Static output-feedback controller design for vehicle suspensions: an effective two-step computational approach
In this study, a novel two-step methodology is applied in designing static output-feedback controllers for a class of vehicle suspension systems. Following this approach, an effective synthesis of static output-feedback controllers can be carried out by solving two consecutive linear matrix inequali...
Saved in:
| Published in: | IET control theory & applications Vol. 8; no. 15; pp. 1566 - 1574 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article Publication |
| Language: | English |
| Published: |
The Institution of Engineering and Technology
16.10.2014
|
| Subjects: | |
| ISSN: | 1751-8644, 1751-8652 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this study, a novel two-step methodology is applied in designing static output-feedback controllers for a class of vehicle suspension systems. Following this approach, an effective synthesis of static output-feedback controllers can be carried out by solving two consecutive linear matrix inequality optimisation problems. To illustrate the main features of the proposed design strategy, two different static output-feedback H∞ controllers are designed for a quarter-car suspension system. The first of those controllers uses the suspension deflection and the sprung mass velocity as feedback information, whereas the second one only requires the sprung mass velocity to compute the control actions. Numerical simulations indicate that, despite the restricted feedback information, the proposed static output-feedback H∞ controllers exhibit a good behaviour in terms of both frequency and time responses, when compared with the corresponding state-feedback H∞ controller. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1751-8644 1751-8652 |
| DOI: | 10.1049/iet-cta.2013.1129 |