Broadening bandgaps in a multi-resonant piezoelectric metamaterial plate via bandgap merging phenomena
Locally resonant metamaterials usually have narrow bandgaps, which significantly limits their applications in realistic engineering environments. In this paper, an optimization method based on the genetic algorithm is proposed to broaden bandgaps in multi-resonant piezoelectric metamaterial through...
Uložené v:
| Vydané v: | Scientific reports Ročník 14; číslo 1; s. 16127 - 16 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
12.07.2024
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Locally resonant metamaterials usually have narrow bandgaps, which significantly limits their applications in realistic engineering environments. In this paper, an optimization method based on the genetic algorithm is proposed to broaden bandgaps in multi-resonant piezoelectric metamaterial through the merging of multiple separated bandgaps. Using the effective medium theory, the equivalent bending stiffness and dispersion relationship of a metamaterial plate are first obtained. Then, the criteria for determining the bandgap ranges for the two cases with and without damping are provided and analyzed. Furthermore, based on the bandgap merging phenomena, an optimization method for widening the bandgap is proposed based on the genetic algorithm. By investigating the bandgap widening effects in cases without and with damping, it is found that, when there is no damping, the bandgap can only be slightly widened; while after introducing damping into the transfer functions, the bandgap can be significantly widened by more than 200%. The bandgap widening effects are verified by comparing with finite element simulation results. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2045-2322 2045-2322 |
| DOI: | 10.1038/s41598-024-66849-6 |