Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions

The development and application of evolutionary algorithms (EAs) and other metaheuristics for the optimisation of water resources systems has been an active research field for over two decades. Research to date has emphasized algorithmic improvements and individual applications in specific areas (e....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental modelling & software : with environment data news Jg. 62; S. 271 - 299
Hauptverfasser: Maier, H.R., Kapelan, Z., Kasprzyk, J., Kollat, J., Matott, L.S., Cunha, M.C., Dandy, G.C., Gibbs, M.S., Keedwell, E., Marchi, A., Ostfeld, A., Savic, D., Solomatine, D.P., Vrugt, J.A., Zecchin, A.C., Minsker, B.S., Barbour, E.J., Kuczera, G., Pasha, F., Castelletti, A., Giuliani, M., Reed, P.M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Elsevier Ltd 01.12.2014
Elsevier
Schlagworte:
ISSN:1364-8152
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development and application of evolutionary algorithms (EAs) and other metaheuristics for the optimisation of water resources systems has been an active research field for over two decades. Research to date has emphasized algorithmic improvements and individual applications in specific areas (e.g. model calibration, water distribution systems, groundwater management, river-basin planning and management, etc.). However, there has been limited synthesis between shared problem traits, common EA challenges, and needed advances across major applications. This paper clarifies the current status and future research directions for better solving key water resources problems using EAs. Advances in understanding fitness landscape properties and their effects on algorithm performance are critical. Future EA-based applications to real-world problems require a fundamental shift of focus towards improving problem formulations, understanding general theoretic frameworks for problem decompositions, major advances in EA computational efficiency, and most importantly aiding real decision-making in complex, uncertain application contexts.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1364-8152
DOI:10.1016/j.envsoft.2014.09.013