Automation of an algorithm based on fuzzy clustering for analyzing tumoral heterogeneity in human skin carcinoma tissue sections

This study aims to develop a new FT–IR spectral imaging of tumoral tissue permitting a better characterization of tumor heterogeneity and tumor/surrounding tissue interface. Infrared (IR) data were acquired on 13 biopsies of paraffin-embedded human skin carcinomas. Our approach relies on an innovati...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Laboratory investigation Ročník 91; číslo 5; s. 799 - 811
Hlavní autori: Sebiskveradze, David, Vrabie, Valeriu, Gobinet, Cyril, Durlach, Anne, Bernard, Philippe, Ly, Elodie, Manfait, Michel, Jeannesson, Pierre, Piot, Olivier
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Inc 01.05.2011
Nature Publishing Group US
Nature Publishing Group
Elsevier (anciennement Nature Publishing Group)
Predmet:
ISSN:0023-6837, 1530-0307, 1530-0307
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This study aims to develop a new FT–IR spectral imaging of tumoral tissue permitting a better characterization of tumor heterogeneity and tumor/surrounding tissue interface. Infrared (IR) data were acquired on 13 biopsies of paraffin-embedded human skin carcinomas. Our approach relies on an innovative fuzzy C-means (FCM)-based clustering algorithm, allowing the automatic and simultaneous estimation of the optimal FCM parameters (number of clusters K and fuzziness index m). FCM seems more suitable than classical ‘hard' clusterings, as it permits the assignment of each IR spectrum to every cluster with a specific membership value. This characteristic allows differentiating the nuances in the assignment of pixels, particularly those corresponding to tumoral tissue and those located at the tumor/peritumoral tissue interface. FCM images permit to highlight a marked heterogeneity within the tumor and characterize the interconnection between tissular structures. For the infiltrative tumors, a progressive gradient in the membership values of the pixels of the invasive front was also revealed.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0023-6837
1530-0307
1530-0307
DOI:10.1038/labinvest.2011.13