‐associated molecular patterns that mediate disease resistance. Alteration of
CWI
by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of
CWI
are perceived by the wall monitoring systems is scarce and few plant sensors/
PRR
s and
DAMP
s have been characterized. The identification of these
CWI
sensors and
PRR
–
DAMP
pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance.
The plant cell wall has emerged as an essential component of plant stress‐monitoring systems, thus expanding its function as a passive defensive barrier. Here we review current knowledge about the systems that monitor plant cell wall integrity and their functions in triggering specific disease resistance and growth responses. Summary Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence‐associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane‐resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant‐derived ligands, such as peptides or wall glycans, known as damage‐associated molecular patterns (DAMPs). These DAMPs function as ‘danger’ alert signals activating DAMP‐triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non‐self microbe‐associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR–DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. Significance Statement The plant cell wall has emerged as an essential component of plant stress‐monitoring systems, thus expanding its function as a passive defensive barrier. Here we review current knowledge about the systems that monitor plant cell wall integrity and their functions in triggering specific disease resistance and growth responses. Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence‐associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane‐resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant‐derived ligands, such as peptides or wall glycans, known as damage‐associated molecular patterns (DAMPs). These DAMPs function as ‘danger’ alert signals activating DAMP‐triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non‐self microbe‐associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR–DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance.Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. SummaryPlants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance.Significance StatementThe plant cell wall has emerged as an essential component of plant stress-monitoring systems, thus expanding its function as a passive defensive barrier. Here we review current knowledge about the systems that monitor plant cell wall integrity and their functions in triggering specific disease resistance and growth responses. |
| Author | Mélida, Hugo Molina, Antonio Bacete, Laura Miedes, Eva |
| Author_xml | – sequence: 1 givenname: Laura orcidid: 0000-0003-3171-8181 surname: Bacete fullname: Bacete, Laura organization: UPM – sequence: 2 givenname: Hugo orcidid: 0000-0003-1792-0113 surname: Mélida fullname: Mélida, Hugo organization: Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) – sequence: 3 givenname: Eva orcidid: 0000-0003-2899-1494 surname: Miedes fullname: Miedes, Eva organization: UPM – sequence: 4 givenname: Antonio orcidid: 0000-0003-3137-7938 surname: Molina fullname: Molina, Antonio email: antonio.molina@upm.es organization: UPM |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29266460$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0c1KxDAQAOAgiq6rB19ACl700DVp0qT1JuIvgh72IHgoaTpds7TpmqTI3nwEn9EnMev6A4KaHBLIN5NkZhOtms4AQjsEj0gYh342HRGaYbGCBoTyNKaE3q2iAc45jgUjyQbadG6KMRGUs3W0keQJ54zjAbq_baTxkYKmiZ5k07w-v7RQaemhinTb9kb7-dH3caQepJmAi7zVkwnYqNIOpIPIgtPOS6Pet7POOHBbaK2WjYPtj3WIxmen45OL-Prm_PLk-DpWLBMiJiWWKSsBl6wkNBG0Suu8lAKUylJSSZypMGuRsCxTPOW0EkrlPK9rDiWXdIj2l2lntnvswfmi1W7xYmmg612RYC6SXOSM_ktJYClOwlWB7v2g0663JvwjqEUuwWgW1O6H6stQt2JmdSvtvPgscAAHS6Bs55yF-osQXCyaV4TmFe_NC_bwh1XaS687463UzV8RT7qB-e-pi_Ht1TLiDeLAq7A |
| CitedBy_id | crossref_primary_10_1093_pcp_pcz119 crossref_primary_10_1021_acs_jafc_5c05099 crossref_primary_10_1007_s00299_023_03074_x crossref_primary_10_7717_peerj_16324 crossref_primary_10_1038_s41598_023_44163_x crossref_primary_10_1016_j_rsci_2022_01_006 crossref_primary_10_1038_s41579_022_00710_3 crossref_primary_10_1007_s00438_020_01677_7 crossref_primary_10_3390_pathogens9040312 crossref_primary_10_1007_s00216_022_04134_z crossref_primary_10_3389_fpls_2020_610377 crossref_primary_10_1128_spectrum_04824_22 crossref_primary_10_1146_annurev_arplant_081519_035846 crossref_primary_10_1111_tpj_14237 crossref_primary_10_1016_j_celrep_2024_114179 crossref_primary_10_1111_nph_18305 crossref_primary_10_1038_s41598_019_56401_2 crossref_primary_10_1093_plphys_kiac041 crossref_primary_10_3389_fpls_2019_00162 crossref_primary_10_3389_fpls_2022_824422 crossref_primary_10_1093_jxb_erab423 crossref_primary_10_1093_plphys_kiac165 crossref_primary_10_1186_s12870_020_02759_9 crossref_primary_10_1016_j_scienta_2024_113554 crossref_primary_10_1016_j_plaphy_2025_110497 crossref_primary_10_1186_s12870_024_04935_7 crossref_primary_10_3389_fpls_2021_738949 crossref_primary_10_1016_j_ijbiomac_2024_137358 crossref_primary_10_3390_agronomy12081847 crossref_primary_10_1016_j_cj_2023_09_007 crossref_primary_10_1016_j_scienta_2021_109898 crossref_primary_10_1007_s00425_020_03517_9 crossref_primary_10_2174_1381612826666200617165915 crossref_primary_10_1016_j_cell_2020_04_028 crossref_primary_10_1094_MPMI_05_24_0059_R crossref_primary_10_3390_ijms241914737 crossref_primary_10_1093_plcell_koac040 crossref_primary_10_1016_j_compositesa_2025_109260 crossref_primary_10_1016_j_cpb_2024_100360 crossref_primary_10_1094_PHYTO_09_18_0334_IA crossref_primary_10_1093_aesa_saaa032 crossref_primary_10_3390_biology13060421 crossref_primary_10_3389_fpls_2019_01138 crossref_primary_10_3390_plants14152337 crossref_primary_10_3389_fpls_2021_738880 crossref_primary_10_3390_plants11030385 crossref_primary_10_1186_s12864_021_08157_1 crossref_primary_10_1111_nph_18356 crossref_primary_10_1080_17429145_2022_2115157 crossref_primary_10_1073_pnas_2010243118 crossref_primary_10_1094_MPMI_06_20_0170_R crossref_primary_10_3389_fpls_2020_01210 crossref_primary_10_1038_s41467_024_54470_0 crossref_primary_10_1186_s40793_024_00550_z crossref_primary_10_1186_s40168_020_00966_y crossref_primary_10_1007_s00425_022_03918_y crossref_primary_10_1038_s41598_019_39928_2 crossref_primary_10_3390_molecules30071618 crossref_primary_10_1002_ps_6493 crossref_primary_10_1002_ps_6370 crossref_primary_10_3390_genes15030295 crossref_primary_10_1073_pnas_2119258119 crossref_primary_10_2478_s11756_018_0091_9 crossref_primary_10_3390_cells12010134 crossref_primary_10_1042_EBC20210095 crossref_primary_10_1080_07388551_2024_2370341 crossref_primary_10_1007_s11103_023_01394_w crossref_primary_10_1016_j_ijbiomac_2025_146458 crossref_primary_10_3390_polym13091379 crossref_primary_10_1093_plphys_kiae025 crossref_primary_10_1038_s41588_019_0503_y crossref_primary_10_1093_plphys_kiae144 crossref_primary_10_1007_s00299_021_02672_x crossref_primary_10_1007_s11295_018_1288_3 crossref_primary_10_3390_ijms19082287 crossref_primary_10_1016_j_carbpol_2024_122149 crossref_primary_10_1111_pce_14973 crossref_primary_10_3390_horticulturae9010112 crossref_primary_10_1016_j_xplc_2025_101469 crossref_primary_10_3389_fpls_2020_594827 crossref_primary_10_3390_plants9040492 crossref_primary_10_1016_j_indcrop_2023_117511 crossref_primary_10_1093_pcp_pcad120 crossref_primary_10_1016_j_foodchem_2020_128050 crossref_primary_10_1007_s41348_025_01113_1 crossref_primary_10_1016_j_postharvbio_2023_112260 crossref_primary_10_3390_ijms222212319 crossref_primary_10_1242_dev_200363 crossref_primary_10_1007_s11295_020_01454_y crossref_primary_10_3390_genes10070555 crossref_primary_10_3390_ijms232012553 crossref_primary_10_3390_ncrna6010008 crossref_primary_10_1016_j_jplph_2023_154045 crossref_primary_10_3389_fpls_2021_696955 crossref_primary_10_1016_j_devcel_2021_03_004 crossref_primary_10_3389_fpls_2024_1401265 crossref_primary_10_1016_j_scienta_2021_110814 crossref_primary_10_1038_s41598_019_54022_3 crossref_primary_10_1016_j_ijbiomac_2024_138748 crossref_primary_10_1094_MPMI_03_20_0057_R crossref_primary_10_3390_ijms25105256 crossref_primary_10_1007_s10725_024_01211_4 crossref_primary_10_1111_jac_70012 crossref_primary_10_1186_s12284_019_0352_4 crossref_primary_10_1016_j_stress_2025_100783 crossref_primary_10_1186_s12870_022_03527_7 crossref_primary_10_3390_vaccines8030388 crossref_primary_10_3390_plants13202886 crossref_primary_10_1093_jxb_eraf281 crossref_primary_10_3389_fpls_2024_1501092 crossref_primary_10_3390_plants11243539 crossref_primary_10_3390_ijms242216063 crossref_primary_10_1111_nph_19465 crossref_primary_10_3390_ijms241814120 crossref_primary_10_1093_plphys_kiad095 crossref_primary_10_3390_ijms25094700 crossref_primary_10_3389_fpls_2023_1118313 crossref_primary_10_3390_plants10081744 crossref_primary_10_1111_nph_19468 crossref_primary_10_1371_journal_ppat_1008886 crossref_primary_10_1186_s12870_021_02927_5 crossref_primary_10_1186_s12870_021_03307_9 crossref_primary_10_1038_s41598_021_01867_2 crossref_primary_10_3390_horticulturae9080937 crossref_primary_10_3390_ijms21217875 crossref_primary_10_1038_s41477_019_0502_0 crossref_primary_10_1111_mpp_70075 crossref_primary_10_1186_s12870_023_04708_8 crossref_primary_10_1016_j_plaphy_2022_06_030 crossref_primary_10_1007_s11103_020_01041_8 crossref_primary_10_3389_fpls_2022_1025422 crossref_primary_10_1111_nph_20440 crossref_primary_10_1186_s12870_021_02992_w crossref_primary_10_3390_cells10030685 crossref_primary_10_3389_fpls_2025_1672522 crossref_primary_10_1094_MPMI_07_24_0077_CM crossref_primary_10_1007_s44154_025_00244_7 crossref_primary_10_1146_annurev_phyto_021621_120602 crossref_primary_10_1093_aob_mcad054 crossref_primary_10_1016_j_jbiotec_2020_10_023 crossref_primary_10_3390_agronomy14020250 crossref_primary_10_1007_s00122_024_04764_0 crossref_primary_10_1038_s41598_019_42084_2 crossref_primary_10_1007_s00344_022_10593_6 crossref_primary_10_1186_s12870_020_02501_5 crossref_primary_10_3390_plants12183216 crossref_primary_10_1007_s11816_022_00763_z crossref_primary_10_1111_mpp_70125 crossref_primary_10_1007_s10658_024_02970_6 crossref_primary_10_1093_plcell_koaf088 crossref_primary_10_1016_j_ijbiomac_2025_142249 crossref_primary_10_3389_fpls_2024_1378748 crossref_primary_10_1002_pld3_579 crossref_primary_10_1016_j_ijbiomac_2025_141038 crossref_primary_10_1016_j_jprot_2019_103599 crossref_primary_10_1007_s00299_023_03068_9 crossref_primary_10_3390_ijms24044061 crossref_primary_10_3390_pr10122507 crossref_primary_10_1094_MPMI_07_18_0195_FI crossref_primary_10_1186_s12870_021_03068_5 crossref_primary_10_3390_plants10081514 crossref_primary_10_1094_MPMI_12_19_0341_R crossref_primary_10_3389_fpls_2022_931979 crossref_primary_10_3390_polym14163416 crossref_primary_10_1093_jxb_erz550 crossref_primary_10_1016_j_tcsw_2024_100124 crossref_primary_10_3390_polym14224840 crossref_primary_10_1007_s00299_024_03417_2 crossref_primary_10_1186_s12870_023_04685_y crossref_primary_10_1111_ppl_14625 crossref_primary_10_1016_j_jare_2025_08_037 crossref_primary_10_1093_jxb_eraa414 crossref_primary_10_1186_s12870_022_03964_4 crossref_primary_10_3389_fmicb_2021_730543 crossref_primary_10_1016_j_pbi_2023_102455 crossref_primary_10_3390_plants9091061 crossref_primary_10_1016_j_jplph_2025_154611 crossref_primary_10_1111_nph_18166 crossref_primary_10_1038_s41580_022_00496_5 crossref_primary_10_1007_s11356_023_31641_y crossref_primary_10_3390_biology8030060 crossref_primary_10_1002_pld3_309 crossref_primary_10_1186_s13765_021_00654_x crossref_primary_10_3389_fpls_2021_663536 crossref_primary_10_1111_tpj_16088 crossref_primary_10_1111_jipb_13419 crossref_primary_10_1111_nph_70574 crossref_primary_10_3390_ijms21249720 crossref_primary_10_3389_fmicb_2022_888908 crossref_primary_10_1186_s12870_023_04255_2 crossref_primary_10_3389_fmicb_2022_902181 crossref_primary_10_1128_aem_00661_23 crossref_primary_10_3390_ijms24098390 crossref_primary_10_3389_fpls_2021_639769 crossref_primary_10_1111_tpj_13812 crossref_primary_10_1007_s00572_020_00934_2 crossref_primary_10_1016_j_ijbiomac_2025_144746 crossref_primary_10_1016_j_fm_2019_103395 crossref_primary_10_1016_j_pmpp_2020_101461 crossref_primary_10_1016_j_devcel_2024_11_010 crossref_primary_10_1007_s44154_023_00086_1 crossref_primary_10_3389_fpls_2025_1552926 crossref_primary_10_1093_jxb_erae467 crossref_primary_10_3389_fpls_2022_980424 crossref_primary_10_1016_j_ijbiomac_2023_127747 crossref_primary_10_1016_j_pmpp_2021_101729 crossref_primary_10_1002_advs_202002723 crossref_primary_10_3389_fpls_2025_1635078 crossref_primary_10_3390_plants9050574 crossref_primary_10_1002_pld3_246 crossref_primary_10_1007_s11103_022_01284_7 crossref_primary_10_1242_dev_199425 crossref_primary_10_1371_journal_pone_0241679 crossref_primary_10_1093_plphys_kiab400 crossref_primary_10_3389_fpls_2025_1510177 crossref_primary_10_1016_j_gene_2021_146049 crossref_primary_10_3390_ijms25137255 crossref_primary_10_3390_plants12051079 