Impact of chronic subthalamic high-frequency stimulation on metabolic basal ganglia activity: a 2-deoxyglucose uptake and cytochrome oxidase mRNA study in a macaque model of Parkinson's disease
The mechanisms of action of high‐frequency stimulation (HFS) of the subthalamic nucleus (STN) remain only partially understood. Hitherto, experimental studies have suggested that STN‐HFS reduces the activity of STN neurons. However, some recent reports have challenged this view, showing that STN‐HFS...
Gespeichert in:
| Veröffentlicht in: | The European journal of neuroscience Jg. 25; H. 5; S. 1492 - 1500 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford, UK
Blackwell Publishing Ltd
01.03.2007
|
| Schlagworte: | |
| ISSN: | 0953-816X, 1460-9568 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The mechanisms of action of high‐frequency stimulation (HFS) of the subthalamic nucleus (STN) remain only partially understood. Hitherto, experimental studies have suggested that STN‐HFS reduces the activity of STN neurons. However, some recent reports have challenged this view, showing that STN‐HFS might also increase the activity of globus pallidus internalis (GPi) neurons that are under strong excitatory drive of the STN. In addition, most results emanate from studies applying acute STN‐HFS, while parkinsonian patients receive chronic stimulation. Thus, the present study was designed to assess the effect of chronic (10 days) STN‐HFS in the 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐treated nonhuman primate. For this purpose, 2‐deoxyglucose (2‐DG) uptake, a measure of global synaptic activity, was assessed in the basal ganglia and the motor thalamus after chronic unilateral STN‐HFS. Cytochrome oxidase subunit 1 (COI) mRNA expression, a marker of efferent metabolic activity, was additionally assessed in the globus pallidus. Chronic STN‐HFS (i) reversed abnormally decreased 2‐DG uptake in the STN of parkinsonian nonhuman primates, (ii) reversed abnormally increased 2‐DG accumulation in the GPi while COI mRNA expression was increased, suggesting global activation of GPi neurons, and (iii) reversed abnormally increased 2‐DG uptake in the ventrolateral motor thalamus nucleus. The simultaneous decrease in 2‐DG uptake and increase in COI mRNA expression are difficult to reconcile with the current model of basal ganglia function and suggest that the mechanisms by which STN‐HFS exerts its clinical benefits are more complex than a simple reversal of abnormal activity in the STN and its targets. |
|---|---|
| AbstractList | The mechanisms of action of high-frequency stimulation (HFS) of the subthalamic nucleus (STN) remain only partially understood. Hitherto, experimental studies have suggested that STN-HFS reduces the activity of STN neurons. However, some recent reports have challenged this view, showing that STN-HFS might also increase the activity of globus pallidus internalis (GPi) neurons that are under strong excitatory drive of the STN. In addition, most results emanate from studies applying acute STN-HFS, while parkinsonian patients receive chronic stimulation. Thus, the present study was designed to assess the effect of chronic (10 days) STN-HFS in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated nonhuman primate. For this purpose, 2-deoxyglucose (2-DG) uptake, a measure of global synaptic activity, was assessed in the basal ganglia and the motor thalamus after chronic unilateral STN-HFS. Cytochrome oxidase subunit 1 (COI) mRNA expression, a marker of efferent metabolic activity, was additionally assessed in the globus pallidus. Chronic STN-HFS (i) reversed abnormally decreased 2-DG uptake in the STN of parkinsonian nonhuman primates, (ii) reversed abnormally increased 2-DG accumulation in the GPi while COI mRNA expression was increased, suggesting global activation of GPi neurons, and (iii) reversed abnormally increased 2-DG uptake in the ventrolateral motor thalamus nucleus. The simultaneous decrease in 2-DG uptake and increase in COI mRNA expression are difficult to reconcile with the current model of basal ganglia function and suggest that the mechanisms by which STN-HFS exerts its clinical benefits are more complex than a simple reversal of abnormal activity in the STN and its targets. The mechanisms of action of high-frequency stimulation (HFS) of the subthalamic nucleus (STN) remain only partially understood. Hitherto, experimental studies have suggested that STN-HFS reduces the activity of STN neurons. However, some recent reports have challenged this view, showing that STN-HFS might also increase the activity of globus pallidus internalis (GPi) neurons that are under strong excitatory drive of the STN. In addition, most results emanate from studies applying acute STN-HFS, while parkinsonian patients receive chronic stimulation. Thus, the present study was designed to assess the effect of chronic (10 days) STN-HFS in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated nonhuman primate. For this purpose, 2-deoxyglucose (2-DG) uptake, a measure of global synaptic activity, was assessed in the basal ganglia and the motor thalamus after chronic unilateral STN-HFS. Cytochrome oxidase subunit 1 (COI) mRNA expression, a marker of efferent metabolic activity, was additionally assessed in the globus pallidus. Chronic STN-HFS (i) reversed abnormally decreased 2-DG uptake in the STN of parkinsonian nonhuman primates, (ii) reversed abnormally increased 2-DG accumulation in the GPi while COI mRNA expression was increased, suggesting global activation of GPi neurons, and (iii) reversed abnormally increased 2-DG uptake in the ventrolateral motor thalamus nucleus. The simultaneous decrease in 2-DG uptake and increase in COI mRNA expression are difficult to reconcile with the current model of basal ganglia function and suggest that the mechanisms by which STN-HFS exerts its clinical benefits are more complex than a simple reversal of abnormal activity in the STN and its targets.The mechanisms of action of high-frequency stimulation (HFS) of the subthalamic nucleus (STN) remain only partially understood. Hitherto, experimental studies have suggested that STN-HFS reduces the activity of STN neurons. However, some recent reports have challenged this view, showing that STN-HFS might also increase the activity of globus pallidus internalis (GPi) neurons that are under strong excitatory drive of the STN. In addition, most results emanate from studies applying acute STN-HFS, while parkinsonian patients receive chronic stimulation. Thus, the present study was designed to assess the effect of chronic (10 days) STN-HFS in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated nonhuman primate. For this purpose, 2-deoxyglucose (2-DG) uptake, a measure of global synaptic activity, was assessed in the basal ganglia and the motor thalamus after chronic unilateral STN-HFS. Cytochrome oxidase subunit 1 (COI) mRNA expression, a marker of efferent metabolic activity, was additionally assessed in the globus pallidus. Chronic STN-HFS (i) reversed abnormally decreased 2-DG uptake in the STN of parkinsonian nonhuman primates, (ii) reversed abnormally increased 2-DG accumulation in the GPi while COI mRNA expression was increased, suggesting global activation of GPi neurons, and (iii) reversed abnormally increased 2-DG uptake in the ventrolateral motor thalamus nucleus. The simultaneous decrease in 2-DG uptake and increase in COI mRNA expression are difficult to reconcile with the current model of basal ganglia function and suggest that the mechanisms by which STN-HFS exerts its clinical benefits are more complex than a simple reversal of abnormal activity in the STN and its targets. |
| Author | Bioulac, Bernard H. Guigoni, Celine Garret, Maurice Benazzouz, Abdelhamid Bezard, Erwan Cirilli, Laetitia Gross, Christian E. Meissner, Wassilios |
