Federated unsupervised random forest for privacy-preserving patient stratification
Motivation In the realm of precision medicine, effective patient stratification and disease subtyping demand innovative methodologies tailored for multi-omics data. Clustering techniques applied to multi-omics data have become instrumental in identifying distinct subgroups of patients, enabling a fi...
Uložené v:
| Vydané v: | Bioinformatics (Oxford, England) Ročník 40; číslo Supplement_2; s. ii198 - ii207 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Oxford University Press
01.09.2024
Oxford Publishing Limited (England) |
| Predmet: | |
| ISSN: | 1367-4803, 1367-4811, 1367-4811 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!