crossref_primary_10_1016_j_ijbiomac_2024_135859 crossref_primary_10_1016_j_hpj_2024_05_014 crossref_primary_10_1016_j_postharvbio_2025_113527 crossref_primary_10_1111_nph_16919 crossref_primary_10_1146_annurev_arplant_102820_095312 crossref_primary_10_1094_MPMI_34_10 crossref_primary_10_3389_fpls_2023_1163679 crossref_primary_10_3390_f12081090 crossref_primary_10_3390_plants10020399 crossref_primary_10_1016_j_postharvbio_2025_113404 crossref_primary_10_1111_pce_15060 crossref_primary_10_1093_jxb_erae368 crossref_primary_10_1016_j_scienta_2022_111344 crossref_primary_10_1007_s00344_020_10143_y crossref_primary_10_1016_j_plantsci_2021_110833 crossref_primary_10_1016_j_ijbiomac_2024_132696 crossref_primary_10_1111_ppl_70291 crossref_primary_10_1016_j_carbpol_2020_116462 crossref_primary_10_1146_annurev_arplant_073019_025927 crossref_primary_10_3390_ijms23020814 crossref_primary_10_1007_s42360_024_00813_2 crossref_primary_10_1016_j_stress_2025_101040 crossref_primary_10_1111_jipb_13739 crossref_primary_10_3389_fpls_2020_00914 crossref_primary_10_1016_j_plaphy_2024_108794 crossref_primary_10_1002_fpf2_12021 crossref_primary_10_1038_s41467_021_22456_x crossref_primary_10_1186_s12864_021_07549_7 crossref_primary_10_3390_ijms23179753 crossref_primary_10_1111_pbi_13190 crossref_primary_10_1007_s11103_022_01308_2 crossref_primary_10_1186_s12284_019_0301_2 crossref_primary_10_1371_journal_pone_0313878 crossref_primary_10_3389_fpls_2019_00971 crossref_primary_10_1007_s11105_024_01477_y crossref_primary_10_1093_jxb_erz262 crossref_primary_10_1007_s11103_023_01345_5 crossref_primary_10_3389_fpls_2024_1381018 crossref_primary_10_3390_molecules30061392 crossref_primary_10_1186_s12915_023_01650_x crossref_primary_10_1111_mpp_13225 crossref_primary_10_1016_j_pmpp_2022_101945 crossref_primary_10_3390_genes9060309 crossref_primary_10_1016_j_indcrop_2021_114332 crossref_primary_10_1007_s11103_022_01286_5 crossref_primary_10_3390_membranes13110855 crossref_primary_10_3390_ijms26062685 crossref_primary_10_1093_plphys_kiad505 crossref_primary_10_1016_j_tplants_2025_03_020 crossref_primary_10_1584_jpestics_W22_17 crossref_primary_10_1016_j_scienta_2023_111977 crossref_primary_10_1093_jxb_eraf145 crossref_primary_10_1038_s41598_020_70406_2 crossref_primary_10_1016_j_ijbiomac_2024_132790 crossref_primary_10_1016_j_plantsci_2019_04_013 crossref_primary_10_1139_cjps_2024_0215 crossref_primary_10_3390_ijms23020606 crossref_primary_10_1007_s00018_019_03388_8 crossref_primary_10_1016_j_indcrop_2024_118565 crossref_primary_10_1111_tpj_15185 crossref_primary_10_1016_j_ijbiomac_2024_133508 crossref_primary_10_1016_j_scienta_2022_111422 crossref_primary_10_1007_s13562_025_01014_2 crossref_primary_10_1007_s44154_021_00003_4 crossref_primary_10_1094_MPMI_06_18_0171_R crossref_primary_10_1186_s12284_025_00836_x crossref_primary_10_3389_fpls_2024_1401298 crossref_primary_10_1186_s12870_022_04009_6 crossref_primary_10_1093_jxb_erad080 crossref_primary_10_1016_j_plantsci_2020_110697 crossref_primary_10_5511_plantbiotechnology_25_0220a crossref_primary_10_1016_j_pmpp_2022_101850 crossref_primary_10_1371_journal_ppat_1009080 crossref_primary_10_1094_PHYTO_05_20_0176_R crossref_primary_10_1007_s11103_023_01379_9 crossref_primary_10_1007_s12155_024_10734_7 crossref_primary_10_1002_adma_202106945 crossref_primary_10_3389_fpls_2021_682439 crossref_primary_10_3389_fmicb_2020_603927 crossref_primary_10_1016_j_molp_2024_04_003 crossref_primary_10_1093_jxb_erad305 crossref_primary_10_1021_jasms_0c00439 crossref_primary_10_1016_j_tplants_2020_05_011 crossref_primary_10_1016_j_indcrop_2022_115237 crossref_primary_10_1186_s42483_023_00220_x crossref_primary_10_3390_ijms24087417 crossref_primary_10_1016_j_plantsci_2025_112644 crossref_primary_10_1111_ppl_14088 crossref_primary_10_1007_s11104_020_04827_3 crossref_primary_10_1007_s42161_025_01986_z crossref_primary_10_1111_pbi_70050 crossref_primary_10_1080_15592324_2021_2004026 crossref_primary_10_3390_biology11010124 crossref_primary_10_3390_ijms25147692 crossref_primary_10_1111_tpj_70439 crossref_primary_10_3390_app9235012 crossref_primary_10_3390_agronomy15040884 crossref_primary_10_3390_f13101618 crossref_primary_10_1007_s42161_025_02019_5 crossref_primary_10_1186_s12870_018_1616_7 crossref_primary_10_1111_mpp_12968 crossref_primary_10_3390_biom13101483 crossref_primary_10_1038_s42003_021_02226_7 crossref_primary_10_1093_plcell_koac218 crossref_primary_10_24072_pcjournal_225 crossref_primary_10_1016_j_indcrop_2025_121618 crossref_primary_10_1111_nph_18829 crossref_primary_10_1111_tpj_14196 crossref_primary_10_1016_j_pbi_2021_102120 crossref_primary_10_1111_tpj_15133 crossref_primary_10_1093_jxb_erab269 crossref_primary_10_1111_tpj_16226 crossref_primary_10_3390_ijms25126667 crossref_primary_10_3389_fpls_2021_785699 crossref_primary_10_1080_13102818_2024_2356867 crossref_primary_10_3389_fpls_2022_969343 crossref_primary_10_1111_pce_14252 crossref_primary_10_1093_hr_uhad225 crossref_primary_10_1242_dev_166678 crossref_primary_10_3390_genes11020177 crossref_primary_10_1186_s12284_021_00478_9 crossref_primary_10_1186_s12870_019_1934_4 crossref_primary_10_1093_plcell_koab230 crossref_primary_10_1016_j_molp_2024_07_008 crossref_primary_10_1093_jxb_erad310 crossref_primary_10_1111_tpj_16114 crossref_primary_10_1186_s12870_021_03149_5 crossref_primary_10_1111_tpj_17206 crossref_primary_10_3389_fpls_2025_1638073 crossref_primary_10_1093_jxb_erab373 crossref_primary_10_3390_plants10112524 crossref_primary_10_3389_fpls_2020_00651 crossref_primary_10_1016_j_ijbiomac_2025_141501 crossref_primary_10_1093_plphys_kiac312 crossref_primary_10_1111_pbi_14270 crossref_primary_10_1093_jxb_erae433 crossref_primary_10_1111_jipb_12923 crossref_primary_10_1093_plcell_koae317 crossref_primary_10_1094_MPMI_06_20_0161_CR crossref_primary_10_1111_ppl_13194 crossref_primary_10_1186_s12934_024_02394_1 crossref_primary_10_3389_fmicb_2023_1059799 crossref_primary_10_1186_s42483_023_00188_8 crossref_primary_10_1016_j_plantsci_2024_111999 crossref_primary_10_1093_plphys_kiac387 crossref_primary_10_1111_nph_15007 crossref_primary_10_1111_pbi_70131 crossref_primary_10_3389_fpls_2023_1230438 crossref_primary_10_1371_journal_ppat_1011340 crossref_primary_10_1111_jph_12930 crossref_primary_10_1016_j_pmpp_2025_102740 crossref_primary_10_3389_fmicb_2021_656809 crossref_primary_10_1093_jxb_erad210 crossref_primary_10_3390_plants7040089 crossref_primary_10_1038_s41422_024_01058_4 crossref_primary_10_1016_j_molp_2020_09_007 crossref_primary_10_1002_bies_202400171 crossref_primary_10_20935_AcadMolBioGen7476 crossref_primary_10_1016_j_ijbiomac_2023_125090 crossref_primary_10_1094_PHYTO_01_25_0022_R crossref_primary_10_1093_hr_uhac066 crossref_primary_10_3390_plants11030408 crossref_primary_10_3389_fpls_2020_593905 crossref_primary_10_3389_fpls_2022_1064628 crossref_primary_10_1093_jxb_eraf306 crossref_primary_10_3390_ijms22031252 crossref_primary_10_1093_plcell_koad325 crossref_primary_10_1111_tpj_16541 crossref_primary_10_3390_ijms24076307 crossref_primary_10_3390_ijms232416200 crossref_primary_10_1007_s11738_024_03655_7 crossref_primary_10_1093_jxb_erad362 crossref_primary_10_1016_j_gene_2022_146336 crossref_primary_10_1111_nph_16319 crossref_primary_10_3390_horticulturae11060620 crossref_primary_10_3390_agronomy14112520 crossref_primary_10_1016_j_indcrop_2020_112902 crossref_primary_10_1186_s40168_022_01236_9 crossref_primary_10_1093_jxb_erae442 crossref_primary_10_3390_biology10101070 crossref_primary_10_1093_jxb_erad110 crossref_primary_10_1016_j_biortech_2019_122558 crossref_primary_10_1038_s41477_020_0707_2 crossref_primary_10_1016_j_pld_2022_04_001 crossref_primary_10_1111_nph_18846 crossref_primary_10_3389_fpls_2020_00852 crossref_primary_10_1016_j_indcrop_2019_111742 crossref_primary_10_1016_j_postharvbio_2024_113019 |
| Cites_doi | 10.1016/j.phytochem.2014.11.008 10.1046/j.1365-313x.1998.00276.x 10.3389/fpls.2016.00984 10.1093/pcp/pce127 10.1094/MPMI-03-13-0077-R 10.3389/fpls.2013.00155 10.1371/journal.ppat.1006433 10.1104/pp.112.200154 10.1104/pp.113.227637 10.1111/j.1365-313X.2006.02994.x 10.1042/BJ20140666 10.1104/pp.105.066464 10.1105/tpc.113.110833 10.1104/pp.113.230698 10.1104/pp.110.168989 10.1126/science.aal2541 10.1105/tpc.108.063768 10.3389/fpls.2014.00446 10.1105/tpc.003509 10.1007/s00253-011-3405-1 10.1093/mp/ssq075 10.1016/j.it.2014.05.004 10.1201/9781420027952 10.1146/annurev-phyto-080614-120106 10.15252/embj.201591807 10.1073/pnas.0705147104 10.1111/nph.15007 10.1534/genetics.105.042218 10.1111/j.1365-313X.2005.02440.x 10.1111/tpj.13755 10.1046/j.1365-313X.2003.01877.x 10.1111/j.1365-313X.2009.04016.x 10.1111/j.1365-313X.2009.03956.x 10.1111/nph.14086 10.1111/j.1365-313X.2008.03744.x 10.1104/pp.109.135459 10.1104/pp.114.236901 10.1111/j.1365-3040.2008.01898.x 10.1111/j.1558-5646.2010.01146.x 10.3389/fpls.2014.00228 10.1016/j.febslet.2011.04.043 10.1093/mp/ssn019 10.1046/j.1365-313X.2003.01729.x 10.1007/s00425-010-1306-7 10.7554/eLife.03766 10.3389/fpls.2014.00168 10.1111/tpj.13660 10.1073/pnas.1322979111 10.1186/s12915-017-0403-5 10.1085/jgp.201411295 10.1111/nph.12974 10.1016/j.cub.2015.07.068 10.1111/j.1365-313X.2009.03926.x 10.1038/nrmicro.2015.21 10.1093/pcp/pci026 10.1016/j.plantsci.2012.12.019 10.1111/tpj.12689 10.1111/j.1364-3703.2004.00262.x 10.1111/j.1469-8137.2010.03385.x 10.1105/tpc.13.2.413 10.1094/MPMI-22-8-0953 10.1073/pnas.1220015110 10.1093/mp/ssp066 10.1038/cr.2014.161 10.1016/j.chom.2010.03.007 10.1371/journal.pone.0098193 10.1094/MPMI-01-14-0005-R 10.1146/annurev.phyto.45.062806.094325 10.1371/journal.pgen.1006832 10.1074/jbc.271.33.19789 10.1104/pp.16.01185 10.4161/psb.27408 10.1016/S0953-7562(09)80138-X 10.1126/science.1218867 10.1104/pp.16.01680 10.1111/j.1744-7909.2010.00935.x 10.1186/s12870-016-0959-1 10.1016/j.tplants.2016.12.006 10.1104/pp.113.233759 10.1093/jxb/err238 10.1104/pp.111.184663 10.1016/j.pbi.2012.07.003 10.1105/tpc.15.00404 10.3389/fpls.2017.00445 10.1146/annurev-arplant-042916-040957 10.1104/pp.106.085670 10.1104/pp.112.195198 10.1038/ni.3124 10.1104/pp.104.4.1113 10.1038/nplants.2015.140 10.1073/pnas.1504154112 10.1038/35092620 10.1016/j.tplants.2012.12.002 10.1073/pnas.1619033114 10.1016/S1097-2765(00)80265-8 10.4161/psb.4.8.9231 10.1073/pnas.0607703104 10.1007/s11103-008-9430-5 10.1111/nph.14065 10.1093/jxb/erv180 10.1105/tpc.002022 10.1080/07060669709501060 10.1093/aob/mcu043 10.1105/tpc.108.063354 10.3389/fpls.2012.00079 10.3389/fpls.2012.00280 10.1073/pnas.1502522112 10.1104/pp.011028 10.1534/genetics.111.128264 10.1016/j.tplants.2014.09.003 10.1111/jipb.12346 10.1146/annurev-arplant-042811-105449 10.1111/nph.13269 10.1105/tpc.13.5.1025 10.1104/pp.71.4.916 10.1371/journal.pone.0106509 10.1073/pnas.1016508108 10.1094/MPMI-10-12-0236-R 10.1105/tpc.112.095778 10.1023/A:1013679111111 10.1111/j.1469-8137.2005.01496.x 10.1111/tpj.13380 10.1093/mp/ssr082 10.1073/pnas.1000675107 10.1146/annurev-arplant-042811-105534 10.1104/pp.106.076950 10.1094/MPMI-07-10-0157 10.1016/S0031-9422(01)00113-3 10.1073/pnas.1007745107 10.1111/mpp.12419 10.1104/pp.16.01642 10.1105/tpc.107.056754 10.1016/j.bbapap.2003.08.012 10.1074/jbc.M109.097394 10.1094/MPMI-23-5-0549 10.4161/psb.4.11.9739 10.1105/tpc.016097 10.1104/pp.112.211011 10.1093/jxb/erv026 10.1105/tpc.105.031542 10.1111/j.1365-313X.1993.tb00007.x 10.1073/pnas.92.10.4095 10.1093/pcp/pcu164 10.1016/j.cell.2006.03.037 10.1104/pp.110.163212 10.1038/nature22009 10.1016/j.jplph.2012.05.006 10.1146/annurev-arplant-042809-112315 10.1105/tpc.112.099325 10.1104/pp.113.214460 10.1111/j.1365-313X.2011.04671.x 10.3389/fpls.2013.00049 10.3389/fpls.2014.00358 10.4161/psb.22598 10.3389/fpls.2012.00012 10.1126/science.1243825 10.1104/pp.111.174003 10.1016/j.cub.2012.07.036 10.1105/tpc.007872 10.1074/jbc.M109.096842 10.1038/415977a 10.1111/j.1365-313X.2004.02208.x 10.1007/s11010-007-9603-6 10.1007/978-3-642-03524-1_12 10.1038/msb.2011.66 10.1104/pp.110.171843 10.1002/biot.201100155 10.1111/pbi.12393 10.1093/jxb/ern344 10.1016/j.cub.2009.01.054 10.1111/ppl.12411 10.1104/pp.16.00667 10.1038/nature05999 10.1016/j.pbi.2008.03.006 10.1093/glycob/cww029 10.1111/tpj.12504 10.1038/nri.2016.77 10.1073/pnas.1112862108 10.1038/nmicrobiol.2016.43 10.1105/tpc.11.9.1743 10.1093/jxb/ert330 10.1093/jxb/ers362 10.1038/nrm1746 10.1016/j.phytochem.2006.03.009 10.1093/jxb/erv489 10.1111/j.1365-313X.2010.04224.x 10.1105/tpc.13.2.303 10.1105/tpc.16.00891 10.1038/srep30251 10.1146/annurev-arplant-042811-105518 10.3389/fpls.2012.00077 10.1111/nph.14638 10.1104/pp.111.175737 10.1371/journal.ppat.1002513 10.1146/annurev-phyto-102313-045831 10.1042/BCJ20160238 10.3389/fpls.2014.00178 10.1105/tpc.106.048058 10.1111/tpj.13057 10.1111/nph.14720 10.1038/nprot.2012.081 10.1105/tpc.109.068874 10.1074/jbc.M102390200 10.1038/ncomms6320 10.1111/mpp.12457 10.1104/pp.106.090803 10.1016/j.cub.2007.05.018 10.1105/tpc.111.084301 10.1126/science.1244454 10.1094/MPMI-06-14-0191-R 10.1146/annurev.cellbio.22.022206.160206 10.1126/science.1242468 10.1371/journal.ppat.1001327 10.15252/embr.201438801 10.1105/tpc.106.048041 10.1038/ncb2471 10.1105/tpc.12.12.2409 10.1111/j.1365-313X.2005.02452.x 10.1126/science.343.6168.290 10.1016/j.coi.2014.12.002 10.1111/tpj.12027 10.1094/MPMI-21-12-1643 10.1111/j.1438-8677.2011.00449.x 10.1073/pnas.0603727103 10.1093/mp/ssq015 10.1242/dev.00458 10.1038/ng.3170 10.1104/pp.109.147371 10.1093/jxb/ers100 10.1111/j.1365-2958.2008.06211.x 10.1093/jxb/erp245 10.1104/pp.68.5.1161 10.3389/fpls.2016.00897 10.1104/pp.112.212431 10.1016/j.devcel.2010.10.010 10.1111/mpp.12090 10.1016/j.cub.2014.06.064 10.1073/pnas.0706547105 10.1016/j.pbi.2017.08.010 10.1021/jf052922x 10.1126/science.1086716 10.1111/j.1365-313X.2004.02264.x |
