An Obstacle Avoidance Path Planning and Evaluation Method for Intelligent Vehicles Based on the B-Spline Algorithm

To meet the real-time path planning requirements of intelligent vehicles in dynamic traffic scenarios, a path planning and evaluation method is proposed in this paper. Firstly, based on the B-spline algorithm and four-stage lane-changing theory, an obstacle avoidance path planning algorithm framewor...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 23; no. 19; p. 8151
Main Authors: Zhang, Yulong, Wang, Pengwei, Cui, Kaichen, Zhou, Hengheng, Yang, Jinshan, Kong, Xiangcun
Format: Journal Article
Language:English
Published: Basel MDPI AG 28.09.2023
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To meet the real-time path planning requirements of intelligent vehicles in dynamic traffic scenarios, a path planning and evaluation method is proposed in this paper. Firstly, based on the B-spline algorithm and four-stage lane-changing theory, an obstacle avoidance path planning algorithm framework is constructed. Then, to obtain the optimal real-time path, a comprehensive real-time path evaluation mechanism that includes path safety, smoothness, and comfort is established. Finally, to verify the proposed approach, co-simulation and real vehicle testing are conducted. In the dynamic obstacle avoidance scenario simulation, the lateral acceleration, yaw angle, yaw rate, and roll angle fluctuation ranges of the ego-vehicle are ±2.39 m/s2, ±13.31°, ±13.26°/s, and ±0.938°, respectively. The results show that the proposed algorithm can generate real-time, available obstacle avoidance paths. And the proposed evaluation mechanism can find the optimal path for the current scenario.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s23198151