| Author_xml | – sequence: 1 givenname: Wassilios surname: Meissner fullname: Meissner, Wassilios organization: CNRS UMR 5227, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France – sequence: 2 givenname: Celine surname: Guigoni fullname: Guigoni, Celine organization: CNRS UMR 5227, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France – sequence: 3 givenname: Laetitia surname: Cirilli fullname: Cirilli, Laetitia organization: CNRS UMR 5227, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France – sequence: 4 givenname: Maurice surname: Garret fullname: Garret, Maurice organization: CNRS UMR 5227, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France – sequence: 5 givenname: Bernard H. surname: Bioulac fullname: Bioulac, Bernard H. organization: CNRS UMR 5227, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France – sequence: 6 givenname: Christian E. surname: Gross fullname: Gross, Christian E. organization: CNRS UMR 5227, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France – sequence: 7 givenname: Erwan surname: Bezard fullname: Bezard, Erwan organization: CNRS UMR 5227, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France – sequence: 8 givenname: Abdelhamid surname: Benazzouz fullname: Benazzouz, Abdelhamid organization: CNRS UMR 5227, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17425575$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUsFu1DAQtVAR3RZ-AfkEpyxOnDgJEkhV1S1F2wUhENysie3seuvYS-zA5vP4M5xuKRIXalnyWPPem9G8OUFH1lmFEE7JPI3n1Xae5owkdcGqeUZIOSdFTth8_wjN7hNHaEbqgiZVyr4doxPvt4SQiuXFE3SclnlWFGUxQ7-uuh2IgF2LxaZ3VgvshyZswEAX441eb5K2V98HZcWIfdDdYCBoZ3G8nQrQOBNxDXgweA12bTTgKKh_6DC-xoCzRCq3H9dmEM4rPOwC3CgMVmIxBjfV7BR2ey0hZrtPq7NYZJAj1jaSOxAQS-POSWWmHj9Cf6Otd_alx1J7FUlP0eMWjFfP7t5T9GVx8fn8XbL8cHl1frZMRF4xljRlVVCqqCCtEpKWZR1npipKRClT0VagBKmljL82yyjJWAqkbTMQTFKhqoaeohcH3V3vYk8-8E57oYwBq9zgeUlomcWB_xeY1jlLs7SOwOd3wKHplOS7XnfQj_yPOxFQHQCid973qv0LIXxaBL7lk9988ptPi8BvF4HvI_XtP1Shw61xoQdtHiLw5iDwUxs1Prgwv3i_mqLITw587YPa3_Ojf5yVtCz419UlX14vinpxveSU_gbxOeBO |
| CitedBy_id | crossref_primary_10_1016_j_neuroimage_2009_05_040 crossref_primary_10_1016_j_parkreldis_2012_03_016 crossref_primary_10_1007_s00259_009_1259_x crossref_primary_10_1016_j_biopsych_2014_08_022 crossref_primary_10_1111_j_1460_9568_2008_06597_x crossref_primary_10_1016_j_nbd_2009_07_002 crossref_primary_10_1016_j_nbd_2018_07_016 crossref_primary_10_1016_j_nurt_2007_10_067 crossref_primary_10_1111_j_1460_9568_2009_06777_x crossref_primary_10_1002_mds_22120 crossref_primary_10_1016_j_brs_2012_07_007 crossref_primary_10_1016_j_pneurobio_2009_06_003 crossref_primary_10_1016_j_bbr_2008_05_020 crossref_primary_10_1016_j_jneumeth_2007_08_019 crossref_primary_10_1016_j_neuroimage_2012_12_015 crossref_primary_10_1093_cercor_bhn149 crossref_primary_10_1179_016164110X12807570509934 crossref_primary_10_1002_ana_23663 crossref_primary_10_1016_j_neuchi_2012_02_006 crossref_primary_10_1002_mds_22541 |
| Cites_doi | 10.1038/nm875 10.1523/JNEUROSCI.23-25-08743.2003 10.1016/S0969-9961(03)00011-1 10.1016/j.neuroimage.2003.10.003 10.1016/S0306-4522(02)00538-9 10.1093/brain/124.3.546 10.1111/j.1460-9568.1991.tb00030.x 10.1002/cne.902220208 10.1212/WNL.57.10.1835 10.1016/0165-0173(96)00003-3 10.1002/mds.10156 10.1007/s002210050304 10.1212/01.WNL.0000083991.81859.73 10.1016/0165-0173(94)00007-C 10.1016/S0140-6736(95)90062-4 10.1111/j.1460-9568.2004.03792.x 10.1111/j.1460-9568.1993.tb00505.x 10.1001/archneur.61.8.1307 10.1016/0306-4522(94)00514-6 10.1016/j.neuroimage.2005.12.024 10.1016/S0140-6736(05)63455-1 10.1212/WNL.51.3.850 10.1002/ana.410420303 10.1002/cne.10227 10.1016/j.expneurol.2004.05.009 10.1016/0166-2236(90)90107-L 10.1056/NEJM199810153391603 10.1016/j.neuroimage.2005.06.034 10.1212/WNL.60.1.78 10.1523/JNEUROSCI.0360-05.2005 10.1523/JNEUROSCI.4056-04.2005 10.1046/j.1460-9568.2000.00901.x 10.1007/s00221-003-1784-y 10.1016/0024-3205(87)90014-2 10.1097/01.WCB.0000092831.44769.09 10.1001/archneur.56.8.997 10.1093/brain/awh616 10.1007/s002210050696 10.1523/JNEUROSCI.23-30-09929.2003 10.1016/0306-4522(89)90120-6 10.1016/0306-4522(95)00549-8 10.1152/jn.00475.2002 10.1523/JNEUROSCI.5059-04.2005 10.1002/ana.20402 10.1016/0006-8993(79)90728-5 10.1523/JNEUROSCI.21-17-06853.2001 10.1001/archneur.61.1.89 10.1007/s004010051150 10.1016/S0301-0082(01)00033-8 10.3109/02688699209002375 10.1159/000100590 10.1126/science.2402638 10.1016/0014-2999(95)00362-O 10.1007/s002210050305 10.1046/j.1460-9568.2000.00296.x 10.1093/jnen/60.1.15 10.1093/brain/awl162 10.1002/ana.20002 10.1111/j.1471-4159.1977.tb10649.x 10.1523/JNEUROSCI.22-12-05137.2002 10.1096/fj.03-0163com 10.1111/j.1469-7793.2001.00733.x 10.1111/j.1460-9568.2000.01306.x 10.1152/jn.00989.2003 10.1523/JNEUROSCI.22-11-04639.2002 10.1523/JNEUROSCI.23-05-01916.2003 10.1016/S1474-4422(02)00101-1 10.1046/j.1460-9568.2003.02803.x 10.1002/mds.10158 10.1046/j.1471-4159.2003.01665.x 10.1523/JNEUROSCI.3366-04.2004 10.1093/brain/123.9.1767 10.1016/S0165-0270(99)00184-3 10.1096/fj.03-0576fje 10.1002/ana.20296 10.1016/j.neuroimage.2004.02.019 |
| ContentType | Journal Article |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7TM 7X8 |
| DOI | 10.1111/j.1460-9568.2007.05406.x |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Neurosciences Abstracts CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1460-9568 |
| EndPage | 1500 |
| ExternalDocumentID | 17425575 10_1111_j_1460_9568_2007_05406_x EJN5406 ark_67375_WNG_LMF59FML_3 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIACR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RIG WRC WUP AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7TK 7TM 7X8 |
| ID | FETCH-LOGICAL-c4866-b78533e3c0fecd3779054e830c7d1cf8aec09ddc7df2230261a0ff2ac6d3ce8b3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000245399300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0953-816X |
| IngestDate | Fri Jul 11 12:40:09 EDT 2025 Sun Nov 09 11:00:59 EST 2025 Wed Feb 19 01:42:52 EST 2025 Tue Nov 18 21:53:01 EST 2025 Sat Nov 29 06:08:45 EST 2025 Wed Jan 22 16:21:40 EST 2025 Sun Sep 21 06:19:14 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4866-b78533e3c0fecd3779054e830c7d1cf8aec09ddc7df2230261a0ff2ac6d3ce8b3 |
| Notes | ark:/67375/WNG-LMF59FML-3 ArticleID:EJN5406 istex:2BF784D44A564CCEA585B31B04559FF03A3E8AEF ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1460-9568.2007.05406.x |
| PMID | 17425575 |
| PQID | 19461219 |
| PQPubID | 23462 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_70372953 proquest_miscellaneous_19461219 pubmed_primary_17425575 crossref_primary_10_1111_j_1460_9568_2007_05406_x crossref_citationtrail_10_1111_j_1460_9568_2007_05406_x wiley_primary_10_1111_j_1460_9568_2007_05406_x_EJN5406 istex_primary_ark_67375_WNG_LMF59FML_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-03 March 2007 2007-03-00 2007-Mar 20070301 |
| PublicationDateYYYYMMDD | 2007-03-01 |
| PublicationDate_xml | – month: 03 year: 2007 text: 2007-03 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: France |
| PublicationTitle | The European journal of neuroscience |
| PublicationTitleAlternate | Eur J Neurosci |
| PublicationYear | 2007 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Hutchison, W.D., Dostrovsky, J.O., Walters, J.R., Courtemanche, R., Boraud, T., Goldberg, J. & Brown, P. (2004) Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. J. Neurosci., 24, 9240-9243. Féger, J. & Robledo, P. (1991) The Effects of Activation or Inhibition of the Subthalamic Nucleus on the Metabolic and Electrophysiological Activities Within the Pallidal Complex and Substantia Nigra in the Rat. Eur. J. Neurosci., 3, 947-952. Bergman, H., Wichmann, T. & DeLong, M.R. (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science, 249, 1436-1438. Benazzouz, A., Breit, S., Koudsie, A., Pollak, P., Krack, P. & Benabid, A.L. (2002) Intraoperative microrecordings of the subthalamic nucleus in Parkinson's disease. Mov Disord., 17 (Suppl. 3), S145-S149. Boraud, T., Bezard, E., Bioulac, B. & Gross, C.E. (2002) From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control. Prog. Neurobiol., 66, 265-283. Lozano, A.M., Dostrovsky, J., Chen, R. & Ashby, P. (2002) Deep brain stimulation for Parkinson's disease: disrupting the disruption. Lancet Neurol., 1, 225-231. Holsheimer, J., Demeulemeester, H., Nuttin, B. & De Sutter, P. (2000) Identification of the target neuronal elements in electrical deep brain stimulation. Eur. J. Neurosci., 12, 4573-4577. Asanuma, K., Tang, C., Ma, Y., Dhawan, V., Mattis, P., Edwards, C., Kaplitt, M.G., Feigin, A. & Eidelberg, D. (2006) Network modulation in the treatment of Parkinson's disease. Brain, 129, 2667-2678. Tai, C.H., Boraud, T., Bezard, E., Bioulac, B., Gross, C. & Benazzouz, A. (2003) Electrophysiological and metabolic evidence that high-frequency stimulation of the subthalamic nucleus bridles neuronal activity in the subthalamic nucleus and the substantia nigra reticulata. FASEB J., 17, 1820-1830. Guigoni, C., Li, Q., Aubert, I., Dovero, S., Bioulac, B.H., Bloch, B., Crossman, A.R., Gross, C.E. & Bezard, E. (2005) Involvement of sensorimotor, limbic, and associative basal ganglia domains in L-3,4-dihydroxyphenylalanine-induced dyskinesia. J. Neurosci., 25, 2102-2107. Kumar, R., Lozano, A.M., Kim, Y.J., Hutchison, W.D., Sime, E., Halket, E. & Lang, A.E. (1998) Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson's disease. Neurology, 51, 850-855. Hilker, R., Voges, J., Weisenbach, S., Kalbe, E., Burghaus, L., Ghaemi, M., Lehrke, R., Koulousakis, A., Herholz, K., Sturm, V. & Heiss, W.D. (2004) Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson's disease. J. Cereb. Blood Flow Metab., 24, 7-16. Pahapill, P.A. & Lozano, A.M. (2000) The pedunculopontine nucleus and Parkinson's disease. Brain, 123, 1767-1783. Brown, P., Mazzone, P., Oliviero, A., Altibrandi, M.G., Pilato, F. & Di Tonali, P.A.&.,.V. (2004) Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson's disease. Exp. Neurol., 188, 480-490. Nutt, J.G., Rufener, S.L., Carter, J.H., Anderson, V.C., Pahwa, R., Hammerstad, J.P. & Burchiel, K.J. (2001) Interactions between deep brain stimulation and levodopa in Parkinson's disease. Neurology, 57, 1835-1842. Ilinsky, I.A., Tourtellotte, W.G. & Kultas-Ilinsky, K. (1993) Anatomical distinctions between the two basal ganglia afferent territories in the primate motor thalamus. Stereotact. Funct. Neurosurg., 60, 62-69. Payoux, P., Remy, P., Damier, P., Miloudi, M., Loubinoux, I., Pidoux, B., Gaura, V., Rascol, O., Samson, Y. & Agid, Y. (2004) Subthalamic nucleus stimulation reduces abnormal motor cortical overactivity in Parkinson disease. Arch. Neurol., 61, 1307-1313. Vafaee, M.S. & Gjedde, A. (2004) Spatially dissociated flow-metabolism coupling in brain activation. Neuroimage, 21, 507-515. Braak, H., Rub, U., Sandmann-Keil, D., Gai, W.P., De Vos, R.A.I., Steur, E., Arai, K. & Braak, E. (2000) Parkinson's disease: affection of brain stem nuclei controlling premotor and motor neurons of the somatomotor system. Acta Neuropathol., 99, 489-495. Garcia, L., Audin, J., D'Alessandro, G., Bioulac, B. & Hammond, C. (2003) Dual effect of high-frequency stimulation on subthalamic neuron activity. J. Neurosci., 23, 8743-8751. Trost, M., Su, S., Su, P., Yen, R.F., Tseng, H.M., Barnes, A., Ma, Y. & Eidelberg, D. (2006) Network modulation by the subthalamic nucleus in the treatment of Parkinson's disease. Neuroimage, 31, 301-307. Vafaee, M.S., Ostergaard, K., Sunde, N., Gjedde, A., Dupont, E. & Cumming, P. (2004) Focal changes of oxygen consumption in cerebral cortex of patients with Parkinson's disease during subthalamic stimulation. Neuroimage, 22, 966-974. Meissner, W., Dovero, S., Bioulac, B., Gross, C.E. & Bezard, E. (2003a) Compensatory regulation of striatal neuropeptide gene expression occurs before changes in metabolic activity of basal ganglia nuclei. Neurobiol. Dis., 13, 46-54. Vila, M., Levy, R., Herrero, M.T., Faucheux, B., Obeso, J.A., Agid, Y. & Hirsch, E.C. (1996) Metabolic activity of the basal ganglia in parkinsonian syndromes in human and non-human primates: a cytochrome oxidase histochemistry study. Neuroscience, 71, 903-912. Haslinger, B., Kalteis, K., Boecker, H., Alesch, F. & Ceballos-Baumann, A.O. (2005) Frequency-correlated decreases of motor cortex activity associated with subthalamic nucleus stimulation in Parkinson's disease. Neuroimage, 28, 598-606. Limousin, P., Greene, J., Pollak, P., Rothwell, J., Benabid, A.L. & Frackowiak, R. (1997) Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson's disease. Ann. Neurol., 42, 283-291. Bezard, E., Crossman, A.R., Gross, C.E. & Brotchie, J.M. (2001a) Structures outside the basal ganglia may compensate for dopamine loss in the presymptomatic stages of Parkinson's disease. FASEB J., 15, 1092-1094. Bacci, J.J., El-Absi, H., Manrique, C., Baunez, C., Salin, P. & Kerkerian-Le Goff, L. (2004) Differential effects of prolonged high frequency stimulation and of excitotoxic lesion of the subthalamic nucleus on dopamine denervation-induced cellular defects in the rat striatum and globus pallidus. Eur. J. Neurosci., 20, 3331-3341. Porrino, L.J., Burns, R.S., Crane, A.M., Palombo, E., Kopin, I.J. & Sokoloff, L. (1987) Changes in local cerebral glucose utilization associated with Parkinson's disease syndrome induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the primate. Life Sci., 40, 1657-1664. Temperli, P., Ghika, J., Villemure, J.G., Burkhard, P.R., Bogousslavsky, J. & Vingerhoets, F.J. (2003) How do parkinsonian signs return after discontinuation of subthalamic DBS? Neurology, 60, 78-81. Ceballos-Baumann, A.O., Boecker, H., Von Bartenstein, P.F.I., Riescher, H., Conrad, B., Moringlane, J.R. & Alesch, F. (1999) A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson disease: enhanced movement-related activity of motor association cortex and decreased motor cortex resting activity. Arch. Neurol., 56, 997-1003. Meissner, W., Leblois, A., Hansel, D., Bioulac, B., Gross, C.E., Benazzouz, A. & Boraud, T. (2005) Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain, 128, 2372-2382. Raz, A., Vaadia, E. & Bergman, H. (2000) Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J. Neurosci., 20, 8559-8571. Filali, M., Hutchison, W.D., Palter, V.N., Lozano, A.M. & Dostrovsky, J.O. (2004) Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp. Brain Res., 156, 274-281. Wichmann, T., Bergman, H., Starr, P.A., Subramanian, T., Watts, R.L. & DeLong, M.R. (1999) Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates. Exp. Brain Res., 125, 397-409. Szabo, J. & Cowan, W.M. (1984) A stereotaxic atlas of the brain of the cynomolgus monkey (macaca fascicularis). J. Comp. Neurol., 222, 265-300. Meissner, W., Gross, C.E., Harnack, D., Bioulac, B. & Benazzouz, A. (2004) Deep brain stimulation for Parkinson's disease: potential risk of tissue damage associated with external stimulation. Ann. Neurol., 55, 449-450. Stefani, A., Fedele, E., Galati, S., Pepicelli, O., Frasca, S., Pierantozzi, M., Peppe, A., Brusa, L., Orlacchio, A., Hainsworth, A.H., Gattoni, G., Stanzione, P., Bernardi, G., Raiteri, M. & Mazzone, P. (2005) Subthalamic stimulation activates internal pallidus: evidence from cGMP microdialysis in PD patients. Ann. Neurol., 57, 448-452. Vila, M., Perier, C., Feger, J., Yelnik, J., Faucheux, B., Ruberg, M., Raisman-Vozari, R., Agid, Y. & Hirsch, E.C. (2000) Evolution of changes in neuronal activity in the subthalamic nucleus of rats with unilateral lesion of the substantia nigra assessed by metabolic and electrophysiological measurements. Eur. J. Neurosci., 12, 337-344. Welter, M.L., Houeto, J.L., Bonnet, A.M., Bejjani, P.B., Mesnage, V., Dormont, D., Navarro, S., Cornu, P., Agid, Y. & Pidoux, B. (2004) Effects of high-frequency stimulation on subthalamic neuronal activity in parkinsonian patients. Arch. Neurol., 61, 89-96. Hershey, T., Revilla, F.J., Wernle, A.R., McGee-Minnich, L., Antenor, J.V., Videen, T.O., Dowling, J.L., Mink, J.W. & Perlmutter, J.S. (2003) Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD. Neurology, 61, 816-821. Wong-Riley, M. (1979) Changes in the visual system of monocularly stutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res., 171, 11-28. Mitchell, I.J., Clarke, C.E., Boyce, S., Robertson, R.G., Peggs, D., Sambrook, M.A. & Crossman, A.R. (1989) Neural mechanisms underlying parkinsonian symp 2004; 21 2002; 17 2004; 22 2004; 20 2004; 61 2006; 31 1990; 13 1993; 60 1997; 42 1977; 28 1997; 350 2003b; 85 1997; 48 2004; 24 1996; 71 2002; 115 2003; 17 2003; 18 1999; 125 2001b; 21 2005; 28 1993; 5 2005; 25 1992; 6 1995; 20 2001; 60 1987; 40 1989; 32 2000; 12 2000; 99 2005; 105 2000; 96 2003; 9 1995; 65 1999; 56 2000; 123 1998; 51 2006; 129 1995; 284 2001; 57 2003; 89 1996; 22 2004; 188 1991; 3 2001; 124 1990; 249 1984; 222 1998b; 118 2000; 20 1998; 339 2002; 1 2004; 91 1998a; 118 1979; 171 2003a; 13 2005; 46 2004; 156 2004; 55 2004; 18 2002; 66 2002; 22 2005; 128 2002; 447 1995; 345 2003; 60 2003; 61 2001a; 15 2005; 57 2003; 23 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 Benazzouz A. (e_1_2_7_12_1) 2004; 18 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 Benabid A.L. (e_1_2_7_8_1) 2005; 105 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_29_1 Garcia L. (e_1_2_7_27_1) 2003; 23 Salin P. (e_1_2_7_65_1) 2002; 22 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 Bezard E. (e_1_2_7_14_1) 2001; 15 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 Sestini S. (e_1_2_7_66_1) 2005; 46 Obeso J.A. (e_1_2_7_56_1) 1997; 48 |