| ContentType | Journal Article |
| Copyright | 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd. Copyright © 2018 John Wiley & Sons Ltd and the Society for Experimental Biology |
| Copyright_xml | – notice: 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd – notice: 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd. – notice: Copyright © 2018 John Wiley & Sons Ltd and the Society for Experimental Biology |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 7S9 L.6 |
| DOI | 10.1111/tpj.13807 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef AGRICOLA MEDLINE MEDLINE - Academic Genetics Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1365-313X |
| EndPage | 636 |
| ExternalDocumentID | 29266460 10_1111_tpj_13807 TPJ13807 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: Spanish Ministry of Economy and Competitiveness (MINECO) funderid: BIO2015‐64077‐R; BES‐2013‐065010 – fundername: European Union |
| GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P FIJ G-S G.N GODZA H.T H.X HF~ HGLYW HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT AAYXX CITATION O8X 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE CGR CUY CVF ECM EIF ESX IPNFZ NPM WRC 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c4877-1b0a54be0b4b13273d5f9ba7ecc851da08c8c8f72488c6563d7cc969ff6eb6a3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 434 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424221200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-7412 1365-313X |
| IngestDate | Fri Jul 11 18:24:16 EDT 2025 Fri Jul 11 07:46:23 EDT 2025 Fri Jul 25 11:09:37 EDT 2025 Tue Jan 21 03:22:13 EST 2025 Sat Nov 29 06:05:31 EST 2025 Tue Nov 18 21:22:26 EST 2025 Tue Nov 11 03:08:57 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | PRR disease resistance Arabidopsis cell wall mutant wall sensor cell wall integrity immunity cell wall DAMP |
| Language | English |
| License | 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4877-1b0a54be0b4b13273d5f9ba7ecc851da08c8c8f72488c6563d7cc969ff6eb6a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-3171-8181 0000-0003-1792-0113 0000-0003-2899-1494 0000-0003-3137-7938 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/tpj.13807 |
| PMID | 29266460 |
| PQID | 1994337438 |
| PQPubID | 31702 |
| PageCount | 23 |
| ParticipantIDs | proquest_miscellaneous_2067297943 proquest_miscellaneous_1979502724 proquest_journals_1994337438 pubmed_primary_29266460 crossref_primary_10_1111_tpj_13807 crossref_citationtrail_10_1111_tpj_13807 wiley_primary_10_1111_tpj_13807_TPJ13807 |
| PublicationCentury | 2000 |
| PublicationDate | February 2018 2018-02-00 20180201 |
| PublicationDateYYYYMMDD | 2018-02-01 |
| PublicationDate_xml | – month: 02 year: 2018 text: February 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | The Plant journal : for cell and molecular biology |
| PublicationTitleAlternate | Plant J |
| PublicationYear | 2018 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2005; 171 2015; 145 2013; 64 2017; 89 2010; 188 2012; 15 2012; 14 2001; 47 2011; 233 2016; 35 2001; 42 1998; 16 2000; 12 2014a; 343 2008; 21 2013; 110 2008; 20 2010; 3 2012; 24 2001; 57 2010; 7 2007; 17 2007; 19 2009; 69 2004; 40 2009; 60 2017; 68 2002; 415 2013; 342 2012b; 22 2010; 285 2013; 341 2011; 4 2016; 16 2016; 14 2011; 7 2001; 276 2016; 6 2016; 7 2016; 1 2017; 55 2015; 112 2016; 212 2005; 6 2016; 28 2016; 26 2006; 103 2017; 40 2013; 26 2007; 143 2013; 203 2008; 307 2008; 1 2017; 474 2017; 355 2017; 114 2010; 63 2010; 61 2013; 18 2014; 5 2014; 3 1994; 104 2000 2010; 154 1999; 11 2010; 152 2008; 68 2004; 1696 2014; 52 2014; 165 2014; 9 2001; 13 2012; 336 2014; 164 2006; 125 2015; 1 2017b; 68 2011 2010 2017; 22 1981; 68 2005 2017; 29 2017; 215 2013b; 25 2011; 108 2014; 80 2017; 15 2017; 17 2005; 168 1993; 97 2017; 13 2006; 141 2006; 140 2018 2017 2006; 142 2017; 18 2009; 4 2003; 301 2009; 2 2007; 45 2014; 78 2011; 585 2007; 49 2007; 104 2002; 14 2013; 4 2010; 107 2010; 19 2011; 62 2014; 27 2014; 24 2013; 8 2014b; 463 2010; 23 2010; 22 2017a 2015; 84 2006; 22 2016; 157 2014; 15 2011; 65 2011; 68 2009; 19 2001; 413 2015; 57 2015; 56 2007; 448 2006; 54 2009a; 60 2012a; 63 2003; 36 1983; 71 2012; 908 1992 2003; 34 2009b; 4 2015; 66 2002; 129 2013b; 4 2014; 35 2014a; 165 2016; 171 2005; 17 2017; 543 2010; 52 2017; 8 2011; 157 2000; 5 2015; 32 2012; 160 2003; 15 2009; 150 2013; 162 2012; 169 2013; 161 1993; 3 2011; 156 2011; 155 2014; 204 2009; 57 2015; 47 2006; 67 1997; 19 2011; 24 2011; 23 2009; 59 2012; 63 2009; 22 2013a; 73 1995; 92 2015; 16 2009; 21 2013a; 8 2005; 43 2017; 173 2008; 11 2015; 206 2014; 111 2014; 114 2005; 46 2003; 130 2012; 93 2015; 25 2012; 3 2009; 32 2017; 92 2017; 1578 2015; 20 1996; 271 2012; 7 2012; 159 2012; 5 2011; 189 2012; 8 2014; 343 2016; 67 e_1_2_9_79_1 e_1_2_9_254_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_239_1 e_1_2_9_33_1 e_1_2_9_216_1 e_1_2_9_231_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_22_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_204_1 e_1_2_9_227_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_242_1 e_1_2_9_111_1 Wood I.P. (e_1_2_9_238_1) 2017; 114 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_195_1 e_1_2_9_172_1 e_1_2_9_232_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 Chowdhury J. (e_1_2_9_45_1) 2017; 8 e_1_2_9_217_1 Lorenzo G. (e_1_2_9_51_1) 2011; 585 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_61_1 e_1_2_9_243_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_228_1 e_1_2_9_23_1 e_1_2_9_205_1 e_1_2_9_5_1 e_1_2_9_220_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 Pattathil S. (e_1_2_9_162_1) 2012; 908 e_1_2_9_233_1 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_218_1 e_1_2_9_16_1 e_1_2_9_185_1 Bacete L Mélida H. (e_1_2_9_12_1) 2017; 1578 e_1_2_9_89_1 e_1_2_9_221_1 e_1_2_9_244_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_206_1 e_1_2_9_8_1 e_1_2_9_81_1 Trusov Y. (e_1_2_9_210_1) 2010 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_136_1 Srivastava V. (e_1_2_9_197_1) 2017 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_229_1 e_1_2_9_174_1 e_1_2_9_234_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_219_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_245_1 e_1_2_9_222_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_82_1 Tsang D.L. (e_1_2_9_211_1) 2011; 156 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_207_1 e_1_2_9_173_1 e_1_2_9_196_1 Bellande K. (e_1_2_9_20_1) 2017 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_235_1 Horton M.W. (e_1_2_9_102_1) 2014; 5 e_1_2_9_212_1 e_1_2_9_90_1 e_1_2_9_250_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_223_1 e_1_2_9_246_1 Ramírez V. (e_1_2_9_168_1) 2011; 155 e_1_2_9_2_1 e_1_2_9_138_1 Sopeña‐Torres S. (e_1_2_9_194_1) 2018 e_1_2_9_115_1 e_1_2_9_199_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_208_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 Driouich A. (e_1_2_9_65_1) 2012; 3 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_213_1 Engelsdorf T. (e_1_2_9_70_1) 2017 e_1_2_9_236_1 e_1_2_9_76_1 e_1_2_9_91_1 Reinhard A. (e_1_2_9_171_1) 2017; 1578 e_1_2_9_251_1 e_1_2_9_148_1 Albersheim P. (e_1_2_9_4_1) 2011 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 Nothnagel E.A. (e_1_2_9_158_1) 1983; 71 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_224_1 e_1_2_9_201_1 e_1_2_9_247_1 e_1_2_9_80_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_198_1 e_1_2_9_27_1 e_1_2_9_209_1 Escudero V. (e_1_2_9_73_1) 2017; 92 e_1_2_9_50_1 e_1_2_9_35_1 e_1_2_9_214_1 e_1_2_9_96_1 e_1_2_9_237_1 e_1_2_9_252_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_202_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_225_1 e_1_2_9_248_1 e_1_2_9_240_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_193_1 e_1_2_9_170_1 e_1_2_9_74_1 Engelsdorf T. (e_1_2_9_71_1) 2017; 68 e_1_2_9_215_1 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_230_1 e_1_2_9_253_1 e_1_2_9_127_1 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_203_1 e_1_2_9_249_1 e_1_2_9_86_1 e_1_2_9_226_1 Stone B. (e_1_2_9_200_1) 1992 e_1_2_9_3_1 e_1_2_9_241_1 e_1_2_9_139_1 Carpita N. (e_1_2_9_38_1) 2000 e_1_2_9_116_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_192_1 |
| References_xml | – volume: 13 start-page: 1025 year: 2001 end-page: 1033 article-title: The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens publication-title: Plant Cell – volume: 8 start-page: e27408 year: 2013a article-title: Perception of the novel MAMP eMax from different Xanthomonas species requires the Arabidopsis receptor‐like protein ReMAX and the receptor kinase SOBIR publication-title: Plant Signal. Behav. – volume: 7 start-page: e1001327 year: 2011 article-title: The lectin receptor kinase LecRK‐I.9 Is a Novel Phytophthora resistance component and a potential host target for a RXLR effector publication-title: PLoS Pathog. – volume: 93 start-page: 191 year: 2012 end-page: 201 article-title: The purification and characterization of a novel hypersensitive‐like response‐inducing elicitor from Verticillium dahliae that induces resistance responses in tobacco publication-title: Appl. Microbiol. Biotechnol. – volume: 8 start-page: 445 year: 2017 article-title: Altered expression of genes implicated in Xylan biosynthesis affects penetration resistance against powdery mildew publication-title: Front. Plant. Sci. – volume: 108 start-page: 5685 year: 2011 end-page: 5689 article-title: Tradeoffs associated with constitutive and induced plant resistance against herbivory publication-title: Proc. Natl Acad. Sci. USA – volume: 13 start-page: e1006433 year: 2017 article-title: L‐type lectin receptor kinases: New forces in plant immunity publication-title: PLoS Pathog. – volume: 3 start-page: 77 year: 2012 article-title: Plant cell wall integrity maintenance as an essential component of biotic stress response mechanisms publication-title: Front. Plant. Sci. – volume: 463 start-page: 429 year: 2014b end-page: 437 article-title: Extracellular ATP, a danger signal, is recognized by DORN1 in Arabidopsis publication-title: Biochem J – volume: 343 start-page: 290 year: 2014a end-page: 294 article-title: Identification of a plant receptor for extracellular ATP publication-title: Science – volume: 108 start-page: 19824 year: 2011 end-page: 19829 article-title: Arabidopsis lysin‐motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection publication-title: Proc. Natl Acad. Sci. USA – volume: 14 start-page: 31 year: 2012 end-page: 38 article-title: Transgenic expression of polygalacturonase‐inhibiting proteins in Arabidopsis and wheat increases resistance to the flower pathogen Fusarium graminearum publication-title: Plant Biology – volume: 157 start-page: 804 year: 2011 end-page: 814 article-title: Arabidopsis MPK3 and MPK6 play different roles in basal and Oligogalacturonide‐ or Flagellin‐induced resistance against botrytis cinerea publication-title: Plant Physiol. – volume: 143 start-page: 1871 year: 2007 end-page: 1880 article-title: Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea publication-title: Plant Physiol. – volume: 26 start-page: 950 year: 2016 end-page: 960 article-title: Cell wall integrity signaling in plants: “To grow or not to grow that's the question” publication-title: Glycobiology – volume: 215 start-page: 1291 year: 2017 end-page: 1294 article-title: A plant's balance of growth and defense – revisited publication-title: New Phytol. – volume: 42 start-page: 1017 year: 2001 end-page: 1023 article-title: The Arabidopsis AHK4 histidine kinase is a cytokinin‐binding receptor that transduces cytokinin signals across the membrane publication-title: Plant Cell Physiol. – volume: 3 start-page: 15 year: 2012 article-title: Golgi‐mediated synthesis and secretion of matrix polysaccharides of the primary cell wall of higher plants publication-title: Front. Plant. Sci. – volume: 47 start-page: 693 year: 2001 end-page: 701 article-title: Plant callose synthase complexes publication-title: Plant Mol. Biol. – volume: 19 start-page: 1665 year: 2007 end-page: 1681 article-title: ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis publication-title: Plant Cell – volume: 47 start-page: 151 year: 2015 end-page: 157 article-title: A maize wall‐associated kinase confers quantitative