D2D-Assisted Multi-User Cooperative Partial Offloading in MEC Based on Deep Reinforcement Learning

Mobile edge computing (MEC) and device-to-device (D2D) communication can alleviate the resource constraints of mobile devices and reduce communication latency. In this paper, we construct a D2D-MEC framework and study the multi-user cooperative partial offloading and computing resource allocation. W...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 22; číslo 18; s. 7004
Hlavní autori: Guan, Xin, Lv, Tiejun, Lin, Zhipeng, Huang, Pingmu, Zeng, Jie
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.09.2022
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Mobile edge computing (MEC) and device-to-device (D2D) communication can alleviate the resource constraints of mobile devices and reduce communication latency. In this paper, we construct a D2D-MEC framework and study the multi-user cooperative partial offloading and computing resource allocation. We maximize the number of devices under the maximum delay constraints of the application and the limited computing resources. In the considered system, each user can offload its tasks to an edge server and a nearby D2D device. We first formulate the optimization problem as an NP-hard problem and then decouple it into two subproblems. The convex optimization method is used to solve the first subproblem, and the second subproblem is defined as a Markov decision process (MDP). A deep reinforcement learning algorithm based on a deep Q network (DQN) is developed to maximize the amount of tasks that the system can compute. Extensive simulation results demonstrate the effectiveness and superiority of the proposed scheme.
AbstractList Mobile edge computing (MEC) and device-to-device (D2D) communication can alleviate the resource constraints of mobile devices and reduce communication latency. In this paper, we construct a D2D-MEC framework and study the multi-user cooperative partial offloading and computing resource allocation. We maximize the number of devices under the maximum delay constraints of the application and the limited computing resources. In the considered system, each user can offload its tasks to an edge server and a nearby D2D device. We first formulate the optimization problem as an NP-hard problem and then decouple it into two subproblems. The convex optimization method is used to solve the first subproblem, and the second subproblem is defined as a Markov decision process (MDP). A deep reinforcement learning algorithm based on a deep Q network (DQN) is developed to maximize the amount of tasks that the system can compute. Extensive simulation results demonstrate the effectiveness and superiority of the proposed scheme.
Mobile edge computing (MEC) and device-to-device (D2D) communication can alleviate the resource constraints of mobile devices and reduce communication latency. In this paper, we construct a D2D-MEC framework and study the multi-user cooperative partial offloading and computing resource allocation. We maximize the number of devices under the maximum delay constraints of the application and the limited computing resources. In the considered system, each user can offload its tasks to an edge server and a nearby D2D device. We first formulate the optimization problem as an NP-hard problem and then decouple it into two subproblems. The convex optimization method is used to solve the first subproblem, and the second subproblem is defined as a Markov decision process (MDP). A deep reinforcement learning algorithm based on a deep Q network (DQN) is developed to maximize the amount of tasks that the system can compute. Extensive simulation results demonstrate the effectiveness and superiority of the proposed scheme.Mobile edge computing (MEC) and device-to-device (D2D) communication can alleviate the resource constraints of mobile devices and reduce communication latency. In this paper, we construct a D2D-MEC framework and study the multi-user cooperative partial offloading and computing resource allocation. We maximize the number of devices under the maximum delay constraints of the application and the limited computing resources. In the considered system, each user can offload its tasks to an edge server and a nearby D2D device. We first formulate the optimization problem as an NP-hard problem and then decouple it into two subproblems. The convex optimization method is used to solve the first subproblem, and the second subproblem is defined as a Markov decision process (MDP). A deep reinforcement learning algorithm based on a deep Q network (DQN) is developed to maximize the amount of tasks that the system can compute. Extensive simulation results demonstrate the effectiveness and superiority of the proposed scheme.
Audience Academic
Author Huang, Pingmu
Lin, Zhipeng
Lv, Tiejun
Zeng, Jie
Guan, Xin
AuthorAffiliation 3 School of Artificial Intelligence, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
1 School of Information and Communication Engineering, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
4 School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing 100081, China
2 Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 211106, China
AuthorAffiliation_xml – name: 1 School of Information and Communication Engineering, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
– name: 3 School of Artificial Intelligence, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
– name: 4 School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing 100081, China
– name: 2 Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 211106, China
Author_xml – sequence: 1
  givenname: Xin
  surname: Guan
  fullname: Guan, Xin
– sequence: 2
  givenname: Tiejun
  surname: Lv
  fullname: Lv, Tiejun
– sequence: 3
  givenname: Zhipeng
  orcidid: 0000-0001-6111-9687
  surname: Lin
  fullname: Lin, Zhipeng
– sequence: 4
  givenname: Pingmu
  surname: Huang
  fullname: Huang, Pingmu
– sequence: 5
  givenname: Jie
  surname: Zeng
  fullname: Zeng, Jie
BookMark eNplUk1v1DAQtVAR_YAD_yASFzikdfwRJxekZbeFSlsVoXK2Js548SprL3ZSiX-P0y2IFvlga_zem3kzc0qOfPBIyNuKnnPe0ovEWNUoSsULclIJJsqGMXr0z_uYnKa0pZRxzptX5JjXlai5pCekW7FVuUjJpRH74mYaRld-TxiLZQh7jDC6eyy-QhwdDMWttUOA3vlN4Xxxc7ksPkHKtOCLFeK--IbO2xAN7tCPxRoh-ox9TV5aGBK-ebzPyN3V5d3yS7m-_Xy9XKxLIxo5ljWlNZW0tdS2aHugiiOAMtK2quux7sHwDsBUtlPMMm5k00plrDBVbYXlZ-T6INsH2Op9dDuIv3QApx8CIW70bMMMqJs5j6ECDYAAplrsBUfWN0aA7ZjIWh8PWvup22Fvsp0IwxPRpz_e_dCbcK9bSfMo2izw_lEghp8TplHvXDI4DOAxTEkzVam6aSpeZ-i7Z9BtmKLPnZpRtWyE5Cqjzg-oDWQDc5tzXpNPjztn8jpYl-MLJWrJmahkJlwcCCaGlCJabdyYxxnmgt2gK6rn3dF_dyczPjxj_PH7P_Y35efD-A
CitedBy_id crossref_primary_10_1109_TSC_2024_3495503
crossref_primary_10_1109_ACCESS_2025_3533034
crossref_primary_10_1109_TMC_2024_3425723
crossref_primary_10_3390_s23156822
crossref_primary_10_3390_app13010191
crossref_primary_10_3390_s23031155
crossref_primary_10_3390_fi16010019
crossref_primary_10_3390_s22228718
Cites_doi 10.1109/JIOT.2021.3097754
10.1109/JIOT.2020.3015970
10.1145/322077.322090
10.1109/JIOT.2021.3064995
10.1109/COMST.2017.2682318
10.1016/j.jnca.2022.103366
10.1145/3318265.3318276
10.1109/GLOCOM.2018.8647906
10.1109/TNSM.2020.3020249
10.1109/JIOT.2021.3110319
10.1109/ACCESS.2020.3011705
10.1007/s11276-021-02554-w
10.1109/JIOT.2015.2497712
10.1109/ICC.2017.7997138
10.1109/COMST.2017.2705720
10.1109/WCNC.2018.8377343
10.1016/j.comnet.2020.107496
10.1109/JIOT.2021.3118016
10.1016/j.jnca.2021.102974
10.1109/TWC.2019.2896999
10.1109/INFOCOM.2006.145
10.1109/TVT.2020.2978027
10.1109/TSC.2021.3116280
10.1109/ACCESS.2018.2791504
10.1109/TWC.2012.121112.120018
10.1109/TPDS.2020.3042224
10.1109/JIOT.2020.3042433
10.1109/TVT.2020.3041929
10.1145/3097895.3097901
10.1109/ICC.2019.8761349
10.3389/fnbot.2019.00103
10.1109/JSYST.2019.2921115
10.1109/TWC.2021.3062616
10.1109/ECTICon.2016.7561437
10.23919/SOFTCOM.2019.8903763
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22187004
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central (New)
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_80509c04ecaa4a279ed43e2d8c4afb24
PMC9502189
A746532415
10_3390_s22187004
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Basic Scientific Research Project
  grantid: NS2022046
– fundername: National Natural Science Foundation of China
  grantid: 62271068; 61827801
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c485t-60060509f0f9efda073eaa7c5f97bde6dac3baac1fb72f23c58957cf4c16f4f3
IEDL.DBID DOA
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000856854500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:50:43 EDT 2025
Tue Nov 04 02:07:08 EST 2025
Fri Sep 05 08:41:39 EDT 2025
Tue Oct 07 07:12:53 EDT 2025
Tue Nov 04 18:17:14 EST 2025
Tue Nov 18 22:21:04 EST 2025
Sat Nov 29 07:16:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-60060509f0f9efda073eaa7c5f97bde6dac3baac1fb72f23c58957cf4c16f4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6111-9687
OpenAccessLink https://doaj.org/article/80509c04ecaa4a279ed43e2d8c4afb24
PMID 36146350
PQID 2716584537
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_80509c04ecaa4a279ed43e2d8c4afb24
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9502189
proquest_miscellaneous_2717688136
proquest_journals_2716584537
gale_infotracacademiconefile_A746532415
crossref_citationtrail_10_3390_s22187004
crossref_primary_10_3390_s22187004
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Shakarami (ref_30) 2020; 182
Saleem (ref_35) 2020; 69
Zhou (ref_24) 2015; 3
ref_12
Wu (ref_14) 2018; 6
Elgendy (ref_5) 2020; 17
Mach (ref_10) 2017; 19
Qin (ref_31) 2020; 8
Garey (ref_39) 1978; 25
ref_19
Elgendy (ref_17) 2021; 27
ref_16
Guo (ref_32) 2021; 9
ref_38
ref_15
Fooladivanda (ref_37) 2013; 12
Taleb (ref_8) 2017; 19
He (ref_25) 2019; 18
Zhang (ref_7) 2020; 8
Shakarami (ref_9) 2021; 178
Dinh (ref_3) 2017; 65
Shi (ref_34) 2020; 69
Othman (ref_13) 2013; 16
ref_23
ref_22
Fang (ref_28) 2022; 9
Truong (ref_33) 2021; 8
Feng (ref_4) 2022; 202
Sahni (ref_18) 2020; 32
ref_21
Chai (ref_26) 2019; 13
Hamdi (ref_27) 2022; 9
ref_1
Khayyat (ref_6) 2020; 8
Ohnishi (ref_36) 2019; 13
ref_2
Hu (ref_11) 2021; 15
Peng (ref_20) 2021; 20
Waqar (ref_29) 2022; 14
References_xml – volume: 9
  start-page: 3226
  year: 2022
  ident: ref_28
  article-title: Joint Task Offloading, D2D Pairing, and Resource Allocation in Device-Enhanced MEC: A Potential Game Approach
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3097754
– volume: 8
  start-page: 1896
  year: 2020
  ident: ref_31
  article-title: Service-oriented energy-latency tradeoff for IoT task partial offloading in MEC-enhanced multi-RAT networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3015970
– volume: 25
  start-page: 499
  year: 1978
  ident: ref_39
  article-title: “Strong” np-completeness results: Motivation, examples, and implications
  publication-title: J. ACM
  doi: 10.1145/322077.322090
– volume: 8
  start-page: 13196
  year: 2021
  ident: ref_33
  article-title: Partial computation offloading in NOMA-assisted mobile-edge computing systems using deep reinforcement learning
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3064995
– volume: 16
  start-page: 393
  year: 2013
  ident: ref_13
  article-title: A survey of mobile cloud computing application models
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 19
  start-page: 1628
  year: 2017
  ident: ref_10
  article-title: Mobile edge computing: A survey on architecture and computation offloading
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2017.2682318
– volume: 202
  start-page: 103366
  year: 2022
  ident: ref_4
  article-title: Computation offloading in mobile edge computing networks: A survey
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2022.103366
– ident: ref_22
  doi: 10.1145/3318265.3318276
– ident: ref_23
  doi: 10.1109/GLOCOM.2018.8647906
– volume: 17
  start-page: 2410
  year: 2020
  ident: ref_5
  article-title: Efficient and secure multi-user multi-task computation offloading for mobile-edge computing in mobile IoT networks
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2020.3020249
– volume: 9
  start-page: 6018
  year: 2022
  ident: ref_27
  article-title: Energy-Efficient Joint Task Assignment and Power Control in Energy-Harvesting D2D Offloading Communications
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3110319
– volume: 8
  start-page: 137052
  year: 2020
  ident: ref_6
  article-title: Advanced deep learning-based computational offloading for multilevel vehicular edge-cloud computing networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011705
– volume: 27
  start-page: 2023
  year: 2021
  ident: ref_17
  article-title: Joint computation offloading and task caching for multi-user and multi-task MEC systems: Reinforcement learning-based algorithms
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-021-02554-w
– volume: 3
  start-page: 428
  year: 2015
  ident: ref_24
  article-title: Energy-efficient resource allocation for D2D communications underlaying cloud-RAN-based LTE-A networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2015.2497712
– volume: 65
  start-page: 3571
  year: 2017
  ident: ref_3
  article-title: Offloading in Mobile Edge Computing: Task Allocation and Computational Frequency Scaling
  publication-title: IEEE Trans. Commun.
– ident: ref_21
  doi: 10.1109/ICC.2017.7997138
– volume: 19
  start-page: 1657
  year: 2017
  ident: ref_8
  article-title: On multi-access edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2017.2705720
– ident: ref_16
  doi: 10.1109/WCNC.2018.8377343
– volume: 182
  start-page: 107496
  year: 2020
  ident: ref_30
  article-title: A survey on the computation offloading approaches in mobile edge computing: A machine learning-based perspective
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107496
– volume: 9
  start-page: 9025
  year: 2021
  ident: ref_32
  article-title: Lyapunov-based Partial Computation Offloading for Multiple Mobile Devices Enabled by Harvested Energy in MEC
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3118016
– volume: 178
  start-page: 102974
  year: 2021
  ident: ref_9
  article-title: An autonomous computation offloading strategy in Mobile Edge Computing: A deep learning-based hybrid approach
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2021.102974
– ident: ref_12
– volume: 18
  start-page: 1750
  year: 2019
  ident: ref_25
  article-title: D2D communications meet mobile edge computing for enhanced computation capacity in cellular networks
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2019.2896999
– ident: ref_38
  doi: 10.1109/INFOCOM.2006.145
– volume: 69
  start-page: 4472
  year: 2020
  ident: ref_35
  article-title: Latency Minimization for D2D-Enabled Partial Computation Offloading in Mobile Edge Computing
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.2978027
– volume: 15
  start-page: 669
  year: 2021
  ident: ref_11
  article-title: An efficient online computation offloading approach for large-scale mobile edge computing via deep reinforcement learning
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2021.3116280
– volume: 6
  start-page: 3962
  year: 2018
  ident: ref_14
  article-title: Multi-objective decision-making for mobile cloud offloading: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2791504
– volume: 12
  start-page: 248
  year: 2013
  ident: ref_37
  article-title: Joint Resource Allocation and User Association for Heterogeneous Wireless Cellular Networks
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2012.121112.120018
– volume: 32
  start-page: 1133
  year: 2020
  ident: ref_18
  article-title: Multi-hop multi-task partial computation offloading in collaborative edge computing
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2020.3042224
– volume: 8
  start-page: 8119
  year: 2020
  ident: ref_7
  article-title: Secure and optimized load balancing for multitier IoT and edge-cloud computing systems
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3042433
– volume: 69
  start-page: 16067
  year: 2020
  ident: ref_34
  article-title: Priority-aware task offloading in vehicular fog computing based on deep reinforcement learning
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3041929
– ident: ref_1
  doi: 10.1145/3097895.3097901
– ident: ref_2
  doi: 10.1109/ICC.2019.8761349
– volume: 13
  start-page: 103
  year: 2019
  ident: ref_36
  article-title: Constrained deep q-learning gradually approaching ordinary q-learning
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2019.00103
– volume: 13
  start-page: 4110
  year: 2019
  ident: ref_26
  article-title: Task Execution Cost Minimization-Based Joint Computation Offloading and Resource Allocation for Cellular D2D MEC Systems
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2019.2921115
– volume: 20
  start-page: 4858
  year: 2021
  ident: ref_20
  article-title: D2D-assisted multi-user cooperative partial offloading, transmission scheduling and computation allocating for MEC
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2021.3062616
– volume: 14
  start-page: 1
  year: 2022
  ident: ref_29
  article-title: Computation Offloading and Resource Allocation in MEC-Enabled Integrated Aerial-Terrestrial Vehicular Networks: A Reinforcement Learning Approach
  publication-title: IEEE Trans. Intell. Transp. Syst.
– ident: ref_15
  doi: 10.1109/ECTICon.2016.7561437
– ident: ref_19
  doi: 10.23919/SOFTCOM.2019.8903763
SSID ssj0023338
Score 2.423186
Snippet Mobile edge computing (MEC) and device-to-device (D2D) communication can alleviate the resource constraints of mobile devices and reduce communication latency....
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7004
SubjectTerms Algorithms
Communication
D2D communication
Data mining
deep Q-network
Distributed processing
Efficiency
Energy consumption
Game theory
Integer programming
Machine learning
Markov processes
Mobile devices
mobile edge computing
Optimization
partial offloading
Q learning
Questions and answers
SummonAdditionalLinks – databaseName: ProQuest Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgy4EeeFcECjIICS7WJo4TxyfU7rYCiZYVKlI5RY4fZaUq2e5u-f3MON7QBcSJazxynMx4HvbMN4S8AZPjpVUZU9JZJpoiY41JLWss9w7MFQQloVD4kzw9rc7P1SyWR69iWuVGJwZF3aM9Y942KOGx7QyemI85uPlgOotcvl9cMewhhXetsaHGbbKDwFvpiOzMPp7Mvg0BWA7xWI8ulEOoP15xsG8I775lkwJ0_58K-vekyRtW6Pj-_13_A3IveqP0oBefh-SWax-R3RsYhY9JM-VTBkxEcbA01OuyryC3dNJ1C9fjhtMZCiBM9Nn7yy5k5dN5S0-OJvQQrKSlXUunzi3oFxeAWk04k6QR2_XiCTk7PjqbfGCxMQMzoirWrEQUF_A0fOqV81aDmnBaS1N4JRvrSqtN3mhtMt9I7nluikoV0nhhstILn--RUdu17imhJq2k0BhjlY2A-RQ4HBrkQ-VFaoyyCXm34UxtImg59s64rCF4QSbWAxMT8nogXfRIHX8jOkT2DgQIrh0edMuLOu7VusJvM6lwRmuhuVTOitxxWxmhfcNhkrcoHDX-MViM0bGSAT4JwbTqA4mgdegaJWR_Iwx11A2r-hfvE_JqGIZdjVc1unXddaCBOLDK8jIhckvutpa-PdLOvwd8cFWg46ae_fvlz8ldjqUcIV9un4zWy2v3gtwxP9bz1fJl3Do_AWs4LLw
  priority: 102
  providerName: ProQuest
Title D2D-Assisted Multi-User Cooperative Partial Offloading in MEC Based on Deep Reinforcement Learning
URI https://www.proquest.com/docview/2716584537
https://www.proquest.com/docview/2717688136
https://pubmed.ncbi.nlm.nih.gov/PMC9502189
https://doaj.org/article/80509c04ecaa4a279ed43e2d8c4afb24
Volume 22
WOSCitedRecordID wos000856854500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Lj9MwEIdHsHCAA-IpAktlEBJcok0cJ46P28cKJFqq1SKVU-T4AZVWSbXtcty_fWectGoBiQuXHBIrsmfGnfml9meA95hyvLQqjZV0NhZ1nsa1SWxcW-4dpisUJWGj8Bc5m5WLhZrvHfVFa8I6PHBnuJOSACUmEc5oLTSXylmROW5LI7SveSCBJlJtxVQvtTJUXh1HKENRf7LmmMkI5H6QfQKk_8-f4t-XR-7lm7PH8KgvFNlp18EncMc1T-HhHj7wGdRjPo7RvuQpy8JW2vgbhhQbte3KdUhvNqch4ou-en_ZhgXzbNmw6WTEhpjALGsbNnZuxc5dYKia8LmQ9djVH8_h4mxyMfoU92cmxEaU-SYuCLCCFvOJV85bjTPYaS1N7pWsrSusNlmttUl9LbnnmclLlUvjhUkLL3z2Ao6atnEvgZmklEKT_Clqge9TWAtodJ3K8sQYZSP4uDVlZXqeOB1rcVmhriCrVzurR_Bu13TVQTT-1mhI_tg1IO51uIHRUPXRUP0rGiL4QN6syGLYGaP7TQY4JOJcVaeSeHJUtURwvHV41U_bdcVRPWJFlmcygre7xzjh6F8U3bj2OrRBiVamWRGBPAiUg64fPmmWPwO6W-VUU6lX_2Osr-EBp70YYcHbMRxtrq7dG7hvfm2W66sB3JULGa7lAO4NJ7P5-SDMEbxObyZ4b_55Ov9-C8dhGLw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDgl44DeiMMAgELxESx2njh8Q2tpNq9aWChVpPFmOf4xKU1LaDsQfxf_IXZqWFRBve-A1thw7-XzfXeL7DuAlUk6QTrUiJb2LRJ62otzGLsodDx7pCoOSKlG4L4fD7OREjbbgxyoXho5VrmxiZahdaekb-S5Hxx7JMk3ku-mXiKpG0d_VVQmNJSyO_fdvGLLN3_a6-H5fcX54MO4cRXVVgciKLF1EbZIgQZoMcVA-OIMY98ZImwYlc-fbztgkN8a2Qi554IlNM5VKG4RttYMICQ57BbYFYj1uwPaoNxh9Wkd4CQZ8S_miJFHx7pwjgZJ-_AbpVbUB_mSA309lXqC5w1v_2QO6DTdrf5rtLTfAHdjyxV24cUFl8R7kXd6NEIYEaMeqjOPoI-481inLqV8qn7MRbSEc6H0IZ2WVV8AmBRscdNg-8rxjZcG63k_ZB19Jzdrqqyqr1WlP78P4Mtb4ABpFWfiHwGycSWEoSmznAsdT6DIZRLhK0tha5ZrwZvXqta1l16n6x5nG8ItQotcoacKLddfpUmvkb532CT_rDiQPXl0oZ6e6tjY6o7XZWHhrjDBcKu9E4rnLrDAh5zjIa0KfpieGk7GmzsXAJZEcmN6TJLtHzl0TdlZo07V1m-tfUGvC83Uz2iX62WQKX55XfTCSzVpJuwlyA9gbU99sKSafK4VzlZLrqR79--bP4NrReNDX_d7w-DFc55SYUp3-24HGYnbun8BV-3Uxmc-e1vuUgb5k4P8EwfyAtw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48EYNFFgQCC5WnLWd9R4Qal6iaglRVaTeVut9tJEqOyQpiJ_Gv2Nm44QGELceuHpXa-_62_lm7J1vAF4h5XhhZTuSwtkoLbJ2VJjYRoXl3iFdYVASEoUPxWiUn5zI8Rb8WOXC0LHKlU0MhtpWhr6Rtzg69kiWWSJavj4WMe4P30-_RFRBiv60rsppLCFy4L5_w_Bt_m6_j-_6NefDwXHvQ1RXGIhMmmeLqENyJEiZPvbSeasR705rYTIvRWFdx2qTFFqbti8E9zwxWS4zYXxq2h2f-gSHvQbbIsGYpwHb3cFofLSO9hIM_pZSRkki49acI5mSlvwGAYY6AX-ywe8nNC9R3vDOf7xYd-F27WezveXGuAdbrrwPty6pLz6Aos_7EcKTgG5ZyESOPuOOZL2qmrqlIjob09bCgT55f16FfAM2KdnHQY91kf8tq0rWd27KjlyQoDXhayurVWtPH8LxVczxETTKqnQ7wEyci1RT9NgpUhxPoiulEfkyyWJjpG3C2xUMlKnl2KkqyLnCsIwQo9aIacLLddfpUoPkb526hKV1B5INDxeq2amqrZDKaW4mTp3ROtVcSGfTxHGbm1T7guMgbwiJilYMH8boOkcDp0QyYWpPkBwfOX1N2F0hT9VWb65-wa4JL9bNaK_oJ5QuXXUR-mCEm7eTThPEBsg3Hn2zpZycBeVzmZFLKh__--bP4QaiXR3ujw6ewE1O-SrhUOAuNBazC_cUrpuvi8l89qzesgzUFeP-J6tWiVE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=D2D-Assisted+Multi-User+Cooperative+Partial+Offloading+in+MEC+Based+on+Deep+Reinforcement+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Guan%2C+Xin&rft.au=Lv%2C+Tiejun&rft.au=Lin%2C+Zhipeng&rft.au=Huang%2C+Pingmu&rft.date=2022-09-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=18&rft.spage=7004&rft_id=info:doi/10.3390%2Fs22187004&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s22187004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon