On the Ranks and Border Ranks of Symmetric Tensors
Motivated by questions arising in signal processing, computational complexity, and other areas, we study the ranks and border ranks of symmetric tensors using geometric methods. We provide improved lower bounds for the rank of a symmetric tensor (i.e., a homogeneous polynomial) obtained by consideri...
Uloženo v:
| Vydáno v: | Foundations of computational mathematics Ročník 10; číslo 3; s. 339 - 366 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer-Verlag
01.06.2010
Springer Nature B.V |
| Témata: | |
| ISSN: | 1615-3375, 1615-3383 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Motivated by questions arising in signal processing, computational complexity, and other areas, we study the ranks and border ranks of symmetric tensors using geometric methods. We provide improved lower bounds for the rank of a symmetric tensor (i.e., a homogeneous polynomial) obtained by considering the singularities of the hypersurface defined by the polynomial. We obtain normal forms for polynomials of border rank up to five, and compute or bound the ranks of several classes of polynomials, including monomials, the determinant, and the permanent. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 1615-3375 1615-3383 |
| DOI: | 10.1007/s10208-009-9055-3 |