| References_xml | – reference: Garcia, L., Audin, J., D'Alessandro, G., Bioulac, B. & Hammond, C. (2003) Dual effect of high-frequency stimulation on subthalamic neuron activity. J. Neurosci., 23, 8743-8751. – reference: Bacci, J.J., El-Absi, H., Manrique, C., Baunez, C., Salin, P. & Kerkerian-Le Goff, L. (2004) Differential effects of prolonged high frequency stimulation and of excitotoxic lesion of the subthalamic nucleus on dopamine denervation-induced cellular defects in the rat striatum and globus pallidus. Eur. J. Neurosci., 20, 3331-3341. – reference: Sestini, S., Ramat, S., Formiconi, A.R., Ammannati, F., Sorbi, S. & Pupi, A. (2005) Brain networks underlying the clinical effects of long-term subthalamic stimulation for Parkinson's disease: a 4-year follow-up study with rCBF SPECT. J. Nucl. Med., 46, 1444-1454. – reference: Vila, M., Perier, C., Feger, J., Yelnik, J., Faucheux, B., Ruberg, M., Raisman-Vozari, R., Agid, Y. & Hirsch, E.C. (2000) Evolution of changes in neuronal activity in the subthalamic nucleus of rats with unilateral lesion of the substantia nigra assessed by metabolic and electrophysiological measurements. Eur. J. Neurosci., 12, 337-344. – reference: Windels, F., Bruet, N., Poupard, A., Urbain, N., Chouvet, G., Feuerstein, C. & Savasta, M. (2000) Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and globus pallidus in the normal rat. Eur. J. Neurosci., 12, 4141-4146. – reference: Meissner, W., Dovero, S., Bioulac, B., Gross, C.E. & Bezard, E. (2003a) Compensatory regulation of striatal neuropeptide gene expression occurs before changes in metabolic activity of basal ganglia nuclei. Neurobiol. Dis., 13, 46-54. – reference: Aubert, I., Guigoni, C., Hakansson, K., Li, Q., Dovero, S., Barthe, N., Bioulac, B.H., Gross, C.E., Fisone, G., Bloch, B. & Bezard, E. (2005) Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann. Neurol., 57, 17-26. – reference: Wichmann, T., Bergman, H., Starr, P.A., Subramanian, T., Watts, R.L. & DeLong, M.R. (1999) Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates. Exp. Brain Res., 125, 397-409. – reference: Raz, A., Vaadia, E. & Bergman, H. (2000) Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J. Neurosci., 20, 8559-8571. – reference: Haslinger, B., Kalteis, K., Boecker, H., Alesch, F. & Ceballos-Baumann, A.O. (2005) Frequency-correlated decreases of motor cortex activity associated with subthalamic nucleus stimulation in Parkinson's disease. Neuroimage, 28, 598-606. – reference: Tai, C.H., Boraud, T., Bezard, E., Bioulac, B., Gross, C. & Benazzouz, A. (2003) Electrophysiological and metabolic evidence that high-frequency stimulation of the subthalamic nucleus bridles neuronal activity in the subthalamic nucleus and the substantia nigra reticulata. FASEB J., 17, 1820-1830. – reference: Imbert, C., Bezard, E., Guitraud, S., Boraud, T. & Gross, C.E. (2000) Comparison between eight clinical rating scales used for the assessment of MPTP-induced parkinsonism in the macaque monkey. J. Neurosci. Meth., 96, 71-76. – reference: Ceballos-Baumann, A.O., Boecker, H., Von Bartenstein, P.F.I., Riescher, H., Conrad, B., Moringlane, J.R. & Alesch, F. (1999) A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson disease: enhanced movement-related activity of motor association cortex and decreased motor cortex resting activity. Arch. Neurol., 56, 997-1003. – reference: Wong-Riley, M. (1979) Changes in the visual system of monocularly stutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res., 171, 11-28. – reference: Boraud, T., Bezard, E., Bioulac, B. & Gross, C.E. (2002) From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control. Prog. Neurobiol., 66, 265-283. – reference: Boraud, T., Bezard, E., Bioulac, B. & Gross, C.E. (2001) Dopamine agonist-induced dyskinesias are correlated to both firing pattern and frequency alterations of pallidal neurones in the MPTP-treated monkey. Brain, 124, 546-557. – reference: Aziz, T.Z., Peggs, D., Agarwal, E., Sambrook, M.A. & Crossman, A.R. (1992) Subthalamic nucleotomy alleviates parkinsonism in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-exposed primate. Br. J. Neurosurg., 6, 575-582. – reference: Benabid, A.L., Wallace, B., Mitrofanis, J., Xia, R., Piallat, B., Chabardes, S. & Berger, F. (2005) A putative generalized model of the effects and mechanism of action of high frequency electrical stimulation of the central nervous system. Acta Neurol. Belg., 105, 149-157. – reference: Pahapill, P.A. & Lozano, A.M. (2000) The pedunculopontine nucleus and Parkinson's disease. Brain, 123, 1767-1783. – reference: Kumar, R., Lozano, A.M., Kim, Y.J., Hutchison, W.D., Sime, E., Halket, E. & Lang, A.E. (1998) Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson's disease. Neurology, 51, 850-855. – reference: Payoux, P., Remy, P., Damier, P., Miloudi, M., Loubinoux, I., Pidoux, B., Gaura, V., Rascol, O., Samson, Y. & Agid, Y. (2004) Subthalamic nucleus stimulation reduces abnormal motor cortical overactivity in Parkinson disease. Arch. Neurol., 61, 1307-1313. – reference: Szabo, J. & Cowan, W.M. (1984) A stereotaxic atlas of the brain of the cynomolgus monkey (macaca fascicularis). J. Comp. Neurol., 222, 265-300. – reference: Nutt, J.G., Rufener, S.L., Carter, J.H., Anderson, V.C., Pahwa, R., Hammerstad, J.P. & Burchiel, K.J. (2001) Interactions between deep brain stimulation and levodopa in Parkinson's disease. Neurology, 57, 1835-1842. – reference: Trost, M., Su, S., Su, P., Yen, R.F., Tseng, H.M., Barnes, A., Ma, Y. & Eidelberg, D. (2006) Network modulation by the subthalamic nucleus in the treatment of Parkinson's disease. Neuroimage, 31, 301-307. – reference: Hilker, R., Voges, J., Weisenbach, S., Kalbe, E., Burghaus, L., Ghaemi, M., Lehrke, R., Koulousakis, A., Herholz, K., Sturm, V. & Heiss, W.D. (2004) Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson's disease. J. Cereb. Blood Flow Metab., 24, 7-16. – reference: Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, C.S., Pettigrew, K.D., Sakurada, O. & Shinohara, M. (1977) The [14C]-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem., 28, 897-916. – reference: Brown, P., Mazzone, P., Oliviero, A., Altibrandi, M.G., Pilato, F. & Di Tonali, P.A.&.,.V. (2004) Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson's disease. Exp. Neurol., 188, 480-490. – reference: Benazzouz, A., Breit, S., Koudsie, A., Pollak, P., Krack, P. & Benabid, A.L. (2002) Intraoperative microrecordings of the subthalamic nucleus in Parkinson's disease. Mov Disord., 17 (Suppl. 3), S145-S149. – reference: Holsheimer, J., Demeulemeester, H., Nuttin, B. & De Sutter, P. (2000) Identification of the target neuronal elements in electrical deep brain stimulation. Eur. J. Neurosci., 12, 4573-4577. – reference: Gill, S.S. & Heywood, P. (1997) Bilateral dorsolateral subthalamotomy for advanced Parkinson's disease. Lancet, 350, 1224. – reference: Lozano, A.M., Dostrovsky, J., Chen, R. & Ashby, P. (2002) Deep brain stimulation for Parkinson's disease: disrupting the disruption. Lancet Neurol., 1, 225-231. – reference: Braak, H., Rub, U., Sandmann-Keil, D., Gai, W.P., De Vos, R.A.I., Steur, E., Arai, K. & Braak, E. (2000) Parkinson's disease: affection of brain stem nuclei controlling premotor and motor neurons of the somatomotor system. Acta Neuropathol., 99, 489-495. – reference: Meissner, W., Harnack, D., Reese, R., Paul, G., Reum, T., Ansorge, M., Kusserow, H., Winter, C., Morgenstern, R. & Kupsch, A. (2003b) High-frequency stimulation of the subthalamic nucleus enhances striatal dopamine release and metabolism in rats. J. Neurochem., 85, 601-609. – reference: Vila, M., Levy, R., Herrero, M.T., Faucheux, B., Obeso, J.A., Agid, Y. & Hirsch, E.C. (1996) Metabolic activity of the basal ganglia in parkinsonian syndromes in human and non-human primates: a cytochrome oxidase histochemistry study. Neuroscience, 71, 903-912. – reference: Parent, A. & Hazrati, L.-N. (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res. Rev., 20, 91-127. – reference: Nowak, L.G. & Bullier, J. (1998a) Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements. Exp. Brain Res., 118, 477-488. – reference: Hutchison, W.D., Dostrovsky, J.O., Walters, J.R., Courtemanche, R., Boraud, T., Goldberg, J. & Brown, P. (2004) Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. J. Neurosci., 24, 9240-9243. – reference: Asanuma, K., Tang, C., Ma, Y., Dhawan, V., Mattis, P., Edwards, C., Kaplitt, M.G., Feigin, A. & Eidelberg, D. (2006) Network modulation in the treatment of Parkinson's disease. Brain, 129, 2667-2678. – reference: Benazzouz, A., Gross, C., Feger, J., Boraud, T. & Bioulac, B. (1993) Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur. J. Neurosci., 5, 382-389. – reference: Bruet, N., Windels, F., Bertrand, A., Feuerstein, C., Poupard, A. & Savasta, M. (2001) High frequency stimulation of the subthalamic nucleus increases the extracellular contents of striatal dopamine in normal and partially dopaminergic denervated rats. J. Neuropathol. Exp. Neurol., 60, 15-24. – reference: Obeso, J.A., Alvarez, L.M., Macias, R.J., Guridi, J., Teijeiro, J., Juncos, J.L., Rodriguez, M.C., Ramos, E., Linazasoro, G.J., Gorospe, A. & DeLong, M.R. (1997) Lesion of the subthalamic nucleus in Parkinson's disease. Neurology, 48 (Suppl. 2), A138. – reference: Filali, M., Hutchison, W.D., Palter, V.N., Lozano, A.M. & Dostrovsky, J.O. (2004) Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp. Brain Res., 156, 274-281. – reference: Magarinos-Ascone, C., Pazo, J.H., Macadar, O. & Buno, W. (2002) High-frequency stimulation of the subthalamic nucleus silences subthalamic neurons: a possible cellular mechanism in Parkinson's disease. Neuroscience, 115, 1109-1117. – reference: Anderson, M.E., Postupna, N. & Ruffo, M. (2003) Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. J. Neurophysiol., 89, 1150-1160. – reference: Pollak, P., Krack, P., Fraix, V., Mendes, A., Moro, E., Chabardes, S. & Benabid, A.L. (2002) Intraoperative micro- and macrostimulation of the subthalamic nucleus in Parkinson's disease. Mov Disord., 17 (Suppl. 3), S155-S161. – reference: Temperli, P., Ghika, J., Villemure, J.G., Burkhard, P.R., Bogousslavsky, J. & Vingerhoets, F.J. (2003) How do parkinsonian signs return after discontinuation of subthalamic DBS? Neurology, 60, 78-81. – reference: Benazzouz, A., Tai, C.H., Meissner, W., Bioulac, B., Bezard, E. & Gross, C. (2004) High-frequency stimulation of both zona incerta and subthalamic nucleus induces a normalization of basal ganglia metabolic activity in experimental parkinsonism. FASEB J., 18, 528-530. – reference: Hershey, T., Revilla, F.J., Wernle, A.R., McGee-Minnich, L., Antenor, J.V., Videen, T.O., Dowling, J.L., Mink, J.W. & Perlmutter, J.S. (2003) Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD. Neurology, 61, 816-821. – reference: Percheron, G., François, C., Talbi, B., Yelnik, J. & Fenelon, G. (1996) The primate motor thalamus. Brain Res. Rev., 22, 93-181. – reference: Porrino, L.J., Burns, R.S., Crane, A.M., Palombo, E., Kopin, I.J. & Sokoloff, L. (1987) Changes in local cerebral glucose utilization associated with Parkinson's disease syndrome induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the primate. Life Sci., 40, 1657-1664. – reference: Benazzouz, A., Boraud, T., Dubedat, P., Boireau, A., Stutzmann, J.M. & Gross, C. (1995) Riluzole prevents MPTP-induced parkinsonism in the rhesus monkey: a pilot study. Eur. J. Pharmacol., 284, 299-307. – reference: Bezard, E., Ferry, S., Mach, U.H.S., Leriche, L., Boraud, T., Gross, C.E. & Sokoloff, P. (2003) Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function. Nat. Med., 9, 762-767. – reference: Meissner, W., Gross, C.E., Harnack, D., Bioulac, B. & Benazzouz, A. (2004) Deep brain stimulation for Parkinson's disease: potential risk of tissue damage associated with external stimulation. Ann. Neurol., 55, 449-450. – reference: Vafaee, M.S., Ostergaard, K., Sunde, N., Gjedde, A., Dupont, E. & Cumming, P. (2004) Focal changes of oxygen consumption in cerebral cortex of patients with Parkinson's disease during subthalamic stimulation. Neuroimage, 22, 966-974. – reference: Bergman, H., Wichmann, T. & DeLong, M.R. (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science, 249, 1436-1438. – reference: Salin, P., Manrique, C., Forni, C. & Goff, L.K. (2002) High-frequency stimulation of the subthalamic nucleus selectively reverses dopamine denervation-induced cellular defects in the output structures of the Basal Ganglia in the rat. J. Neurosci., 22, 5137-5148. – reference: Limousin, P., Krack, P., Pollak, P., Benazzouz, A., Ardouin, C., Hoffmann, D. & Benabid, A.L. (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease. N. Engl. J. Med., 339, 1105-1111. – reference: Féger, J. & Robledo, P. (1991) The Effects of Activation or Inhibition of the Subthalamic Nucleus on the Metabolic and Electrophysiological Activities Within the Pallidal Complex and Substantia Nigra in the Rat. Eur. J. Neurosci., 3, 947-952. – reference: Maurice, N., Thierry, A.M., Glowinski, J. & Deniau, J.M. (2003) Spontaneous and evoked activity of substantia nigra pars reticulata neurons during high-frequency stimulation of the subthalamic nucleus. J. Neurosci., 23, 9929-9936. – reference: Bezard, E., Dovero, S., Prunier, C., Ravenscroft, P., Chalon, S., Guilloteau, D., Crossman, A.R., Bioulac, B., Brotchie, J.M. & Gross, C.E. (2001b) Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson's disease. J. Neurosci., 21, 6853-6861. – reference: Alexander, G.E. & Crutcher, M.D. (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci., 13, 266-271. – reference: Windels, F., Carcenac, C., Poupard, A. & Savasta, M. (2005) Pallidal origin of GABA release within the substantia nigra pars reticulata during high-frequency stimulation of the subthalamic nucleus. J. Neurosci., 25, 5079-5086. – reference: McIntyre, C.C., Grill, W.M., Sherman, D.L. & Thakor, N.V. (2004) Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J. Neurophysiol., 91, 1457-1469. – reference: Francois, C., Tande, D., Yelnik, J. & Hirsch, E.C. (2002) Distribution and morphology of nigral axons projecting to the thalamus in primates. J. Comp. Neurol., 447, 249-260. – reference: Limousin, P., Pollak, P., Benazzouz, A., Hoffmann, D., Le Bas, J.F., Broussolle, E., Perret, J.E. & Benabid, A.L. (1995) Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet, 345, 91-95. – reference: Guigoni, C., Li, Q., Aubert, I., Dovero, S., Bioulac, B.H., Bloch, B., Crossman, A.R., Gross, C.E. & Bezard, E. (2005) Involvement of sensorimotor, limbic, and associative basal ganglia domains in L-3,4-dihydroxyphenylalanine-induced dyskinesia. J. Neurosci., 25, 2102-2107. – reference: Bezard, E., Crossman, A.R., Gross, C.E. & Brotchie, J.M. (2001a) Structures outside the basal ganglia may compensate for dopamine loss in the presymptomatic stages of Parkinson's disease. FASEB J., 15, 1092-1094. – reference: Meissner, W., Leblois, A., Hansel, D., Bioulac, B., Gross, C.E., Benazzouz, A. & Boraud, T. (2005) Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain, 128, 2372-2382. – reference: Mitchell, I.J., Clarke, C.E., Boyce, S., Robertson, R.G., Peggs, D., Sambrook, M.A. & Crossman, A.R. (1989) Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience, 32, 213-226. – reference: Vafaee, M.S. & Gjedde, A. (2004) Spatially dissociated flow-metabolism coupling in brain activation. Neuroimage, 21, 507-515. – reference: Hevner, R.F., Liu, S. & Wong-Riley, M.T. (1995) A metabolic map of cytochrome oxidase in the rat brain: histochemical, densitomeric and biochemical analysis. Neuroscience, 65, 313-342. – reference: Ilinsky, I.A., Tourtellotte, W.G. & Kultas-Ilinsky, K. (1993) Anatomical distinctions between the two basal ganglia afferent territories in the primate motor thalamus. Stereotact. Funct. Neurosurg., 60, 62-69. – reference: Stefani, A., Fedele, E., Galati, S., Pepicelli, O., Frasca, S., Pierantozzi, M., Peppe, A., Brusa, L., Orlacchio, A., Hainsworth, A.H., Gattoni, G., Stanzione, P., Bernardi, G., Raiteri, M. & Mazzone, P. (2005) Subthalamic stimulation activates internal pallidus: evidence from cGMP microdialysis in PD patients. Ann. Neurol., 57, 448-452. – reference: Darbaky, Y., Forni, C., Amalric, M. & Baunez, C. (2003) High frequency stimulation of the subthalamic nucleus has beneficial antiparkinsonian effects on motor functions in rats, but less efficiency in a choice reaction time task. Eur. J. Neurosci., 18, 951-956. – reference: Welter, M.L., Houeto, J.L., Bonnet, A.M., Bejjani, P.B., Mesnage, V., Dormont, D., Navarro, S., Cornu, P., Agid, Y. & Pidoux, B. (2004) Effects of high-frequency stimulation on subthalamic neuronal activity in parkinsonian patients. Arch. Neurol., 61, 89-96. – reference: Hashimoto, T., Elder, C.M., Okun, M.S., Patrick, S.K. & Vitek, J.L. (2003) Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J. Neurosci., 23, 1916-1923. – reference: Nowak, L.G. & Bullier, J. (1998b) Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. II. Evidence from selective inactivation of cell bodies and axon initial segments. Exp. Brain Res., 118, 489-500. – reference: Goldberg, J.A., Boraud, T., Maraton, S., Haber, S.N., Vaadia, E. & Bergman, H. (2002) Enhanced synchrony among primary motor cortex neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson's disease. J. Neurosci., 22, 4639-4653. – reference: Limousin, P., Greene, J., Pollak, P., Rothwell, J., Benabid, A.L. & Frackowiak, R. (1997) Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson's disease. Ann. Neurol., 42, 283-291. – reference: Pessiglione, M., Guehl, D., Rolland, A.S., Francois, C., Hirsch, E.C., Feger, J. & Tremblay, L. (2005) Thalamic neuronal activity in dopamine-depleted primates: evidence for a loss of functional segregation within basal ganglia circuits. J. Neurosci., 25, 1523-1531. – volume: 128 start-page: 2372 year: 2005 end-page: 2382 article-title: Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations publication-title: Brain – volume: 222 start-page: 265 year: 1984 end-page: 300 article-title: A stereotaxic atlas of the brain of the cynomolgus monkey (macaca fascicularis) publication-title: J. Comp. Neurol. – volume: 18 start-page: 528 year: 2004 end-page: 530 article-title: High‐frequency stimulation of both zona incerta and subthalamic nucleus induces a normalization of basal ganglia metabolic activity in experimental parkinsonism publication-title: FASEB J. – volume: 22 start-page: 5137 year: 2002 end-page: 5148 article-title: High‐frequency stimulation of the subthalamic nucleus selectively reverses dopamine denervation‐induced cellular defects in the output structures of the Basal Ganglia in the rat publication-title: J. Neurosci. – volume: 5 start-page: 382 year: 1993 end-page: 389 article-title: Reversal of rigidity and improvement in motor performance by subthalamic high‐frequency stimulation in MPTP‐treated monkeys publication-title: Eur. J. Neurosci. – volume: 1 start-page: 225 year: 2002 end-page: 231 article-title: Deep brain stimulation for Parkinson's disease: disrupting the disruption publication-title: Lancet Neurol. – volume: 15 start-page: 1092 year: 2001a end-page: 1094 article-title: Structures outside the basal ganglia may compensate for dopamine loss in the presymptomatic stages of Parkinson's disease publication-title: FASEB J. – volume: 105 start-page: 149 year: 2005 end-page: 157 article-title: A putative generalized model of the effects and mechanism of action of high frequency electrical stimulation of the central nervous system publication-title: Acta Neurol. Belg. – volume: 61 start-page: 1307 year: 2004 end-page: 1313 article-title: Subthalamic nucleus stimulation reduces abnormal motor cortical overactivity in Parkinson disease publication-title: Arch. Neurol. – volume: 22 start-page: 93 year: 1996 end-page: 181 article-title: The primate motor thalamus publication-title: Brain Res. Rev. – volume: 71 start-page: 903 year: 1996 end-page: 912 article-title: Metabolic activity of the basal ganglia in parkinsonian syndromes in human and non‐human primates: a cytochrome oxidase histochemistry study publication-title: Neuroscience – volume: 447 start-page: 249 year: 2002 end-page: 260 article-title: Distribution and morphology of nigral axons projecting to the thalamus in primates publication-title: J. Comp. Neurol. – volume: 20 start-page: 91 year: 1995 end-page: 127 article-title: Functional anatomy of the basal ganglia. I. The cortico‐basal ganglia‐thalamo‐cortical loop publication-title: Brain Res. Rev. – volume: 12 start-page: 4141 year: 2000 end-page: 4146 article-title: Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and globus pallidus in the normal rat publication-title: Eur. J. Neurosci. – volume: 350 start-page: 1224 year: 1997 article-title: Bilateral dorsolateral subthalamotomy for advanced Parkinson's disease publication-title: Lancet – volume: 91 start-page: 1457 year: 2004 end-page: 1469 article-title: Cellular effects of deep brain stimulation: model‐based analysis of activation and inhibition publication-title: J. Neurophysiol. – volume: 61 start-page: 89 year: 2004 end-page: 96 article-title: Effects of high‐frequency stimulation on subthalamic neuronal activity in parkinsonian patients publication-title: Arch. Neurol. – volume: 28 start-page: 897 year: 1977 end-page: 916 article-title: The [ C]‐deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat publication-title: J. Neurochem. – volume: 125 start-page: 397 year: 1999 end-page: 409 article-title: Comparison of MPTP‐induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates publication-title: Exp. Brain Res. – volume: 188 start-page: 480 year: 2004 end-page: 490 article-title: Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson's disease publication-title: Exp. Neurol. – volume: 118 start-page: 489 year: 1998b end-page: 500 article-title: Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. II. Evidence from selective inactivation of cell bodies and axon initial segments publication-title: Exp. Brain Res. – volume: 13 start-page: 266 year: 1990 end-page: 271 article-title: Functional architecture of basal ganglia circuits: neural substrates of parallel processing publication-title: Trends Neurosci. – volume: 61 start-page: 816 year: 2003 end-page: 821 article-title: Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD publication-title: Neurology – volume: 65 start-page: 313 year: 1995 end-page: 342 article-title: A metabolic map of cytochrome oxidase in the rat brain: histochemical, densitomeric and biochemical analysis publication-title: Neuroscience – volume: 24 start-page: 9240 year: 2004 end-page: 9243 article-title: Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings publication-title: J. Neurosci. – volume: 60 start-page: 15 year: 2001 end-page: 24 article-title: High frequency stimulation of the subthalamic nucleus increases the extracellular contents of striatal dopamine in normal and partially dopaminergic denervated rats publication-title: J. Neuropathol. Exp. Neurol. – volume: 25 start-page: 2102 year: 2005 end-page: 2107 article-title: Involvement of sensorimotor, limbic, and associative basal ganglia domains in L‐3,4‐dihydroxyphenylalanine‐induced dyskinesia publication-title: J. Neurosci. – volume: 66 start-page: 265 year: 2002 end-page: 283 article-title: From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control publication-title: Prog. Neurobiol. – volume: 124 start-page: 546 year: 2001 end-page: 557 article-title: Dopamine agonist‐induced dyskinesias are correlated to both firing pattern and frequency alterations of pallidal neurones in the MPTP‐treated monkey publication-title: Brain – volume: 23 start-page: 9929 year: 2003 end-page: 9936 article-title: Spontaneous and evoked activity of substantia nigra pars reticulata neurons during high‐frequency stimulation of the subthalamic nucleus publication-title: J. Neurosci. – volume: 6 start-page: 575 year: 1992 end-page: 582 article-title: Subthalamic nucleotomy alleviates parkinsonism in the 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐exposed primate publication-title: Br. J. Neurosurg. – volume: 115 start-page: 1109 year: 2002 end-page: 1117 article-title: High‐frequency stimulation of the subthalamic nucleus silences subthalamic neurons: a possible cellular mechanism in Parkinson's disease publication-title: Neuroscience – volume: 56 start-page: 997 year: 1999 end-page: 1003 article-title: A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson disease: enhanced movement‐related activity of motor association cortex and decreased motor cortex resting activity publication-title: Arch. Neurol. – volume: 60 start-page: 78 year: 2003 end-page: 81 article-title: How do parkinsonian signs return after discontinuation of subthalamic DBS? publication-title: Neurology – volume: 171 start-page: 11 year: 1979 end-page: 28 article-title: Changes in the visual system of monocularly stutured or enucleated cats demonstrable with cytochrome oxidase histochemistry publication-title: Brain Res. – volume: 89 start-page: 1150 year: 2003 end-page: 1160 article-title: Effects of high‐frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey publication-title: J. Neurophysiol. – volume: 339 start-page: 1105 year: 1998 end-page: 1111 article-title: Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease publication-title: N. Engl. J. Med. – volume: 21 start-page: 6853 year: 2001b end-page: 6861 article-title: Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐lesioned macaque model of Parkinson's disease publication-title: J. Neurosci. – volume: 22 start-page: 4639 year: 2002 end-page: 4653 article-title: Enhanced synchrony among primary motor cortex neurons in the 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine primate model of Parkinson's disease publication-title: J. Neurosci. – volume: 129 start-page: 2667 year: 2006 end-page: 2678 article-title: Network modulation in the treatment of Parkinson's disease publication-title: Brain – volume: 31 start-page: 301 year: 2006 end-page: 307 article-title: Network modulation by the subthalamic nucleus in the treatment of Parkinson's disease publication-title: Neuroimage – volume: 25 start-page: 5079 year: 2005 end-page: 5086 article-title: Pallidal origin of GABA release within the substantia nigra pars reticulata during high‐frequency stimulation of the subthalamic nucleus publication-title: J. Neurosci. – volume: 85 start-page: 601 year: 2003b end-page: 609 article-title: High‐frequency stimulation of the subthalamic nucleus enhances striatal dopamine release and metabolism in rats publication-title: J. Neurochem. – volume: 55 start-page: 449 year: 2004 end-page: 450 article-title: Deep brain stimulation for Parkinson's disease: potential risk of tissue damage associated with external stimulation publication-title: Ann. Neurol. – volume: 42 start-page: 283 year: 1997 end-page: 291 article-title: Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson's disease publication-title: Ann. Neurol. – volume: 57 start-page: 1835 year: 2001 end-page: 1842 article-title: Interactions between deep brain stimulation and levodopa in Parkinson's disease publication-title: Neurology – volume: 40 start-page: 1657 year: 1987 end-page: 1664 article-title: Changes in local cerebral glucose utilization associated with Parkinson's disease syndrome induced by 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP) in the primate publication-title: Life Sci. – volume: 23 start-page: 8743 year: 2003 end-page: 8751 article-title: Dual effect of high‐frequency stimulation on subthalamic neuron activity publication-title: J. Neurosci. – volume: 57 start-page: 448 year: 2005 end-page: 452 article-title: Subthalamic stimulation activates internal pallidus: evidence from cGMP microdialysis in PD patients publication-title: Ann. Neurol. – volume: 9 start-page: 762 year: 2003 end-page: 767 article-title: Attenuation of levodopa‐induced dyskinesia by normalizing dopamine D3 receptor function publication-title: Nat. Med. – volume: 156 start-page: 274 year: 2004 end-page: 281 article-title: Stimulation‐induced inhibition of neuronal firing in human subthalamic nucleus publication-title: Exp. Brain Res. – volume: 17 start-page: S145 issue: Suppl. 3 year: 2002 end-page: S149 article-title: Intraoperative microrecordings of the subthalamic nucleus in Parkinson's disease publication-title: Mov Disord. – volume: 17 start-page: S155 issue: Suppl. 3 year: 2002 end-page: S161 article-title: Intraoperative micro‐ and macrostimulation of the subthalamic nucleus in Parkinson's disease publication-title: Mov Disord. – volume: 18 start-page: 951 year: 2003 end-page: 956 article-title: High frequency stimulation of the subthalamic nucleus has beneficial antiparkinsonian effects on motor functions in rats, but less efficiency in a choice reaction time task publication-title: Eur. J. Neurosci. – volume: 24 start-page: 7 year: 2004 end-page: 16 article-title: Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG‐PET study in advanced Parkinson's disease publication-title: J. Cereb. Blood Flow Metab. – volume: 123 start-page: 1767 year: 2000 end-page: 1783 article-title: The pedunculopontine nucleus and Parkinson's disease publication-title: Brain – volume: 23 start-page: 1916 year: 2003 end-page: 1923 article-title: Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons publication-title: J. Neurosci. – volume: 32 start-page: 213 year: 1989 end-page: 226 article-title: Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2‐deoxyglucose in monkeys exposed to 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine publication-title: Neuroscience – volume: 28 start-page: 598 year: 2005 end-page: 606 article-title: Frequency‐correlated decreases of motor cortex activity associated with subthalamic nucleus stimulation in Parkinson's disease publication-title: Neuroimage – volume: 345 start-page: 91 year: 1995 end-page: 95 article-title: Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation publication-title: Lancet – volume: 96 start-page: 71 year: 2000 end-page: 76 article-title: Comparison between eight clinical rating scales used for the assessment of MPTP‐induced parkinsonism in the macaque monkey publication-title: J. Neurosci. Meth. – volume: 20 start-page: 3331 year: 2004 end-page: 3341 article-title: Differential effects of prolonged high frequency stimulation and of excitotoxic lesion of the subthalamic nucleus on dopamine denervation‐induced cellular defects in the rat striatum and globus pallidus publication-title: Eur. J. Neurosci. – volume: 57 start-page: 17 year: 2005 end-page: 26 article-title: Increased D1 dopamine receptor signaling in levodopa‐induced dyskinesia publication-title: Ann. Neurol. – volume: 20 start-page: 8559 year: 2000 end-page: 8571 article-title: Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine vervet model of parkinsonism publication-title: J. Neurosci. – volume: 46 start-page: 1444 year: 2005 end-page: 1454 article-title: Brain networks underlying the clinical effects of long‐term subthalamic stimulation for Parkinson's disease: a 4‐year follow‐up study with rCBF SPECT publication-title: J. Nucl. Med. – volume: 48 start-page: A138 issue: Suppl. 2 year: 1997 article-title: Lesion of the subthalamic nucleus in Parkinson's disease publication-title: Neurology – volume: 3 start-page: 947 year: 1991 end-page: 952 article-title: The Effects of Activation or Inhibition of the Subthalamic Nucleus on the Metabolic and Electrophysiological Activities Within the Pallidal Complex and Substantia Nigra in the Rat publication-title: Eur. J. Neurosci. – volume: 284 start-page: 299 year: 1995 end-page: 307 article-title: Riluzole prevents MPTP‐induced parkinsonism in the rhesus monkey: a pilot study publication-title: Eur. J. Pharmacol. – volume: 12 start-page: 4573 year: 2000 end-page: 4577 article-title: Identification of the target neuronal elements in electrical deep brain stimulation publication-title: Eur. J. Neurosci. – volume: 99 start-page: 489 year: 2000 end-page: 495 article-title: Parkinson's disease: affection of brain stem nuclei controlling premotor and motor neurons of the somatomotor system publication-title: Acta Neuropathol. – volume: 249 start-page: 1436 year: 1990 end-page: 1438 article-title: Reversal of experimental parkinsonism by lesions of the subthalamic nucleus publication-title: Science – volume: 51 start-page: 850 year: 1998 end-page: 855 article-title: Double‐blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson's disease publication-title: Neurology – volume: 12 start-page: 337 year: 2000 end-page: 344 article-title: Evolution of changes in neuronal activity in the subthalamic nucleus of rats with unilateral lesion of the substantia nigra assessed by metabolic and electrophysiological measurements publication-title: Eur. J. Neurosci. – volume: 25 start-page: 1523 year: 2005 end-page: 1531 article-title: Thalamic neuronal activity in dopamine‐depleted primates: evidence for a loss of functional segregation within basal ganglia circuits publication-title: J. Neurosci. – volume: 13 start-page: 46 year: 2003a end-page: 54 article-title: Compensatory regulation of striatal neuropeptide gene expression occurs before changes in metabolic activity of basal ganglia nuclei publication-title: Neurobiol. Dis. – volume: 22 start-page: 966 year: 2004 end-page: 974 article-title: Focal changes of oxygen consumption in cerebral cortex of patients with Parkinson's disease during subthalamic stimulation publication-title: Neuroimage – volume: 118 start-page: 477 year: 1998a end-page: 488 article-title: Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements publication-title: Exp. Brain Res. – volume: 21 start-page: 507 year: 2004 end-page: 515 article-title: Spatially dissociated flow‐metabolism coupling in brain activation publication-title: Neuroimage – volume: 17 start-page: 1820 year: 2003 end-page: 1830 article-title: Electrophysiological and metabolic evidence that high‐frequency stimulation of the subthalamic nucleus bridles neuronal activity in the subthalamic nucleus and the substantia nigra reticulata publication-title: FASEB J. – volume: 60 start-page: 62 year: 1993 end-page: 69 article-title: Anatomical distinctions between the two basal ganglia afferent territories in the primate motor thalamus publication-title: Stereotact. Funct. Neurosurg. – ident: e_1_2_7_16_1 doi: 10.1038/nm875 – volume: 23 start-page: 8743 year: 2003 ident: e_1_2_7_27_1 article-title: Dual effect of high‐frequency stimulation on subthalamic neuron activity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-25-08743.2003 – ident: e_1_2_7_48_1 doi: 10.1016/S0969-9961(03)00011-1 – ident: e_1_2_7_73_1 doi: 10.1016/j.neuroimage.2003.10.003 – ident: e_1_2_7_45_1 doi: 10.1016/S0306-4522(02)00538-9 – ident: e_1_2_7_17_1 doi: 10.1093/brain/124.3.546 – ident: e_1_2_7_24_1 doi: 10.1111/j.1460-9568.1991.tb00030.x – ident: e_1_2_7_69_1 doi: 10.1002/cne.902220208 – ident: e_1_2_7_55_1 doi: 10.1212/WNL.57.10.1835 – ident: e_1_2_7_60_1 doi: 10.1016/0165-0173(96)00003-3 – ident: e_1_2_7_10_1 doi: 10.1002/mds.10156 – ident: e_1_2_7_53_1 doi: 10.1007/s002210050304 – ident: e_1_2_7_33_1 doi: 10.1212/01.WNL.0000083991.81859.73 – ident: e_1_2_7_58_1 doi: 10.1016/0165-0173(94)00007-C – volume: 15 start-page: 1092 year: 2001 ident: e_1_2_7_14_1 article-title: Structures outside the basal ganglia may compensate for dopamine loss in the presymptomatic stages of Parkinson's disease publication-title: FASEB J. – ident: e_1_2_7_43_1 doi: 10.1016/S0140-6736(95)90062-4 – ident: e_1_2_7_7_1 doi: 10.1111/j.1460-9568.2004.03792.x – ident: e_1_2_7_11_1 doi: 10.1111/j.1460-9568.1993.tb00505.x – ident: e_1_2_7_59_1 doi: 10.1001/archneur.61.8.1307 – ident: e_1_2_7_34_1 doi: 10.1016/0306-4522(94)00514-6 – ident: e_1_2_7_72_1 doi: 10.1016/j.neuroimage.2005.12.024 – ident: e_1_2_7_28_1 doi: 10.1016/S0140-6736(05)63455-1 – ident: e_1_2_7_40_1 doi: 10.1212/WNL.51.3.850 – ident: e_1_2_7_41_1 doi: 10.1002/ana.410420303 – ident: e_1_2_7_26_1 doi: 10.1002/cne.10227 – ident: e_1_2_7_20_1 doi: 10.1016/j.expneurol.2004.05.009 – volume: 46 start-page: 1444 year: 2005 ident: e_1_2_7_66_1 article-title: Brain networks underlying the clinical effects of long‐term subthalamic stimulation for Parkinson's disease: a 4‐year follow‐up study with rCBF SPECT publication-title: J. Nucl. Med. – ident: e_1_2_7_2_1 doi: 10.1016/0166-2236(90)90107-L – ident: e_1_2_7_42_1 doi: 10.1056/NEJM199810153391603 – volume: 48 start-page: A138 issue: 2 year: 1997 ident: e_1_2_7_56_1 article-title: Lesion of the subthalamic nucleus in Parkinson's disease publication-title: Neurology – ident: e_1_2_7_32_1 doi: 10.1016/j.neuroimage.2005.06.034 – ident: e_1_2_7_71_1 doi: 10.1212/WNL.60.1.78 – ident: e_1_2_7_80_1 doi: 10.1523/JNEUROSCI.0360-05.2005 – ident: e_1_2_7_61_1 doi: 10.1523/JNEUROSCI.4056-04.2005 – ident: e_1_2_7_76_1 doi: 10.1046/j.1460-9568.2000.00901.x – ident: e_1_2_7_25_1 doi: 10.1007/s00221-003-1784-y – ident: e_1_2_7_63_1 doi: 10.1016/0024-3205(87)90014-2 – ident: e_1_2_7_35_1 doi: 10.1097/01.WCB.0000092831.44769.09 – ident: e_1_2_7_22_1 doi: 10.1001/archneur.56.8.997 – ident: e_1_2_7_51_1 doi: 10.1093/brain/awh616 – ident: e_1_2_7_78_1 doi: 10.1007/s002210050696 – ident: e_1_2_7_46_1 doi: 10.1523/JNEUROSCI.23-30-09929.2003 – ident: e_1_2_7_52_1 doi: 10.1016/0306-4522(89)90120-6 – ident: e_1_2_7_75_1 doi: 10.1016/0306-4522(95)00549-8 – ident: e_1_2_7_3_1 doi: 10.1152/jn.00475.2002 – ident: e_1_2_7_30_1 doi: 10.1523/JNEUROSCI.5059-04.2005 – ident: e_1_2_7_68_1 doi: 10.1002/ana.20402 – ident: e_1_2_7_81_1 doi: 10.1016/0006-8993(79)90728-5 – ident: e_1_2_7_15_1 doi: 10.1523/JNEUROSCI.21-17-06853.2001 – ident: e_1_2_7_77_1 doi: 10.1001/archneur.61.1.89 – ident: e_1_2_7_19_1 doi: 10.1007/s004010051150 – ident: e_1_2_7_18_1 doi: 10.1016/S0301-0082(01)00033-8 – ident: e_1_2_7_6_1 doi: 10.3109/02688699209002375 – ident: e_1_2_7_38_1 doi: 10.1159/000100590 – ident: e_1_2_7_13_1 doi: 10.1126/science.2402638 – ident: e_1_2_7_9_1 doi: 10.1016/0014-2999(95)00362-O – ident: e_1_2_7_54_1 doi: 10.1007/s002210050305 – ident: e_1_2_7_79_1 doi: 10.1046/j.1460-9568.2000.00296.x – ident: e_1_2_7_21_1 doi: 10.1093/jnen/60.1.15 – ident: e_1_2_7_4_1 doi: 10.1093/brain/awl162 – ident: e_1_2_7_49_1 doi: 10.1002/ana.20002 – ident: e_1_2_7_67_1 doi: 10.1111/j.1471-4159.1977.tb10649.x – volume: 22 start-page: 5137 year: 2002 ident: e_1_2_7_65_1 article-title: High‐frequency stimulation of the subthalamic nucleus selectively reverses dopamine denervation‐induced cellular defects in the output structures of the Basal Ganglia in the rat publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-12-05137.2002 – ident: e_1_2_7_70_1 doi: 10.1096/fj.03-0163com – ident: e_1_2_7_64_1 doi: 10.1111/j.1469-7793.2001.00733.x – ident: e_1_2_7_36_1 doi: 10.1111/j.1460-9568.2000.01306.x – ident: e_1_2_7_47_1 doi: 10.1152/jn.00989.2003 – volume: 105 start-page: 149 year: 2005 ident: e_1_2_7_8_1 article-title: A putative generalized model of the effects and mechanism of action of high frequency electrical stimulation of the central nervous system publication-title: Acta Neurol. Belg. – ident: e_1_2_7_29_1 doi: 10.1523/JNEUROSCI.22-11-04639.2002 – ident: e_1_2_7_31_1 doi: 10.1523/JNEUROSCI.23-05-01916.2003 – ident: e_1_2_7_44_1 doi: 10.1016/S1474-4422(02)00101-1 – ident: e_1_2_7_23_1 doi: 10.1046/j.1460-9568.2003.02803.x – ident: e_1_2_7_62_1 doi: 10.1002/mds.10158 – ident: e_1_2_7_50_1 doi: 10.1046/j.1471-4159.2003.01665.x – ident: e_1_2_7_37_1 doi: 10.1523/JNEUROSCI.3366-04.2004 – ident: e_1_2_7_57_1 doi: 10.1093/brain/123.9.1767 – ident: e_1_2_7_39_1 doi: 10.1016/S0165-0270(99)00184-3 – volume: 18 start-page: 528 year: 2004 ident: e_1_2_7_12_1 article-title: High‐frequency stimulation of both zona incerta and subthalamic nucleus induces a normalization of basal ganglia metabolic activity in experimental parkinsonism publication-title: FASEB J. doi: 10.1096/fj.03-0576fje – ident: e_1_2_7_5_1 doi: 10.1002/ana.20296 – ident: e_1_2_7_74_1 doi: 10.1016/j.neuroimage.2004.02.019 |
| SSID | ssj0008645 |
| Score | 1.9874542 |
| Snippet | The mechanisms of action of high‐frequency stimulation (HFS) of the subthalamic nucleus (STN) remain only partially understood. Hitherto, experimental studies... The mechanisms of action of high-frequency stimulation (HFS) of the subthalamic nucleus (STN) remain only partially understood. Hitherto, experimental studies... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1492 |
| SubjectTerms | Animals basal ganglia Basal Ganglia - metabolism deep brain stimulation Deoxyglucose - metabolism Disease Models, Animal Dose-Response Relationship, Radiation Electric Stimulation Therapy - methods Electron Transport Complex IV - genetics Electron Transport Complex IV - metabolism Female Gene Expression Regulation - radiation effects globus pallidus internalis Macaca Macaca fascicularis motor thalamus Parkinsonian Disorders - metabolism Parkinsonian Disorders - pathology Parkinsonian Disorders - surgery Primates RNA, Messenger - metabolism Statistics, Nonparametric STN subthalamic nucleus Subthalamic Nucleus - physiopathology Subthalamic Nucleus - radiation effects |
| Title | Impact of chronic subthalamic high-frequency stimulation on metabolic basal ganglia activity: a 2-deoxyglucose uptake and cytochrome oxidase mRNA study in a macaque model of Parkinson's disease |
| URI | https://api.istex.fr/ark:/67375/WNG-LMF59FML-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1460-9568.2007.05406.x https://www.ncbi.nlm.nih.gov/pubmed/17425575 https://www.proquest.com/docview/19461219 https://www.proquest.com/docview/70372953 |
| Volume | 25 |
| WOSCitedRecordID | wos000245399300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1460-9568 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008645 issn: 0953-816X databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELagRYILj10e5bHMAS2noDYPx-FWLVse6kZoxYreLMd2oKJJVm2K2hs_gT_FH-GXMOOkRUWLtEJIOTRSxnbjeToz3zD2DKMMrlE1eoIn2gsN7kUWoDzmVmSRQaNujHLNJuI0FZNJ8r7Nf6JamAYfYnvgRpLh9DUJuMoWfwp536NytxaJEJ0P_gL9ya6PbBx1WPfV6ehsvNXLgruWxQSw5okBn-zm9Vw41o6x6tJ7X13kie46ts4yjW79z_90m91s_VMYNgx1h12x5R7bH5YYmxdrOASXMeqO4vfY9aNNt7h99uOtK7eEKgfd4O3CYpnVn9WMGt4DoSL__PY9nzeZ22tAzVK0ncMAr8LWyI0zfBLNKs7_SVF5sQIqu6DuFi9BgY8DGFut1m2aPSzPa_XFgioN6HVd0byFhWo1NWiaoThNh-DQc2FaInmhtMLJwfX-oXVSwberfXu-gPY71V12Njr-cPTGa1tEeDoUnHtZjO5GYAPdz602DjwxCq0I-jo2A50LZTWxG97l6AdRvKn6ee4rzU2gkR2De6xTVqV9wMAXKvdNrNCq8zDRicr8SAmVcYsuk1BBj8UbXpC6xU-nNh4zuRNH9SXtHnX3jKXbPbnqscGW8rzBELkEzaFjty0BvhLKwYsj-TF9LccnoygZnYwlLuvphh8lbjl97lGlrZYLOUhCgodL_v4EignGVhGOcb9h5N_Li1GXoyffY9zx66XXLY_fpfTr4b8SPmI3muNzSvN7zDr1fGmfsGv6az1dzA_Y1XgiDlrJ_gU5cU-F |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF6hBqlcCrRAw1_ngMrJKInt9ZpbVBpaSC1UtSK31Xp3DRGxXSUOSm48Ai_Fi_AkzKydoKAiVQgpB0fy_tj77fysZ-Zj7AV6GVyjaPQEj7UXGFyL1Mf9mFmRhgaVujHKkU1ESSJGo_hDQwdEuTB1fYj1gRvtDCevaYPTgfSfu7zjUb5bU4oQrQ_-Cg3KVoCoQri33pwPLodrwSy44yymCmue6PLRZmDPtX1taKsWvfjFdabopmXrVNPg7n99qHtsp7FQoV9D6j67ZYtdttcv0DvPl3AILmbUHcbvsu2jFV_cHvtx6hIuocxA1xV3YTZPq89qQpT3QHWRf377nk3r2O0loGzJG-4wwF9uK8TjBO9ExYrjf1KUYKyAEi-I3-I1KOhhB8aWi2UTaA_zq0p9saAKA3pZlTRubqFcjA0qZ8jPkz64-rkwLrB5rrTCwcGx_9A8KeXbZb-9nEHzpeoBuxwcXxydeA1JhKcDwbmXRmhw-NbXncxq48onhoEVfkdHpqszoawmwOG_DC0h8jhVJ8t6SnPjawSk_5BtFWVh9xn0hMp6JlKo13kQ61ilvVAJlXKLRpNQfptFKzBI3VRQJyKPidzwpDqSVo_4PSPpVk8u2qy7bnlVVxG5QZtDh7d1A3wlFIUXhfJj8lYOzwZhPDgbSpzWwQqQEpecPviowpbzmezGARWIi_9-B8p79K5C7ONRjeTf04tQmqMt32bcAfbG85bH7xK6evyvDQ_Y9skFPtjwNHn_hN2pD9Mp6O8p26qmc_uM3dZfq_Fs-rzZ4L8AWCBSjQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hBEEvPFoe4dU5oHIySuLXmlvU1lBIraqiIrfVencNUWM7ShyU3PgJ_Cn-CL-EmbUTFFSkCiH5EEue3Y13nuuZ-Rh7iVFGoFA1OjyIlONp3IvURXnMDE99jUZda2nBJsIk4aNRdNbAAVEtTN0fYnPgRpJh9TUJuJnq7E8p7zpU79a0IkTvI3iNDmXbI0yZFmsfnccXw41i5oHFLKYOaw7vBaPtxJ4rx9qyVm168curXNFtz9aapvjuf_1T99idxkOFQc1S99kNU-yyvUGB0Xm-ggOwOaP2MH6X3T5c48XtsR8ntuASygxU3XEX5ou0-iInBHkP1Bf557fv2azO3V4B6pa8wQ4DvHJTIT9O8Ek0rDj_Z0kFxhKo8ILwLd6AhD4OoE25XDWJ9rCYVvLSgCw0qFVV0ry5gXI51micIT9PBmD758K4QPJcKomTg0X_oXVSybetfns1h-ZL1QN2ER9_PHznNCARjvJ4EDhpiA6Ha1zVzYzStn2i7xnudlWoeyrj0ihiOLzL0BOiiFN2s6wvVaBdhQzpPmStoizMYwZ9LrO-DiXa9cCLVCTTvi-5TAODThOXboeFa2YQqumgTkAeE7EVSXUF7R7he4bC7p5YdlhvQzmtu4hcg-bA8tuGAF8JZeGFvviUvBXD09iP4tOhwGXtrxlS4JbTBx9ZmHIxF73IowZx0d-fQH2P0ZWPYzyqOfn38kLU5ujLd1hgGfba6xbH7xP69eRfCffZrbOjWAxPkg9P2U59lk45f89Yq5otzHN2U32txvPZi0a-fwFpqFII |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+chronic+subthalamic+high-frequency+stimulation+on+metabolic+basal+ganglia+activity%3A+a+2-deoxyglucose+uptake+and+cytochrome+oxidase+mRNA+study+in+a+macaque+model+of+Parkinson%27s+disease&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Meissner%2C+Wassilios&rft.au=Guigoni%2C+Celine&rft.au=Cirilli%2C+Laetitia&rft.au=Garret%2C+Maurice&rft.date=2007-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=25&rft.issue=5&rft.spage=1492&rft.epage=1500&rft_id=info:doi/10.1111%2Fj.1460-9568.2007.05406.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_LMF59FML_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |