On the Ranks and Border Ranks of Symmetric Tensors

Motivated by questions arising in signal processing, computational complexity, and other areas, we study the ranks and border ranks of symmetric tensors using geometric methods. We provide improved lower bounds for the rank of a symmetric tensor (i.e., a homogeneous polynomial) obtained by consideri...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Foundations of computational mathematics Ročník 10; číslo 3; s. 339 - 366
Hlavní autori: Landsberg, J. M., Teitler, Zach
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer-Verlag 01.06.2010
Springer Nature B.V
Predmet:
ISSN:1615-3375, 1615-3383
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Motivated by questions arising in signal processing, computational complexity, and other areas, we study the ranks and border ranks of symmetric tensors using geometric methods. We provide improved lower bounds for the rank of a symmetric tensor (i.e., a homogeneous polynomial) obtained by considering the singularities of the hypersurface defined by the polynomial. We obtain normal forms for polynomials of border rank up to five, and compute or bound the ranks of several classes of polynomials, including monomials, the determinant, and the permanent.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-009-9055-3