resistance to head smut publication-title: Nature Genet. – volume: 1 start-page: 423 year: 2008 end-page: 445 article-title: Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings publication-title: Molecular Plant – volume: 157 start-page: 193 year: 2016 end-page: 204 article-title: Early habituation of maize (Zea mays) suspension‐cultured cells to 2,6‐dichlorobenzonitrile is associated with the enhancement of antioxidant status publication-title: Physiol. Plant. – volume: 130 start-page: 2149 year: 2003 end-page: 2159 article-title: The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception publication-title: Development – volume: 4 start-page: 1075 year: 2009b end-page: 1077 article-title: Arabidopsis proline‐rich extensin‐like receptor kinase 4 modulates the early event toward abscisic acid response in root tip growth publication-title: Plant Signal. Behav. – volume: 160 start-page: 2109 year: 2012 end-page: 2124 article-title: Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the Necrotrophic Fungus Plectosphaerella cucumerina publication-title: Plant Physiol. – volume: 24 start-page: 1256 year: 2012 end-page: 1270 article-title: The lectin receptor kinase‐VI.2 is required for priming and positively regulates Arabidopsis pattern‐triggered immunity publication-title: Plant Cell – volume: 7 start-page: 620 year: 2012 end-page: 634 article-title: Recombinant protein expression and purification: A comprehensive review of affinity tags and microbial applications publication-title: Biotechnol. J. – volume: 52 start-page: 427 year: 2014 end-page: 451 article-title: Plant cell wall‐degrading enzymes and their secretion in plant‐pathogenic fungi publication-title: Annu. Rev. Phytopathol. – volume: 159 start-page: 105 year: 2012 end-page: 117 article-title: Osmosensitive changes of carbohydrate metabolism in response to cellulose biosynthesis inhibition publication-title: Plant Physiol. – volume: 18 start-page: 227 year: 2013 end-page: 233 article-title: Plant mechanosensing and Ca2+ transport publication-title: Trends Plant Sci. – start-page: 1 year: 2017 end-page: 17 article-title: Plant cell walls publication-title: eLS – volume: 43 start-page: 273 year: 2005 end-page: 283 article-title: Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis publication-title: Plant J. – volume: 301 start-page: 969 year: 2003 end-page: 972 article-title: Loss of a callose synthase results in salicylic acid‐dependent disease resistance publication-title: Science – volume: 14 start-page: 163 year: 2016 end-page: 176 article-title: Interactions of fungal pathogens with phagocytes publication-title: Nat. Rev. Microbiol. – volume: 55 start-page: 257 year: 2017 end-page: 286 article-title: Function, discovery, and exploitation of plant pattern recognition receptors for broad‐spectrum disease resistance publication-title: Annu. Rev. Phytopathol. – volume: 34 start-page: 351 year: 2003 end-page: 362 article-title: Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana publication-title: Plant J. – volume: 11 start-page: 266 year: 2008 end-page: 277 article-title: Pectin structure and biosynthesis publication-title: Curr. Opin. Plant Biol. – volume: 171 start-page: 305 year: 2005 end-page: 321 article-title: RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease‐resistance gene, is not race specific publication-title: Genetics – volume: 23 start-page: 2440 year: 2011 end-page: 2455 article-title: The Arabidopsis Leucine‐rich repeat receptor‐like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to Hemibiotrophic and Biotrophic Pathogens publication-title: Plant Cell – volume: 11 start-page: 1743 year: 1999 end-page: 1754 article-title: A transmembrane hybrid‐type histidine kinase in arabidopsis functions as an osmosensor publication-title: Plant Cell – volume: 63 start-page: 381 year: 2012a end-page: 407 article-title: Growth control and cell wall signaling in plants publication-title: Annu. Rev. Plant Biol. – volume: 3 start-page: 280 year: 2012 article-title: Cell wall integrity signaling and innate immunity in plants publication-title: Front. Plant. Sci. – volume: 150 start-page: 684 year: 2009 end-page: 699 article-title: A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue‐like bundles publication-title: Plant Physiol. – volume: 543 start-page: 328 year: 2017 end-page: 336 article-title: Plant signalling in symbiosis and immunity publication-title: Nature – volume: 61 start-page: 263 year: 2010 end-page: 289 article-title: Hemicelluloses publication-title: Annu. Rev. Plant Biol. – volume: 110 start-page: 10010 year: 2013 end-page: 10015 article-title: Receptor‐like kinase SOBIR1/EVR interacts with receptor‐like proteins in plant immunity against fungal infection publication-title: Proc. Natl Acad. Sci. USA – year: 2017a article-title: Pattern‐triggered immunity and cell wall integrity maintenance jointly modulate plant stress responses publication-title: BioRxiv – volume: 17 start-page: 2281 year: 2005 end-page: 2295 article-title: Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics publication-title: Plant Cell – volume: 112 start-page: 5533 year: 2015 end-page: 5538 article-title: Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage‐associated molecular patterns publication-title: Proc. Natl Acad. Sci. USA – volume: 4 start-page: 784 year: 2009 end-page: 786 article-title: A family of receptor‐like kinases are regulated by BES1 and involved in plant growth in Arabidopsis thaliana publication-title: Plant Signal. Behav. – year: 2018 article-title: Non‐branched beta‐1,3‐glucan oligosaccharides trigger immune responses in Arabidopsis publication-title: Plant J – volume: 92 start-page: 13 year: 2017 article-title: Alteration of cell wall xylan acetylation triggers defense responses that counterbalance the immune deficiencies of plants impaired in the β‐subunit of the heterotrimeric G‐protein publication-title: Plant J. – volume: 215 start-page: 1533 year: 2017 end-page: 1547 article-title: Regulation of growth‐defense balance by the JASMONATE ZIM‐DOMAIN (JAZ)‐MYC transcriptional module publication-title: New Phytol. – volume: 8 start-page: e1002513 year: 2012 article-title: The Arabidopsis lectin receptor kinase LecRK‐V.5 represses stomatal immunity induced by pseudomonas syringae pv. tomato DC3000 publication-title: PLoS Pathog. – volume: 7 start-page: 290 year: 2010 end-page: 301 article-title: Receptor‐like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector publication-title: Cell Host Microbe – volume: 27 start-page: 1390 year: 2014 end-page: 1402 article-title: Phenotypic analyses of Arabidopsis T‐DNA insertion lines and expression profiling reveal that multiple L‐type lectin receptor kinases are involved in plant immunity publication-title: Mol. Plant Microbe Interact. – volume: 7 start-page: 1590 year: 2012 end-page: 1607 article-title: Determining the polysaccharide composition of plant cell walls publication-title: Nature Protoc. – volume: 63 start-page: 451 year: 2012 end-page: 482 article-title: Plant innate immunity: perception of conserved microbial signatures publication-title: Annu. Rev. Plant Biol. – volume: 2 start-page: 851 year: 2009 end-page: 860 article-title: Homogalacturonan Methyl‐Esterification and plant development publication-title: Molecular Plant – volume: 104 start-page: 19613 year: 2007 end-page: 19618 article-title: CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis publication-title: Proc. Natl Acad. Sci. USA – volume: 68 start-page: 701 year: 2017b end-page: 713 article-title: Cell wall composition and penetration resistance against the fungal pathogen Colletotrichum higginsianum are affected by impaired starch turnover in Arabidopsis mutants publication-title: J. Exp. Bot. – volume: 285 start-page: 9444 year: 2010 end-page: 9451 article-title: Rapid Heteromerization and Phosphorylation of Ligand‐activated Plant Transmembrane Receptors and Their Associated Kinase BAK1 publication-title: J. Biol. Chem. – volume: 5 start-page: 446 year: 2014 article-title: Extracellular ATP acts as a damage‐associated molecular pattern (DAMP) signal in plants publication-title: Front. Plant. Sci. – volume: 107 start-page: 9452 year: 2010 end-page: 9457 article-title: A domain swap approach reveals a role of the plant wall‐associated kinase 1 (WAK1) as a receptor of oligogalacturonides publication-title: Proc. Natl Acad. Sci. USA – volume: 29 start-page: 618 year: 2017 end-page: 637 article-title: Receptor kinases in plant‐pathogen interactions: more than pattern recognition publication-title: Plant Cell – volume: 355 start-page: 287 year: 2017 end-page: 289 article-title: The receptor kinase FER is a RALF‐regulated scaffold controlling plant immune signaling publication-title: Science – volume: 114 start-page: 6860 year: 2017 end-page: 6865 article-title: Carbohydrate microarrays and their use for the identification of molecular markers for plant cell wall composition publication-title: Proc. Natl Acad. Sci. USA – volume: 22 start-page: 508 year: 2010 end-page: 522 article-title: PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis publication-title: Plant Cell – volume: 14 start-page: 2095 year: 2002 end-page: 2106 article-title: PMR6, a pectate lyase‐like gene required for powdery mildew susceptibility in Arabidopsis publication-title: Plant Cell – volume: 45 start-page: 101 year: 2007 end-page: 127 article-title: Cell wall ‐ Associated mechanisms of disease resistance and susceptibility publication-title: Annu. Rev. Phytopathol. – volume: 111 start-page: 15261 year: 2014 end-page: 15266 article-title: A receptor‐like protein mediates the response to pectin modification by activating brassinosteroid signaling publication-title: Proc. Natl Acad. Sci. USA – volume: 69 start-page: 337 year: 2009 end-page: 346 article-title: A novel wall‐associated receptor‐like protein kinase gene, OsWAK1, plays important roles in rice blast disease resistance publication-title: Plant Mol. Biol. – volume: 162 start-page: 9 year: 2013 end-page: 23 article-title: Arabidopsis and Brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of polysaccharide acetylation and increased resistance to pathogens publication-title: Plant Physiol. – volume: 233 start-page: 393 year: 2011 end-page: 406 article-title: Change in wall composition of transfer and aleurone cells during wheat grain development publication-title: Planta – volume: 67 start-page: 533 year: 2016 end-page: 542 article-title: Cellulose biosynthesis inhibitors ‐ a multifunctional toolbox publication-title: J. Exp. Bot. – volume: 161 start-page: 2146 year: 2013 end-page: 2158 article-title: Heterotrimeric G proteins serve as a converging point in plant defense signaling activated by multiple receptor‐like kinases publication-title: Plant Physiol. – volume: 84 start-page: 1073 year: 2015 end-page: 1086 article-title: Ethylene production in Botrytis cinerea‐ and oligogalacturonide‐induced immunity requires calcium‐dependent protein kinases publication-title: Plant J. – volume: 114 start-page: 1339 issue: 6 year: 2014 end-page: 1347 article-title: An update on receptor‐like kinase involvement in the maintenance of plant cell wall integrity publication-title: Ann. Bot. – volume: 5 start-page: 168 year: 2014 article-title: Callose‐mediated resistance to pathogenic intruders in plant defense‐related papillae publication-title: Front. Plant. Sci. – volume: 17 start-page: 19 year: 2017 article-title: Short oligogalacturonides induce pathogen resistance‐associated gene expression in Arabidopsis thaliana publication-title: BMC Plant Biol. – volume: 68 start-page: 838 year: 2008 end-page: 847 article-title: LysM, a widely distributed protein motif for binding to (peptido)glycans publication-title: Mol. Microbiol. – volume: 64 start-page: 5309 year: 2013 end-page: 5321 article-title: The family of Peps and their precursors in Arabidopsis: differential expression and localization but similar induction of pattern‐triggered immune responses publication-title: J. Exp. Bot. – volume: 189 start-page: 1145 year: 2011 end-page: 1175 article-title: Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway publication-title: Genetics – volume: 19 start-page: 890 year: 2007 end-page: 903 article-title: Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance publication-title: Plant Cell – volume: 168 start-page: 123 year: 2005 end-page: 140 article-title: Comparison of lignin deposition in three ectopic lignification mutants publication-title: New Phytol. – volume: 164 start-page: 352 year: 2014 end-page: 364 article-title: Fungal Endopolygalacturonases are recognized as microbe‐associated molecular patterns by the Arabidopsis receptor‐like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1 publication-title: Plant Physiol. – volume: 68 start-page: 109 year: 2017 end-page: 137 article-title: The structural basis of ligand perception and signal activation by receptor kinases publication-title: Annu. Rev. Plant Biol. – volume: 129 start-page: 455 year: 2002 end-page: 459 article-title: The cell wall‐associated kinase (WAK) and WAK‐like kinase gene family publication-title: Plant Physiol. – volume: 23 start-page: 549 year: 2010 end-page: 557 article-title: The role of callose deposition along plasmodesmata in nematode feeding sites publication-title: Mol. Plant Microbe Interact. – volume: 212 start-page: 434 year: 2016 end-page: 443 article-title: Down‐regulation of the glucan synthase‐like 6 gene (HvGsl6) in barley leads to decreased callose accumulation and increased cell wall penetration by Blumeria graminis f. sp hordei publication-title: New Phytol. – volume: 40 start-page: 260 year: 2004 end-page: 275 article-title: Novel cell wall architecture of isoxaben‐habituated Arabidopsis suspension‐cultured cells: global transcript profiling and cellular analysis publication-title: Plant J. – volume: 13 start-page: 303 year: 2001 end-page: 318 article-title: Wall‐associated kinases are expressed throughout plant development and are required for cell expansion publication-title: Plant Cell – volume: 154 start-page: 1105 year: 2010 end-page: 1115 article-title: Lack of alpha‐Xylosidase activity in Arabidopsis alters Xyloglucan composition and results in growth defects publication-title: Plant Physiol. – volume: 26 start-page: 991 year: 2013 end-page: 1003 article-title: The role of Arabidopsis Heterotrimeric G‐protein subunits in MLO2 function and MAMP‐triggered immunity publication-title: Mol. Plant Microbe Interact. – volume: 5 start-page: 1003 year: 2000 end-page: 1011 article-title: FLS2: An LRR receptor‐like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis publication-title: Mol. Cell – volume: 13 start-page: e1006832 year: 2017 article-title: The Arabidopsis leucine‐rich repeat receptor kinase MIK2/LRR‐KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses publication-title: PLoS Genet. – volume: 585 start-page: 1521 year: 2011 end-page: 1528 article-title: Engineering plant resistance by constructing chimeric receptors that recognize damage‐associated molecular patterns (DAMPs) publication-title: FEBS Lett. – volume: 26 start-page: 686 year: 2013 end-page: 694 article-title: Functional interplay between Arabidopsis NADPH oxidases and heterotrimeric G protein publication-title: Mol. Plant Microbe Interact. – volume: 21 start-page: 1643 year: 2008 end-page: 1653 article-title: Galactinol is a signaling component of the induced systemic resistance caused by Pseudomonas chlororaphis O6 root colonization publication-title: Mol. Plant Microbe Interact. – volume: 474 start-page: 471 year: 2017 end-page: 492 article-title: Plant cell wall signalling and receptor‐like kinases publication-title: Biochem J – volume: 73 start-page: 225 year: 2013a end-page: 239 article-title: Arabidopsis wat1 (walls are thin1)‐mediated resistance to the bacterial vascular pathogen, Ralstonia solanacearum, is accompanied by cross‐regulation of salicylic acid and tryptophan metabolism publication-title: Plant J. – volume: 92 start-page: 4095 year: 1995 end-page: 4098 article-title: Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway publication-title: Proc. Natl Acad. Sci. USA – volume: 22 start-page: 1732 year: 2012b end-page: 1737 article-title: Plant cell wall homeostasis is mediated by brassinosteroid feedback signaling publication-title: Curr. Biol. – volume: 60 start-page: 314 year: 2009a end-page: 327 article-title: Plasma membrane‐associated proline‐rich extensin‐like receptor kinase 4, a novel regulator of Ca signalling, is required for abscisic acid responses in Arabidopsis thaliana publication-title: Plant J. – volume: 15 start-page: 59 year: 2017 article-title: Life behind the wall: sensing mechanical cues in plants publication-title: BMC Biol. – volume: 40 start-page: 968 year: 2004 end-page: 978 article-title: Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition publication-title: Plant J. – volume: 17 start-page: 922 year: 2007 end-page: 931 article-title: A receptor‐like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis publication-title: Curr. Biol. – volume: 16 start-page: 537 year: 2016 end-page: 552 article-title: Regulation of pattern recognition receptor signalling in plants publication-title: Nat. Rev. Immunol. – volume: 145 start-page: 389 year: 2015 end-page: 394 article-title: The ongoing search for the molecular basis of plant osmosensing publication-title: J. Gen. Physiol. – volume: 3 start-page: e03766 year: 2014 article-title: The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin‐induced complex with related kinase CERK1 publication-title: Elife – volume: 52 start-page: 161 year: 2010 end-page: 175 article-title: What Do We Really Know about Cellulose Biosynthesis in Higher Plants? publication-title: J. Integr. Plant Biol. – volume: 342 start-page: 624 year: 2013 end-page: 628 article-title: Structural basis for flg22‐induced activation of the Arabidopsis FLS2‐BAK1 immune complex publication-title: Science – volume: 161 start-page: 1433 year: 2013 end-page: 1444 article-title: Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis publication-title: Plant Physiol. – volume: 271 start-page: 19789 year: 1996 end-page: 19793 article-title: A cell wall‐associated, receptor‐like protein kinase publication-title: J. Biol. Chem. – volume: 107 start-page: 17217 year: 2010 end-page: 17222 article-title: Competition‐defense tradeoffs and the maintenance of plant diversity publication-title: Proc. Natl Acad. Sci. USA – volume: 14 start-page: 387 year: 2016 end-page: 397 article-title: Expression of fungal acetyl xylan esterase in Arabidopsis thaliana improves saccharification of stem lignocellulose publication-title: Plant Biotechnol. J. – volume: 97 start-page: 497 year: 1993 end-page: 505 article-title: Cloning and characterization of a gene encoding the endopolygalacturonase of fusarium‐moniliforme publication-title: Mycol. Res. – volume: 9 start-page: e106509 year: 2014 article-title: Increased drought tolerance through the suppression of ESKMO1 gene and overexpression of CBF‐related genes in Arabidopsis publication-title: PLoS ONE – volume: 36 start-page: 353 year: 2003 end-page: 365 article-title: ERECTA, an LRR receptor‐like kinase protein controlling development pleiotropically affects resistance to bacterial wilt publication-title: Plant J. – volume: 78 start-page: 715 year: 2014 end-page: 722 article-title: Epitope detection chromatography: a method to dissect the structural heterogeneity and inter‐connections of plant cell‐wall matrix glycans publication-title: Plant J. – volume: 71 start-page: 916 issue: 4 year: 1983 end-page: 926 article-title: Host‐Pathogen Interactions: XXII. A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins publication-title: Plant Physiol. – volume: 57 start-page: 929 year: 2001 end-page: 967 article-title: Pectins: structure, biosynthesis, and oligogalacturonide‐related signaling publication-title: Phytochemistry – volume: 14 start-page: 1557 year: 2002 end-page: 1566 article-title: The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses publication-title: Plant Cell – volume: 68 start-page: 100 year: 2011 end-page: 113 article-title: Interplay between calcium signalling and early signalling elements during defence responses to microbe‐ or damage‐associated molecular patterns publication-title: Plant J. – volume: 16 start-page: 63 year: 1998 end-page: 71 article-title: High affinity RGD‐binding sites at the plasma membrane of Arabidopsis thaliana links the cell wall publication-title: Plant J. – volume: 22 start-page: 953 year: 2009 end-page: 963 article-title: The ERECTA receptor‐like kinase regulates cell wall mediated resistance to pathogens in Arabidopsis thaliana publication-title: Mol. Plant Microbe Interact. – volume: 908 start-page: 61 year: 2012 end-page: 72 article-title: Plant Pattern Recognition Receptors publication-title: Methods Mol. Biol. – volume: 3 start-page: 1 year: 1993 end-page: 30 article-title: Structural models of primary‐cell walls in flowering plants ‐ consistency of molecular‐structure with the physical‐properties of the walls during growth publication-title: Plant J. – volume: 18 start-page: 937 year: 2017 end-page: 948 article-title: The Arabidopsis thaliana lectin receptor kinase LecRK‐I.9 is required for full resistance to Pseudomonas syringae and affects jasmonate signalling publication-title: Mol. Plant Pathol. – year: 2011 – volume: 54 start-page: 2303 year: 2006 end-page: 2308 article-title: Deposition of cell wall polysaccharides in wheat endosperm during grain development: Fourier transform‐infrared microspectroscopy study publication-title: J. Agric. Food Chem. – volume: 19 start-page: 765 year: 2010 end-page: 777 article-title: Integration of Brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis publication-title: Dev. Cell – volume: 104 start-page: 1113 year: 1994 end-page: 1118 article-title: Deconstructing the Cell Wall publication-title: Plant Physiol. – year: 2005 – volume: 5 start-page: 178 year: 2014 article-title: The role of the cell wall in plant immunity publication-title: Front. Plant. Sci. – volume: 204 start-page: 650 year: 2014 end-page: 660 article-title: Differential accumulation of callose, arabinoxylan and cellulose in nonpenetrated versus penetrated papillae on leaves of barley infected with Blumeria graminis f. sp. hordei publication-title: New Phytol. – volume: 413 start-page: 36 year: 2001 end-page: 37 article-title: Immune recognition: a new receptor for [beta]‐glucans publication-title: Nature – volume: 25 start-page: 2361 year: 2015 end-page: 2372 article-title: Differential function of Arabidopsis SERK family receptor‐like kinases in stomatal patterning publication-title: Curr. Biol. – volume: 157 start-page: 1163 year: 2011 end-page: 1174 article-title: Oligogalacturonide‐Auxin Antagonism does not require posttranscriptional gene silencing or stabilization of auxin response repressors in Arabidopsis publication-title: Plant Physiol. – volume: 25 start-page: 110 year: 2015 end-page: 120 article-title: Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1 publication-title: Cell Res. – volume: 173 start-page: 1844 year: 2017 end-page: 1863 article-title: Three pectin Methylesterase inhibitors protect cell wall integrity for Arabidopsis immunity to botrytis publication-title: Plant Physiol. – volume: 142 start-page: 984 year: 2006 end-page: 992 article-title: Extracellular ATP in plants. Visualization, localization, and analysis of physiological significance in growth and signaling publication-title: Plant Physiol. – volume: 35 start-page: 345 year: 2014 end-page: 351 article-title: Plant pattern‐recognition receptors publication-title: Trends Immunol. – volume: 60 start-page: 955 year: 2009 end-page: 965 article-title: Thaxtomin A affects CESA‐complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings publication-title: J. Exp. Bot. – volume: 16 start-page: 107 year: 2015 end-page: 115 article-title: Functional analysis of related CrRLK1L receptor‐like kinases in pollen tube reception publication-title: EMBO Rep. – volume: 448 start-page: 497 year: 2007 end-page: U412 article-title: A flagellin‐induced complex of the receptor FLS2 and BAK1 initiates plant defence publication-title: Nature – volume: 18 start-page: 582 year: 2017 end-page: 595 article-title: Immune responses induced by oligogalacturonides are differentially affected by AvrPto and loss of BAK1/BKK1 and PEPR1/PEPR2 publication-title: Mol. Plant Pathol. – volume: 5 start-page: 98 year: 2012 end-page: 114 article-title: Arabidopsis heterotrimeric G‐protein regulates cell wall defense and resistance to necrotrophic fungi publication-title: Molecular Plant – volume: 103 start-page: 10098 year: 2006 end-page: 10103 article-title: An endogenous peptide signal in Arabidopsis activates components of the innate immune response publication-title: Proc. Natl Acad. Sci. USA – volume: 1 start-page: 16043 year: 2016 article-title: A fungal pathogen secretes plant alkalinizing peptides to increase infection publication-title: Nat. Microbiol. – volume: 35 start-page: 46 year: 2016 end-page: 61 article-title: Danger peptide receptor signaling in plants ensures basal immunity upon pathogen‐induced depletion of BAK1 publication-title: EMBO J. – volume: 64 start-page: 747 year: 2013 end-page: 749 article-title: Evolving views of pectin biosynthesis publication-title: Annu. Rev. Plant Biol. – volume: 3 start-page: 626 year: 2010 end-page: 640 article-title: FERONIA is a key modulator of brassinosteroid and ethylene responsiveness in Arabidopsis hypocotyls publication-title: Molecular Plant – volume: 4 start-page: 49 year: 2013 article-title: Oligogalacturonides: plant damage‐associated molecular patterns and regulators of growth and development publication-title: Front. Plant. Sci. – volume: 24 start-page: 432 year: 2011 end-page: 440 article-title: Pectin methylesterase is induced in Arabidopsis upon infection and is necessary for a successful colonization by necrotrophic pathogens publication-title: Mol. Plant Microbe Interact. – volume: 155 start-page: 1920 issue: 4 year: 2011 end-page: 1935 article-title: MYB46 modulates disease susceptibility to in Arabidopsis publication-title: Plant Physiol. – volume: 415 start-page: 977 year: 2002 end-page: 983 article-title: MAP kinase signalling cascade in Arabidopsis innate immunity publication-title: Nature – volume: 173 start-page: 2383 year: 2017 end-page: 2398 article-title: Cellulose‐derived oligomers act as damage‐associated molecular patterns and trigger defense‐like responses publication-title: Plant Physiol. – volume: 188 start-page: 464 year: 2010 end-page: 477 article-title: Variation and fitness costs for tolerance to different types of herbivore damage in Boechera stricta genotypes with contrasting glucosinolate structures publication-title: New Phytol. – volume: 169 start-page: 1623 year: 2012 end-page: 1630 article-title: Methyl esterification of pectin plays a role during plant‐pathogen interactions and affects plant resistance to diseases publication-title: J. Plant Physiol. – volume: 40 start-page: 106 year: 2017 end-page: 113 article-title: Regulation of cellulose synthesis in response to stress publication-title: Curr. Opin. Plant Biol. – volume: 7 start-page: 532 year: 2011 article-title: Arabidopsis G‐protein interactome reveals connections to cell wall carbohydrates and morphogenesis publication-title: Mol. Syst. Biol. – volume: 164 start-page: 1093 year: 2014 end-page: 1107 article-title: Arabidopsis PECTIN METHYLESTERASEs Contribute to Immunity against Pseudomonas syringae publication-title: Plant Physiol. – volume: 104 start-page: 3639 year: 2007 end-page: 3644 article-title: Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots publication-title: Proc. Natl Acad. Sci. USA – volume: 7 start-page: 984 year: 2016 article-title: The plant cell wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions publication-title: Front. Plant. Sci. – volume: 66 start-page: 1123 year: 2015 end-page: 1132 article-title: Growth control: brassinosteroid activity gets context publication-title: J. Exp. Bot. – volume: 89 start-page: 250 year: 2017 end-page: 263 article-title: IDL6‐HAE/HSL2 impacts pectin degradation and resistance to Pseudomonas syringae pv tomato DC3000 in Arabidopsis leaves publication-title: Plant J. – volume: 67 start-page: 1068 year: 2006 end-page: 1079 article-title: In vitro characterization of the homogalacturonan‐binding domain of the wall‐associated kinase WAK1 using site‐directed mutagenesis publication-title: Phytochemistry – volume: 5 start-page: 228 year: 2014 article-title: Plant cell wall dynamics and wall‐related susceptibility in plant‐pathogen interactions publication-title: Front. Plant. Sci. – volume: 173 start-page: 970 year: 2017 end-page: 983 article-title: Functional analysis of cellulose synthase (CESA) protein class specificity publication-title: Plant Physiol. – volume: 1 start-page: 15140 year: 2015 article-title: An RLP23‐SOBIR1‐BAK1 complex mediates NLP‐triggered immunity publication-title: Nature Plants – year: 1992 – start-page: 221 year: 2010 end-page: 250 – year: 2018 article-title: YODA MAP3K kinase regulates plant immune responses conferring broad‐spectrum disease resistance publication-title: New Phytol. – volume: 156 start-page: 596 year: 2011 end-page: 604 article-title: Cell Wall Integrity Controls Root Elongation via a General 1‐Aminocyclopropane‐1‐Carboxylic Acid‐Dependent publication-title: Ethylene‐Independent Pathway. Plant Physiol. – volume: 56 start-page: 215 year: 2015 end-page: 223 article-title: The plant cell wall integrity maintenance mechanism‐concepts for organization and mode of action publication-title: Plant Cell Physiol. – volume: 203 start-page: 98 year: 2013 end-page: 106 article-title: Overexpression of L‐type lectin‐like protein kinase 1 confers pathogen resistance and regulates salinity response in Arabidopsis thaliana publication-title: Plant Sci. – volume: 156 start-page: 1364 year: 2011 end-page: 1374 article-title: Cell wall damage‐induced lignin biosynthesis is regulated by a reactive oxygen species‐ and jasmonic acid‐dependent process in Arabidopsis publication-title: Plant Physiol. – volume: 5 start-page: 358 year: 2014 end-page: 358 article-title: The role of the secondary cell wall in plant resistance to pathogens publication-title: Front. Plant. Sci. – start-page: 18 year: 2017 – volume: 28 start-page: 537 year: 2016 end-page: 556 article-title: Pectin biosynthesis is critical for cell wall integrity and immunity in Arabidopsis thaliana publication-title: Plant Cell – volume: 4 start-page: 212 year: 2011 end-page: 219 article-title: Cell wall biology: perspectives from cell wall imaging publication-title: Molecular Plant – volume: 1578 start-page: 13 year: 2017 end-page: 23 article-title: Plant pattern recognition receptors publication-title: Methods Mol. Biol – volume: 125 start-page: 749 year: 2006 end-page: 760 article-title: Perception of the bacterial PAMP EF‐Tu by the receptor EFR restricts Agrobacterium‐mediated transformation publication-title: Cell – volume: 19 start-page: 423 year: 2009 end-page: 429 article-title: AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants publication-title: Curr. Biol. – volume: 20 start-page: 12 year: 2015 end-page: 19 article-title: Trade‐off between growth and immunity: role of brassinosteroids publication-title: Trends Plant Sci. – volume: 49 start-page: 786 year: 2007 end-page: 799 article-title: Arabidopsis ESK1 encodes a novel regulator of freezing tolerance publication-title: Plant J. – volume: 57 start-page: 1015 year: 2009 end-page: 1026 article-title: Identification of cell‐wall stress as a hexose‐dependent and osmosensitive regulator of plant responses publication-title: Plant J. – volume: 6 start-page: 850 year: 2005 end-page: 861 article-title: Growth of the plant cell wall publication-title: Nat. Rev. Mol. Cell Biol. – volume: 57 start-page: 357 year: 2015 end-page: 372 article-title: Ectopic lignification in primary cellulose‐deficient cell walls of maize cell suspension cultures publication-title: J. Integr. Plant Biol. – volume: 4 start-page: 155 year: 2013b article-title: Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs publication-title: Front. Plant. Sci. – volume: 32 start-page: 21 year: 2015 end-page: 27 article-title: C‐type lectins in immunity: recent developments publication-title: Curr. Opin. Immunol. – volume: 21 start-page: 216 year: 2009 end-page: 233 article-title: ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are Polygalacturonases required for cell separation during reproductive development in Arabidopsis publication-title: Plant Cell – volume: 59 start-page: 930 year: 2009 end-page: 939 article-title: Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis publication-title: Plant J. – volume: 64 start-page: 665 year: 2013 end-page: 674 article-title: Signalling of Arabidopsis thaliana response to Pieris brassicae eggs shares similarities with PAMP‐triggered immunity publication-title: J. Exp. Bot. – volume: 15 start-page: 19 year: 2003 end-page: 32 article-title: The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion publication-title: Plant Cell – volume: 12 start-page: 2409 year: 2000 end-page: 2423 article-title: PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark‐grown hypocotyls of arabidopsis publication-title: Plant Cell – volume: 276 start-page: 45669 year: 2001 end-page: 45676 article-title: Sensitivity of different ecotypes and mutants of Arabidopsis thaliana toward the bacterial elicitor flagellin correlates with the presence of receptor‐binding sites publication-title: J. Biol. Chem. – volume: 62 start-page: 5571 year: 2011 end-page: 5580 article-title: Evidence for the localization of the Arabidopsis cytokinin receptors AHK3 and AHK4 in the endoplasmic reticulum publication-title: J. Exp. Bot. – volume: 60 start-page: 3615 year: 2009 end-page: 3635 article-title: Plant cell walls throughout evolution: towards a molecular understanding of their design principles publication-title: J. Exp. Bot. – volume: 165 start-page: 1188 year: 2014a end-page: 1202 article-title: The Arabidopsis NUCLEUS‐ AND PHRAGMOPLAST‐LOCALIZED KINASE1‐related protein kinases are required for elicitor‐induced oxidative burst and immunity publication-title: Plant Physiol. – volume: 8 start-page: e22598 year: 2013 article-title: Role of LysM receptors in chitin‐triggered plant innate immunity publication-title: Plant Signal. Behav. – volume: 19 start-page: 358 year: 1997 end-page: 365 article-title: Production and regulation of polygalacturonase isozymes in Canadian isolates of Leptosphaeria maculans differing in virulence publication-title: Can. J. Plant Pathol. – volume: 15 start-page: 265 year: 2014 end-page: 274 article-title: Transgenic expression of pectin methylesterase inhibitors limits tobamovirus spread in tobacco and Arabidopsis publication-title: Mol. Plant Pathol. – volume: 63 start-page: 3523 year: 2012 end-page: 3543 article-title: The interaction of plant biotic and abiotic stresses: from genes to the field publication-title: J. Exp. Bot. – volume: 80 start-page: 926 year: 2014 end-page: 935 article-title: Matrix‐assisted laser desorption/ionization mass spectrometry imaging: a powerful tool for probing the molecular topology of plant cutin polymer publication-title: Plant J. – volume: 14 start-page: 548 year: 2012 end-page: U214 article-title: SPEECHLESS integrates brassinosteroid and stomata signalling pathways publication-title: Nat. Cell Biol. – volume: 104 start-page: 20623 year: 2007 end-page: 20628 article-title: Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis publication-title: Proc. Natl Acad. Sci. USA – volume: 307 start-page: 249 year: 2008 end-page: 264 article-title: Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies publication-title: Mol. Cell. Biochem. – volume: 22 start-page: 329 year: 2017 end-page: 337 article-title: Dynamic plant‐plant‐herbivore interactions govern plant growth‐defence integration publication-title: Trends Plant Sci. – volume: 336 start-page: 1160 year: 2012 end-page: 1164 article-title: Chitin‐Induced Dimerization Activates a Plant Immune Receptor publication-title: Science – volume: 341 start-page: 889 year: 2013 end-page: 892 article-title: Molecular mechanism for plant steroid receptor activation by Somatic Embryogenesis co‐receptor kinases publication-title: Science – volume: 20 start-page: 471 year: 2008 end-page: 481 article-title: A LysM receptor‐like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis publication-title: Plant Cell – volume: 66 start-page: 5183 year: 2015 end-page: 5193 article-title: Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development publication-title: J. Exp. Bot. – volume: 206 start-page: 522 year: 2015 end-page: 540 article-title: The molecular circuitry of brassinosteroid signaling publication-title: New Phytol. – volume: 6 start-page: 43 year: 2005 end-page: 51 article-title: Evaluation of tolerance to Pierce's disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene publication-title: Mol. Plant Pathol. – volume: 343 start-page: 408 year: 2014 end-page: 411 article-title: A peptide hormone and its receptor protein kinase regulate plant cell expansion publication-title: Science – volume: 141 start-page: 557 year: 2006 end-page: 564 article-title: Polygalacturonase‐inhibiting protein interacts with pectin through a binding site formed by four clustered residues of arginine and lysine publication-title: Plant Physiol. – volume: 140 start-page: 81 year: 2006 end-page: 90 article-title: Lectin receptor kinases participate in protein‐protein interactions to mediate plasma membrane‐cell wall adhesions in Arabidopsis publication-title: Plant Physiol. – volume: 6 start-page: 30251 year: 2016 article-title: Arabidopsis AtERF014 acts as a dual regulator that differentially modulates immunity against Pseudomonas syringae pv. tomato and Botrytis cinerea publication-title: Sci. Rep. – volume: 3 start-page: 12 year: 2012 article-title: O‐acetylation of plant cell wall polysaccharides publication-title: Front. Plant. Sci. – volume: 24 start-page: 1887 year: 2014 end-page: 1892 article-title: The receptor‐like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings publication-title: Curr. Biol. – volume: 171 start-page: 2379 year: 2016 end-page: 2392 article-title: FERONIA and Her Pals: Functions and Mechanisms publication-title: Plant Physiol. – volume: 9 start-page: e98193 year: 2014 article-title: Alterations in Auxin Homeostasis suppress defects in cell wall function publication-title: PLoS ONE – volume: 5 start-page: 7 year: 2014 article-title: Genome‐wide association study of Arabidopsis thaliana leaf microbial community publication-title: Nat. Commun. – volume: 15 start-page: 659 year: 2012 end-page: 669 article-title: CrRLK1L receptor‐like kinases: not just another brick in the wall publication-title: Curr. Opin. Plant Biol. – volume: 165 start-page: 262 year: 2014 end-page: 276 article-title: The Arabidopsis LYSIN MOTIF‐CONTAINING RECEPTOR‐LIKE KINASE3 Regulates the Cross Talk between Immunity and Abscisic Acid Responses publication-title: Plant Physiol. – volume: 152 start-page: 1284 year: 2010 end-page: 1296 article-title: MCA1 and MCA2 that mediate Ca2+ uptake have distinct and overlapping roles in Arabidopsis publication-title: Plant Physiol. – year: 2000 – volume: 1578 start-page: 81 year: 2017 end-page: 108 article-title: Plant Pattern Recognition Receptors publication-title: Methods Mol. Biol. – volume: 60 start-page: 974 year: 2009 end-page: 982 article-title: Pectin activation of MAP kinase and gene expression is WAK2 dependent publication-title: Plant J. – volume: 25 start-page: 2330 year: 2013b end-page: 2340 article-title: The receptor‐like protein ReMAX of Arabidopsis detects the microbe‐associated molecular pattern eMax from Xanthomonas publication-title: Plant Cell – volume: 43 start-page: 165 year: 2005 end-page: 180 article-title: ERECTA receptor‐like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus publication-title: Plant J. – volume: 155 start-page: 1068 year: 2011 end-page: 1078 article-title: Loss‐of‐function mutation of REDUCED WALL ACETYLATION2 in Arabidopsis leads to reduced cell wall acetylation and increased resistance to Botrytis cinerea publication-title: Plant Physiol. – volume: 20 start-page: 3065 year: 2008 end-page: 3079 article-title: Two leucine‐rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis publication-title: Plant Cell – volume: 68 start-page: 1161 year: 1981 end-page: 1169 article-title: Host‐pathogen interactions.19. The endogenous elicitor, a fragment of a plant‐cell wall polysaccharide that elicits phytoalexin accumulation in soybeans publication-title: Plant Physiol. – volume: 46 start-page: 268 year: 2005 end-page: 278 article-title: Wall‐associated kinase WAK1 interacts with cell wall pectins in a calcium‐induced conformation publication-title: Plant Cell Physiol. – volume: 13 start-page: 413 year: 2001 end-page: 424 article-title: Plasma membrane‐cell wall adhesion is required for expression of plant defense responses during fungal penetration publication-title: Plant Cell – volume: 24 start-page: 2624 year: 2012 end-page: 2634 article-title: Demethylesterification of the primary wall by PECTIN METHYLESTERASE35 provides mechanical support to the Arabidopsis stem publication-title: Plant Cell – volume: 212 start-page: 421 year: 2016 end-page: 433 article-title: The barley (Hordeum vulgare) cellulose synthase‐like D2 gene (HvCslD2) mediates penetration resistance to host‐adapted and nonhost isolates of the powdery mildew fungus publication-title: New Phytol. – volume: 32 start-page: 95 year: 2009 end-page: 108 article-title: Metabolome and water status phenotyping of Arabidopsis under abiotic stress cues reveals new insight into ESK1 function publication-title: Plant, Cell Environ. – volume: 22 start-page: 53 year: 2006 end-page: 78 article-title: Cellulose synthesis in higher plants publication-title: Annu. Rev. Cell Dev. Biol. – volume: 112 start-page: 8780 year: 2015 end-page: 8785 article-title: The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall‐associated receptor‐like kinase publication-title: Proc. Natl Acad. Sci. USA – volume: 27 start-page: 901 year: 2014 end-page: 912 article-title: A distinct role of pectate lyases in the formation of feeding structures induced by cyst and root‐knot nematodes publication-title: Mol. Plant Microbe Interact. – volume: 285 start-page: 13471 year: 2010 end-page: 13479 article-title: Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2 publication-title: J. Biol. Chem. – volume: 16 start-page: 426 year: 2015 end-page: 433 article-title: A lectin S‐domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana publication-title: Nat. Immunol. – volume: 15 start-page: 2503 year: 2003 end-page: 2513 article-title: An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation publication-title: Plant Cell – volume: 7 start-page: 897 year: 2016 article-title: ERECTA and BAK1 receptor like kinases interact to regulate immune responses in Arabidopsis publication-title: Front. Plant Sci. – volume: 63 start-page: 115 year: 2010 end-page: 127 article-title: Tryptophan‐derived secondary metabolites in Arabidopsis thaliana confer non‐host resistance to necrotrophic Plectosphaerella cucumerina fungi publication-title: Plant J. – volume: 112 start-page: 63 year: 2015 end-page: 71 article-title: Interplays between the cell wall and phytohormones in interaction between plants and necrotrophic pathogens publication-title: Phytochemistry – volume: 1696 start-page: 237 year: 2004 end-page: 244 article-title: Polygalacturonases, polygalacturonase‐inhibiting proteins and pectic oligomers in plant‐pathogen interactions. publication-title: Biophys. Acta, Proteins Proteomics – volume: 65 start-page: 512 year: 2011 end-page: 522 article-title: Partial resistance in the Linum‐Melampsora host‐pathogen system: does partial resistance make the red queen run slower? publication-title: Evolution – ident: e_1_2_9_155_1 doi: 10.1016/j.phytochem.2014.11.008 – ident: e_1_2_9_34_1 doi: 10.1046/j.1365-313x.1998.00276.x – ident: e_1_2_9_103_1 doi: 10.3389/fpls.2016.00984 – ident: e_1_2_9_243_1 doi: 10.1093/pcp/pce127 – ident: e_1_2_9_139_1 doi: 10.1094/MPMI-03-13-0077-R – ident: e_1_2_9_56_1 doi: 10.3389/fpls.2013.00155 – ident: e_1_2_9_226_1 doi: 10.1371/journal.ppat.1006433 – ident: e_1_2_9_180_1 doi: 10.1104/pp.112.200154 – ident: e_1_2_9_23_1 doi: 10.1104/pp.113.227637 – ident: e_1_2_9_240_1 doi: 10.1111/j.1365-313X.2006.02994.x – ident: e_1_2_9_42_1 doi: 10.1042/BJ20140666 – ident: e_1_2_9_82_1 doi: 10.1104/pp.105.066464 – ident: e_1_2_9_111_1 doi: 10.1105/tpc.113.110833 – ident: e_1_2_9_249_1 doi: 10.1104/pp.113.230698 – ident: e_1_2_9_144_1 doi: 10.1104/pp.110.168989 – ident: e_1_2_9_198_1 doi: 10.1126/science.aal2541 – ident: e_1_2_9_160_1 doi: 10.1105/tpc.108.063768 – ident: e_1_2_9_204_1 doi: 10.3389/fpls.2014.00446 – volume-title: Cell walls and plant‐microbe interactions year: 2011 ident: e_1_2_9_4_1 – volume-title: The cell wall year: 2000 ident: e_1_2_9_38_1 – ident: e_1_2_9_218_1 doi: 10.1105/tpc.003509 – ident: e_1_2_9_227_1 doi: 10.1007/s00253-011-3405-1 – ident: e_1_2_9_125_1 doi: 10.1093/mp/ssq075 – ident: e_1_2_9_251_1 doi: 10.1016/j.it.2014.05.004 – ident: e_1_2_9_127_1 doi: 10.1201/9781420027952 – ident: e_1_2_9_26_1 doi: 10.1146/annurev-phyto-080614-120106 – ident: e_1_2_9_244_1 doi: 10.15252/embj.201591807 – ident: e_1_2_9_153_1 doi: 10.1073/pnas.0705147104 – year: 2018 ident: e_1_2_9_194_1 article-title: YODA MAP3K kinase regulates plant immune responses conferring broad‐spectrum disease resistance publication-title: New Phytol. doi: 10.1111/nph.15007 – ident: e_1_2_9_61_1 doi: 10.1534/genetics.105.042218 – ident: e_1_2_9_138_1 doi: 10.1111/j.1365-313X.2005.02440.x – ident: e_1_2_9_149_1 doi: 10.1111/tpj.13755 – ident: e_1_2_9_80_1 doi: 10.1046/j.1365-313X.2003.01877.x – ident: e_1_2_9_119_1 doi: 10.1111/j.1365-313X.2009.04016.x – ident: e_1_2_9_13_1 doi: 10.1111/j.1365-313X.2009.03956.x – ident: e_1_2_9_44_1 doi: 10.1111/nph.14086 – ident: e_1_2_9_92_1 doi: 10.1111/j.1365-313X.2008.03744.x – ident: e_1_2_9_191_1 doi: 10.1104/pp.109.135459 – ident: e_1_2_9_184_1 doi: 10.1104/pp.114.236901 – ident: e_1_2_9_141_1 doi: 10.1111/j.1365-3040.2008.01898.x – ident: e_1_2_9_7_1 doi: 10.1111/j.1558-5646.2010.01146.x – ident: e_1_2_9_21_1 doi: 10.3389/fpls.2014.00228 – volume: 585 start-page: 1521 year: 2011 ident: e_1_2_9_51_1 article-title: Engineering plant resistance by constructing chimeric receptors that recognize damage‐associated molecular patterns (DAMPs) publication-title: FEBS Lett. doi: 10.1016/j.febslet.2011.04.043 – ident: e_1_2_9_58_1 doi: 10.1093/mp/ssn019 – ident: e_1_2_9_33_1 doi: 10.1046/j.1365-313X.2003.01729.x – ident: e_1_2_9_173_1 doi: 10.1007/s00425-010-1306-7 – ident: e_1_2_9_35_1 doi: 10.7554/eLife.03766 – ident: e_1_2_9_220_1 doi: 10.3389/fpls.2014.00168 – volume: 92 start-page: 13 year: 2017 ident: e_1_2_9_73_1 article-title: Alteration of cell wall xylan acetylation triggers defense responses that counterbalance the immune deficiencies of plants impaired in the β‐subunit of the heterotrimeric G‐protein publication-title: Plant J. doi: 10.1111/tpj.13660 – ident: e_1_2_9_237_1 doi: 10.1073/pnas.1322979111 – ident: e_1_2_9_93_1 doi: 10.1186/s12915-017-0403-5 – ident: e_1_2_9_95_1 doi: 10.1085/jgp.201411295 – ident: e_1_2_9_43_1 doi: 10.1111/nph.12974 – ident: e_1_2_9_151_1 doi: 10.1016/j.cub.2015.07.068 – ident: e_1_2_9_196_1 doi: 10.1111/j.1365-313X.2009.03926.x – ident: e_1_2_9_72_1 doi: 10.1038/nrmicro.2015.21 – ident: e_1_2_9_52_1 doi: 10.1093/pcp/pci026 – ident: e_1_2_9_104_1 doi: 10.1016/j.plantsci.2012.12.019 – ident: e_1_2_9_214_1 doi: 10.1111/tpj.12689 – ident: e_1_2_9_3_1 doi: 10.1111/j.1364-3703.2004.00262.x – volume: 1578 start-page: 13 year: 2017 ident: e_1_2_9_12_1 article-title: Plant pattern recognition receptors publication-title: Methods Mol. Biol – ident: e_1_2_9_146_1 doi: 10.1111/j.1469-8137.2010.03385.x – ident: e_1_2_9_150_1 doi: 10.1105/tpc.13.2.413 – ident: e_1_2_9_178_1 doi: 10.1094/MPMI-22-8-0953 – ident: e_1_2_9_130_1 doi: 10.1073/pnas.1220015110 – ident: e_1_2_9_234_1 doi: 10.1093/mp/ssp066 – ident: e_1_2_9_205_1 doi: 10.1038/cr.2014.161 – ident: e_1_2_9_248_1 doi: 10.1016/j.chom.2010.03.007 – ident: e_1_2_9_199_1 doi: 10.1371/journal.pone.0098193 – ident: e_1_2_9_231_1 doi: 10.1094/MPMI-01-14-0005-R – ident: e_1_2_9_106_1 doi: 10.1146/annurev.phyto.45.062806.094325 – ident: e_1_2_9_213_1 doi: 10.1371/journal.pgen.1006832 – ident: e_1_2_9_96_1 doi: 10.1074/jbc.271.33.19789 – volume: 908 start-page: 61 year: 2012 ident: e_1_2_9_162_1 article-title: Plant Pattern Recognition Receptors publication-title: Methods Mol. Biol. – ident: e_1_2_9_135_1 doi: 10.1104/pp.16.01185 – ident: e_1_2_9_110_1 doi: 10.4161/psb.27408 – ident: e_1_2_9_36_1 doi: 10.1016/S0953-7562(09)80138-X – ident: e_1_2_9_136_1 doi: 10.1126/science.1218867 – ident: e_1_2_9_11_1 doi: 10.1104/pp.16.01680 – ident: e_1_2_9_87_1 doi: 10.1111/j.1744-7909.2010.00935.x – ident: e_1_2_9_50_1 doi: 10.1186/s12870-016-0959-1 – ident: e_1_2_9_222_1 doi: 10.1016/j.tplants.2016.12.006 – ident: e_1_2_9_161_1 doi: 10.1104/pp.113.233759 – ident: e_1_2_9_32_1 doi: 10.1093/jxb/err238 – ident: e_1_2_9_183_1 doi: 10.1104/pp.111.184663 – ident: e_1_2_9_131_1 doi: 10.1016/j.pbi.2012.07.003 – ident: e_1_2_9_24_1 doi: 10.1105/tpc.15.00404 – volume: 8 start-page: 445 year: 2017 ident: e_1_2_9_45_1 article-title: Altered expression of genes implicated in Xylan biosynthesis affects penetration resistance against powdery mildew publication-title: Front. Plant. Sci. doi: 10.3389/fpls.2017.00445 – ident: e_1_2_9_100_1 doi: 10.1146/annurev-arplant-042916-040957 – ident: e_1_2_9_116_1 doi: 10.1104/pp.106.085670 – ident: e_1_2_9_239_1 doi: 10.1104/pp.112.195198 – ident: e_1_2_9_170_1 doi: 10.1038/ni.3124 – ident: e_1_2_9_224_1 doi: 10.1104/pp.104.4.1113 – ident: e_1_2_9_5_1 doi: 10.1038/nplants.2015.140 – ident: e_1_2_9_22_1 doi: 10.1073/pnas.1504154112 – ident: e_1_2_9_28_1 doi: 10.1038/35092620 – ident: e_1_2_9_123_1 doi: 10.1016/j.tplants.2012.12.002 – volume: 114 start-page: 6860 year: 2017 ident: e_1_2_9_238_1 article-title: Carbohydrate microarrays and their use for the identification of molecular markers for plant cell wall composition publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1619033114 – ident: e_1_2_9_81_1 doi: 10.1016/S1097-2765(00)80265-8 – ident: e_1_2_9_88_1 doi: 10.4161/psb.4.8.9231 – ident: e_1_2_9_156_1 doi: 10.1073/pnas.0607703104 – ident: e_1_2_9_128_1 doi: 10.1007/s11103-008-9430-5 – ident: e_1_2_9_63_1 doi: 10.1111/nph.14065 – ident: e_1_2_9_16_1 doi: 10.1093/jxb/erv180 – ident: e_1_2_9_68_1 doi: 10.1105/tpc.002022 – ident: e_1_2_9_6_1 doi: 10.1080/07060669709501060 – ident: e_1_2_9_69_1 doi: 10.1093/aob/mcu043 – ident: e_1_2_9_241_1 doi: 10.1105/tpc.108.063354 – volume: 3 start-page: 15 year: 2012 ident: e_1_2_9_65_1 article-title: Golgi‐mediated synthesis and secretion of matrix polysaccharides of the primary cell wall of higher plants publication-title: Front. Plant. Sci. doi: 10.3389/fpls.2012.00079 – ident: e_1_2_9_159_1 doi: 10.3389/fpls.2012.00280 – ident: e_1_2_9_108_1 doi: 10.1073/pnas.1502522112 – ident: e_1_2_9_215_1 doi: 10.1104/pp.011028 – ident: e_1_2_9_126_1 doi: 10.1534/genetics.111.128264 – ident: e_1_2_9_140_1 doi: 10.1016/j.tplants.2014.09.003 – ident: e_1_2_9_148_1 doi: 10.1111/jipb.12346 – ident: e_1_2_9_235_1 doi: 10.1146/annurev-arplant-042811-105449 – ident: e_1_2_9_19_1 doi: 10.1111/nph.13269 – ident: e_1_2_9_67_1 doi: 10.1105/tpc.13.5.1025 – volume: 71 start-page: 916 issue: 4 year: 1983 ident: e_1_2_9_158_1 article-title: Host‐Pathogen Interactions: XXII. A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins publication-title: Plant Physiol. doi: 10.1104/pp.71.4.916 – ident: e_1_2_9_242_1 doi: 10.1371/journal.pone.0106509 – ident: e_1_2_9_113_1 doi: 10.1073/pnas.1016508108 – ident: e_1_2_9_208_1 doi: 10.1094/MPMI-10-12-0236-R – ident: e_1_2_9_192_1 doi: 10.1105/tpc.112.095778 – ident: e_1_2_9_216_1 doi: 10.1023/A:1013679111111 – ident: e_1_2_9_174_1 doi: 10.1111/j.1469-8137.2005.01496.x – ident: e_1_2_9_229_1 doi: 10.1111/tpj.13380 – ident: e_1_2_9_54_1 doi: 10.1093/mp/ssr082 – ident: e_1_2_9_30_1 doi: 10.1073/pnas.1000675107 – ident: e_1_2_9_10_1 doi: 10.1146/annurev-arplant-042811-105534 – ident: e_1_2_9_195_1 doi: 10.1104/pp.106.076950 – ident: e_1_2_9_167_1 doi: 10.1094/MPMI-07-10-0157 – ident: e_1_2_9_172_1 doi: 10.1016/S0031-9422(01)00113-3 – ident: e_1_2_9_217_1 doi: 10.1073/pnas.1007745107 – ident: e_1_2_9_85_1 doi: 10.1111/mpp.12419 – ident: e_1_2_9_122_1 doi: 10.1104/pp.16.01642 – ident: e_1_2_9_225_1 doi: 10.1105/tpc.107.056754 – ident: e_1_2_9_64_1 doi: 10.1016/j.bbapap.2003.08.012 – ident: e_1_2_9_120_1 doi: 10.1074/jbc.M109.097394 – ident: e_1_2_9_99_1 doi: 10.1094/MPMI-23-5-0549 – ident: e_1_2_9_14_1 doi: 10.4161/psb.4.11.9739 – ident: e_1_2_9_109_1 doi: 10.1105/tpc.016097 – ident: e_1_2_9_66_1 doi: 10.1104/pp.112.211011 – ident: e_1_2_9_190_1 doi: 10.1093/jxb/erv026 – ident: e_1_2_9_29_1 doi: 10.1105/tpc.105.031542 – ident: e_1_2_9_37_1 doi: 10.1111/j.1365-313X.1993.tb00007.x – ident: e_1_2_9_62_1 doi: 10.1073/pnas.92.10.4095 – ident: e_1_2_9_91_1 doi: 10.1093/pcp/pcu164 – ident: e_1_2_9_253_1 doi: 10.1016/j.cell.2006.03.037 – ident: e_1_2_9_177_1 doi: 10.1104/pp.110.163212 – ident: e_1_2_9_252_1 doi: 10.1038/nature22009 – ident: e_1_2_9_133_1 doi: 10.1016/j.jplph.2012.05.006 – ident: e_1_2_9_185_1 doi: 10.1146/annurev-arplant-042809-112315 – ident: e_1_2_9_101_1 doi: 10.1105/tpc.112.099325 – ident: e_1_2_9_166_1 doi: 10.1104/pp.113.214460 – ident: e_1_2_9_169_1 doi: 10.1111/j.1365-313X.2011.04671.x – ident: e_1_2_9_76_1 doi: 10.3389/fpls.2013.00049 – ident: e_1_2_9_152_1 doi: 10.3389/fpls.2014.00358 – ident: e_1_2_9_203_1 doi: 10.4161/psb.22598 – ident: e_1_2_9_78_1 doi: 10.3389/fpls.2012.00012 – volume: 68 start-page: 701 year: 2017 ident: e_1_2_9_71_1 article-title: Cell wall composition and penetration resistance against the fungal pathogen Colletotrichum higginsianum are affected by impaired starch turnover in Arabidopsis mutants publication-title: J. Exp. Bot. – ident: e_1_2_9_202_1 doi: 10.1126/science.1243825 – ident: e_1_2_9_77_1 doi: 10.1104/pp.111.174003 – ident: e_1_2_9_236_1 doi: 10.1016/j.cub.2012.07.036 – ident: e_1_2_9_188_1 doi: 10.1105/tpc.007872 – ident: e_1_2_9_186_1 doi: 10.1074/jbc.M109.096842 – ident: e_1_2_9_8_1 doi: 10.1038/415977a – ident: e_1_2_9_145_1 doi: 10.1111/j.1365-313X.2004.02208.x – ident: e_1_2_9_176_1 doi: 10.1007/s11010-007-9603-6 – start-page: 221 volume-title: Integrated G Proteins Signaling in Plants year: 2010 ident: e_1_2_9_210_1 doi: 10.1007/978-3-642-03524-1_12 – ident: e_1_2_9_118_1 doi: 10.1038/msb.2011.66 – volume: 155 start-page: 1920 issue: 4 year: 2011 ident: e_1_2_9_168_1 article-title: MYB46 modulates disease susceptibility to Botrytis cinerea in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.110.171843 – ident: e_1_2_9_247_1 doi: 10.1002/biot.201100155 – ident: e_1_2_9_163_1 doi: 10.1111/pbi.12393 – ident: e_1_2_9_25_1 doi: 10.1093/jxb/ern344 – ident: e_1_2_9_79_1 doi: 10.1016/j.cub.2009.01.054 – ident: e_1_2_9_124_1 doi: 10.1111/ppl.12411 – ident: e_1_2_9_129_1 doi: 10.1104/pp.16.00667 – ident: e_1_2_9_40_1 doi: 10.1038/nature05999 – ident: e_1_2_9_154_1 doi: 10.1016/j.pbi.2008.03.006 – ident: e_1_2_9_221_1 doi: 10.1093/glycob/cww029 – ident: e_1_2_9_46_1 doi: 10.1111/tpj.12504 – ident: e_1_2_9_48_1 doi: 10.1038/nri.2016.77 – ident: e_1_2_9_232_1 doi: 10.1073/pnas.1112862108 – start-page: 18 volume-title: Plant Lectins and Lectin Receptor‐Like Kinases: How Do They Sense the Outside? year: 2017 ident: e_1_2_9_20_1 – ident: e_1_2_9_147_1 doi: 10.1038/nmicrobiol.2016.43 – ident: e_1_2_9_212_1 doi: 10.1105/tpc.11.9.1743 – ident: e_1_2_9_17_1 doi: 10.1093/jxb/ert330 – ident: e_1_2_9_83_1 doi: 10.1093/jxb/ers362 – ident: e_1_2_9_47_1 doi: 10.1038/nrm1746 – ident: e_1_2_9_53_1 doi: 10.1016/j.phytochem.2006.03.009 – ident: e_1_2_9_207_1 doi: 10.1093/jxb/erv489 – ident: e_1_2_9_179_1 doi: 10.1111/j.1365-313X.2010.04224.x – ident: e_1_2_9_223_1 doi: 10.1105/tpc.13.2.303 – ident: e_1_2_9_206_1 doi: 10.1105/tpc.16.00891 – ident: e_1_2_9_250_1 doi: 10.1038/srep30251 – ident: e_1_2_9_187_1 doi: 10.1146/annurev-arplant-042811-105518 – ident: e_1_2_9_90_1 doi: 10.3389/fpls.2012.00077 – ident: e_1_2_9_142_1 doi: 10.1111/nph.14638 – ident: e_1_2_9_57_1 doi: 10.1104/pp.111.175737 – ident: e_1_2_9_59_1 doi: 10.1371/journal.ppat.1002513 – ident: e_1_2_9_121_1 doi: 10.1146/annurev-phyto-102313-045831 – ident: e_1_2_9_233_1 doi: 10.1042/BCJ20160238 – ident: e_1_2_9_143_1 doi: 10.3389/fpls.2014.00178 – ident: e_1_2_9_98_1 doi: 10.1105/tpc.106.048058 – ident: e_1_2_9_84_1 doi: 10.1111/tpj.13057 – ident: e_1_2_9_230_1 doi: 10.1111/nph.14720 – ident: e_1_2_9_164_1 doi: 10.1038/nprot.2012.081 – ident: e_1_2_9_245_1 doi: 10.1105/tpc.109.068874 – volume: 1578 start-page: 81 year: 2017 ident: e_1_2_9_171_1 article-title: Plant Pattern Recognition Receptors publication-title: Methods Mol. Biol. – ident: e_1_2_9_18_1 doi: 10.1074/jbc.M102390200 – volume: 5 start-page: 7 year: 2014 ident: e_1_2_9_102_1 article-title: Genome‐wide association study of Arabidopsis thaliana leaf microbial community publication-title: Nat. Commun. doi: 10.1038/ncomms6320 – ident: e_1_2_9_15_1 doi: 10.1111/mpp.12457 – ident: e_1_2_9_132_1 doi: 10.1104/pp.106.090803 – ident: e_1_2_9_97_1 doi: 10.1016/j.cub.2007.05.018 – ident: e_1_2_9_175_1 doi: 10.1105/tpc.111.084301 – ident: e_1_2_9_94_1 doi: 10.1126/science.1244454 – ident: e_1_2_9_228_1 doi: 10.1094/MPMI-06-14-0191-R – ident: e_1_2_9_193_1 doi: 10.1146/annurev.cellbio.22.022206.160206 – ident: e_1_2_9_181_1 doi: 10.1126/science.1242468 – ident: e_1_2_9_27_1 doi: 10.1371/journal.ppat.1001327 – ident: e_1_2_9_114_1 doi: 10.15252/embr.201438801 – ident: e_1_2_9_2_1 doi: 10.1105/tpc.106.048041 – ident: e_1_2_9_86_1 doi: 10.1038/ncb2471 – ident: e_1_2_9_74_1 doi: 10.1105/tpc.12.12.2409 – ident: e_1_2_9_39_1 doi: 10.1111/j.1365-313X.2005.02452.x – ident: e_1_2_9_41_1 doi: 10.1126/science.343.6168.290 – ident: e_1_2_9_49_1 doi: 10.1016/j.coi.2014.12.002 – ident: e_1_2_9_55_1 doi: 10.1111/tpj.12027 – ident: e_1_2_9_117_1 doi: 10.1094/MPMI-21-12-1643 – ident: e_1_2_9_75_1 doi: 10.1111/j.1438-8677.2011.00449.x – ident: e_1_2_9_107_1 doi: 10.1073/pnas.0603727103 – ident: e_1_2_9_60_1 doi: 10.1093/mp/ssq015 – ident: e_1_2_9_105_1 doi: 10.1242/dev.00458 – volume: 156 start-page: 596 year: 2011 ident: e_1_2_9_211_1 article-title: Cell Wall Integrity Controls Root Elongation via a General 1‐Aminocyclopropane‐1‐Carboxylic Acid‐Dependent publication-title: Ethylene‐Independent Pathway. Plant Physiol. – start-page: 1 year: 2017 ident: e_1_2_9_197_1 article-title: Plant cell walls publication-title: eLS – volume-title: Chemistry and Biology of (1→3)‐β‐Glucans year: 1992 ident: e_1_2_9_200_1 – ident: e_1_2_9_254_1 doi: 10.1038/ng.3170 – ident: e_1_2_9_246_1 doi: 10.1104/pp.109.147371 – ident: e_1_2_9_9_1 doi: 10.1093/jxb/ers100 – ident: e_1_2_9_31_1 doi: 10.1111/j.1365-2958.2008.06211.x – ident: e_1_2_9_182_1 doi: 10.1093/jxb/erp245 – year: 2017 ident: e_1_2_9_70_1 article-title: Pattern‐triggered immunity and cell wall integrity maintenance jointly modulate plant stress responses publication-title: BioRxiv – ident: e_1_2_9_89_1 doi: 10.1104/pp.68.5.1161 – ident: e_1_2_9_112_1 doi: 10.3389/fpls.2016.00897 – ident: e_1_2_9_137_1 doi: 10.1104/pp.112.212431 – ident: e_1_2_9_201_1 doi: 10.1016/j.devcel.2010.10.010 – ident: e_1_2_9_134_1 doi: 10.1111/mpp.12090 – ident: e_1_2_9_189_1 doi: 10.1016/j.cub.2014.06.064 – ident: e_1_2_9_209_1 doi: 10.1073/pnas.0706547105 – ident: e_1_2_9_115_1 doi: 10.1016/j.pbi.2017.08.010 – ident: e_1_2_9_165_1 doi: 10.1021/jf052922x – ident: e_1_2_9_157_1 doi: 10.1126/science.1086716 – ident: e_1_2_9_219_1 doi: 10.1111/j.1365-313X.2004.02264.x |
| SSID | ssj0017364 |
| Score | 2.6781409 |
| SecondaryResourceType | review_article |
| Snippet | Summary
Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different... Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different... SummaryPlants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 614 |
| SubjectTerms | Arabidopsis Biosensors Biosynthesis breeding cell wall Cell Wall - immunology Cell Wall - metabolism Cell Wall - microbiology cell wall integrity cell wall mutant Cell walls Cellulose - biosynthesis Colonization Crop diseases cultivars Damage patterns DAMP Disease resistance Disease Resistance - physiology Environmental changes Glucans - metabolism Hazards Host-Pathogen Interactions immune response Immunity Integrity ligands Moisture content monitoring Monitoring systems Morphogenesis mutants Pathogen-Associated Molecular Pattern Molecules - immunology Pathogen-Associated Molecular Pattern Molecules - metabolism pathogens Pattern recognition Pattern recognition receptors Pectins - metabolism Peptides Pests Plant breeding Plant Cells - immunology Plant Cells - metabolism Plant Cells - microbiology Plant diseases Plant Diseases - immunology Plant Immunity - physiology Plant monitoring Plant pathology Plant resistance Plant stress Plants Polysaccharides Polysaccharides - metabolism Proteins PRR Receptors Receptors, Pattern Recognition - immunology Sensors Signal transduction Signaling wall sensor |
| Title | Plant cell wall‐mediated immunity: cell wall changes trigger disease resistance responses |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.13807 https://www.ncbi.nlm.nih.gov/pubmed/29266460 https://www.proquest.com/docview/1994337438 https://www.proquest.com/docview/1979502724 https://www.proquest.com/docview/2067297943 |
| Volume | 93 |
| WOSCitedRecordID | wos000424221200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1365-313X dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0017364 issn: 0960-7412 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-313X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017364 issn: 0960-7412 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NahsxEB7SxIde2qS_bhKjlh56WdgfeSUlp6SNSUsxprjU0MMiaaUSMGvjXSfk1kfoM-ZJMtKutzWJoRD2ItAsaEeanW8kzTcA76mi6NipDXIrTEDzKAkE76cBTxXPI2VYbOtiE2w45JOJGG3B8SoXpuaHaDfcnGX4_7UzcKnKf4y8mrs7WtxnkkfUG-WPz8P2BIElNXUUIvQAvWbcsAq5Wzztm-u-6A7AXMer3uEMnj5oqLvwpMGZ5KReGHuwZYpn0DmdIRa8fg4_Xa2iirhde3Ilp9Ob3398CgnCT3LhM0aq66O_3aRODy5JhbH8L7MgzbEOwVjd4U9cOK7pLtua8gWMB2fjj-dBU2Yh0BitsCBSoexTZUJFFcamLMn7VijJcHIRjuUy5Bofy2K0dY3wL8mZ1iIV1qZGpTJ5CdvFrDCvgSAYC7WOUm1DizArFiYXMnKc98pYK9MufFjpO9MNBbmrhDHNVqEIairzmurCu1Z0XvNu3Cd0sJq0rDG9MnNkx0mCwIh34W3bjUbjlCYLM1s6GSb6GJDHdLOM47WPhePP68KrekG0I4kF4hqahvhBft43DzEbj774xpv_F92HxwjLeH03_AC2q8XSHEJHX1YX5aIHj9iE92Dn07fB9689v-hvASilA8U |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KUtheus-u6bpVLX3Yi8EfsmWNvewrZFsaQkkh0AdjydIohCTETkfe9ifsb-xf0jvbcVe6QGH4RaAzyNKd73eS7ncAJ1xxdOzcOpmVxuGZFzgyDiMnjlScecoI31bFJsRgEI_HcrgFH9a5MBU_RLPhRpZR_q_JwGlD-i8rL-Z0SSumVPI2RzUKW9D-ctY97zenCCKo6KMQpTvoOf2aWYhu8jQv3_VH90DmXcxaOp3uk_8b7lPYqcEm-1hpxzPYMtPnsP1phoBw9QIuqGBRwWjrnv1KJ5Pr33_KPBLEoOyyTBspVu9vu1mVI5yzAgP6n2bB6rMdhgE7gVDUHmrSjVuTv4RR9-voc8-pay04GkMW4XjKTUOujKu4wgBVBFlopUoFrjBisix1Y42PFT4avEYMGGRCaxlJayOjojTYhdZ0NjV7wBCRuVp7kbauRazlS5PJ1CPie2WsTaMOvFtPeKJrHnIqhzFJ1vEIzlRSzlQHjhvReUW-8S-hg_WqJbX95QkxHgcBoqO4A0dNN1oOTVo6NbMlyQgZYlTu880yRG7vSyLR68CrSiOakfgSwQ2PXPygcuE3DzEZDb-Xjf2Hix7Co97otJ_0vw1-vIbHiNPi6rL4AbSKxdK8gW19VVzmi7e11t8AMrwGiQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fSxwxEB9EpfRFW1vtWW2j-ODLwv7JJpviS_1zWJXjkBOEPiybbFKE4-64WxXf_Ah-Rj-JM7t7q6KCUPYlkFnITjI7v0kyvwHY4pqjY-fOy52yHs-DyFNJLLxE6CQPtJWhq4pNyE4nOT9X3RnYmebCVPwQzYYbWUb5vyYDt6PcPbHyYkSXtBJKJZ_jsRJolnP7p-2zk-YUQUYVfRSidA89Z1gzC9FNnubl5_7oBch8jllLp9Ne_L_hfoKFGmyy39Xq-AwzdrAE87tDBIQ3X-AvFSwqGG3ds-us37-_vSvzSBCDsosybaS4-fXYzaoc4QkrMKD_Z8esPtthGLATCMXVQ026cWsnX6HXPujtHXp1rQXPYMgivUD7Wcy19TXXGKDKKI-d0pnEGUZMlmd-YvBxMkSDN4gBo1wao4RyTlgtsmgZZgfDgf0GDBGZb0wgjPMdYq1Q2VxlARHfa-tcJlqwPVV4amoeciqH0U-n8QhqKi011YLNRnRUkW-8JrQ2nbW0tr9JSozHUYToKGnBRtONlkNKywZ2eEkyUsUYlYf8bRkitw8Vkei1YKVaEc1IQoXghgsfP6ic-LeHmPa6R2Vj9f2iP-FDd7-dnvzpHH-HjwjTkuqu-BrMFuNLuw7z5qq4mIx_1Iv-AbVMBgQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+cell+wall-mediated+immunity%3A+cell+wall+changes+trigger+disease+resistance+responses&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Bacete%2C+Laura&rft.au=M%C3%A9lida%2C+Hugo&rft.au=Miedes%2C+Eva&rft.au=Molina%2C+Antonio&rft.date=2018-02-01&rft.eissn=1365-313X&rft.volume=93&rft.issue=4&rft.spage=614&rft_id=info:doi/10.1111%2Ftpj.13807&rft_id=info%3Apmid%2F29266460&rft.externalDocID=29266460 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |