On the Ranks and Border Ranks of Symmetric Tensors

Motivated by questions arising in signal processing, computational complexity, and other areas, we study the ranks and border ranks of symmetric tensors using geometric methods. We provide improved lower bounds for the rank of a symmetric tensor (i.e., a homogeneous polynomial) obtained by consideri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics Jg. 10; H. 3; S. 339 - 366
Hauptverfasser: Landsberg, J. M., Teitler, Zach
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer-Verlag 01.06.2010
Springer Nature B.V
Schlagworte:
ISSN:1615-3375, 1615-3383
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by questions arising in signal processing, computational complexity, and other areas, we study the ranks and border ranks of symmetric tensors using geometric methods. We provide improved lower bounds for the rank of a symmetric tensor (i.e., a homogeneous polynomial) obtained by considering the singularities of the hypersurface defined by the polynomial. We obtain normal forms for polynomials of border rank up to five, and compute or bound the ranks of several classes of polynomials, including monomials, the determinant, and the permanent.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-009-9055-3