Research on Ground Object Classification Method of High Resolution Remote-Sensing Images Based on Improved DeeplabV3
Ground-object classification using remote-sensing images of high resolution is widely used in land planning, ecological monitoring, and resource protection. Traditional image segmentation technology has poor effect on complex scenes in high-resolution remote-sensing images. In the field of deep lear...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 22; číslo 19; s. 7477 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.10.2022
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Ground-object classification using remote-sensing images of high resolution is widely used in land planning, ecological monitoring, and resource protection. Traditional image segmentation technology has poor effect on complex scenes in high-resolution remote-sensing images. In the field of deep learning, some deep neural networks are being applied to high-resolution remote-sensing image segmentation. The DeeplabV3+ network is a deep neural network based on encoder-decoder architecture, which is commonly used to segment images with high precision. However, the segmentation accuracy of high-resolution remote-sensing images is poor, the number of network parameters is large, and the cost of training network is high. Therefore, this paper improves the DeeplabV3+ network. Firstly, MobileNetV2 network was used as the backbone feature-extraction network, and an attention-mechanism module was added after the feature-extraction module and the ASPP module to introduce focal loss balance. Our design has the following advantages: it enhances the ability of network to extract image features; it reduces network training costs; and it achieves better semantic segmentation accuracy. Experiments on high-resolution remote-sensing image datasets show that the mIou of the proposed method on WHDLD datasets is 64.76%, 4.24% higher than traditional DeeplabV3+ network mIou, and the mIou on CCF BDCI datasets is 64.58%. This is 5.35% higher than traditional DeeplabV3+ network mIou and outperforms traditional DeeplabV3+, U-NET, PSP-NET and MACU-net networks. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1424-8220 1424-8220 |
| DOI: | 10.3390/s22197477 |