D2D-Assisted Multi-User Cooperative Partial Offloading in MEC Based on Deep Reinforcement Learning
Mobile edge computing (MEC) and device-to-device (D2D) communication can alleviate the resource constraints of mobile devices and reduce communication latency. In this paper, we construct a D2D-MEC framework and study the multi-user cooperative partial offloading and computing resource allocation. W...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 22; číslo 18; s. 7004 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.09.2022
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Mobile edge computing (MEC) and device-to-device (D2D) communication can alleviate the resource constraints of mobile devices and reduce communication latency. In this paper, we construct a D2D-MEC framework and study the multi-user cooperative partial offloading and computing resource allocation. We maximize the number of devices under the maximum delay constraints of the application and the limited computing resources. In the considered system, each user can offload its tasks to an edge server and a nearby D2D device. We first formulate the optimization problem as an NP-hard problem and then decouple it into two subproblems. The convex optimization method is used to solve the first subproblem, and the second subproblem is defined as a Markov decision process (MDP). A deep reinforcement learning algorithm based on a deep Q network (DQN) is developed to maximize the amount of tasks that the system can compute. Extensive simulation results demonstrate the effectiveness and superiority of the proposed scheme. |
|---|---|
| AbstractList | Mobile edge computing (MEC) and device-to-device (D2D) communication can alleviate the resource constraints of mobile devices and reduce communication latency. In this paper, we construct a D2D-MEC framework and study the multi-user cooperative partial offloading and computing resource allocation. We maximize the number of devices under the maximum delay constraints of the application and the limited computing resources. In the considered system, each user can offload its tasks to an edge server and a nearby D2D device. We first formulate the optimization problem as an NP-hard problem and then decouple it into two subproblems. The convex optimization method is used to solve the first subproblem, and the second subproblem is defined as a Markov decision process (MDP). A deep reinforcement learning algorithm based on a deep Q network (DQN) is developed to maximize the amount of tasks that the system can compute. Extensive simulation results demonstrate the effectiveness and superiority of the proposed scheme. Mobile edge computing (MEC) and device-to-device (D2D) communication can alleviate the resource constraints of mobile devices and reduce communication latency. In this paper, we construct a D2D-MEC framework and study the multi-user cooperative partial offloading and computing resource allocation. We maximize the number of devices under the maximum delay constraints of the application and the limited computing resources. In the considered system, each user can offload its tasks to an edge server and a nearby D2D device. We first formulate the optimization problem as an NP-hard problem and then decouple it into two subproblems. The convex optimization method is used to solve the first subproblem, and the second subproblem is defined as a Markov decision process (MDP). A deep reinforcement learning algorithm based on a deep Q network (DQN) is developed to maximize the amount of tasks that the system can compute. Extensive simulation results demonstrate the effectiveness and superiority of the proposed scheme.Mobile edge computing (MEC) and device-to-device (D2D) communication can alleviate the resource constraints of mobile devices and reduce communication latency. In this paper, we construct a D2D-MEC framework and study the multi-user cooperative partial offloading and computing resource allocation. We maximize the number of devices under the maximum delay constraints of the application and the limited computing resources. In the considered system, each user can offload its tasks to an edge server and a nearby D2D device. We first formulate the optimization problem as an NP-hard problem and then decouple it into two subproblems. The convex optimization method is used to solve the first subproblem, and the second subproblem is defined as a Markov decision process (MDP). A deep reinforcement learning algorithm based on a deep Q network (DQN) is developed to maximize the amount of tasks that the system can compute. Extensive simulation results demonstrate the effectiveness and superiority of the proposed scheme. |
| Audience | Academic |
| Author | Huang, Pingmu Lin, Zhipeng Lv, Tiejun Zeng, Jie Guan, Xin |
| AuthorAffiliation | 3 School of Artificial Intelligence, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China 1 School of Information and Communication Engineering, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China 4 School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing 100081, China 2 Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 211106, China |
| AuthorAffiliation_xml | – name: 1 School of Information and Communication Engineering, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China – name: 3 School of Artificial Intelligence, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China – name: 4 School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing 100081, China – name: 2 Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 211106, China |
| Author_xml | – sequence: 1 givenname: Xin surname: Guan fullname: Guan, Xin – sequence: 2 givenname: Tiejun surname: Lv fullname: Lv, Tiejun – sequence: 3 givenname: Zhipeng orcidid: 0000-0001-6111-9687 surname: Lin fullname: Lin, Zhipeng – sequence: 4 givenname: Pingmu surname: Huang fullname: Huang, Pingmu – sequence: 5 givenname: Jie surname: Zeng fullname: Zeng, Jie |
| BookMark | eNplUk1v1DAQtVAR_YAD_yASFzikdfwRJxekZbeFSlsVoXK2Js548SprL3ZSiX-P0y2IFvlga_zem3kzc0qOfPBIyNuKnnPe0ovEWNUoSsULclIJJsqGMXr0z_uYnKa0pZRxzptX5JjXlai5pCekW7FVuUjJpRH74mYaRld-TxiLZQh7jDC6eyy-QhwdDMWttUOA3vlN4Xxxc7ksPkHKtOCLFeK--IbO2xAN7tCPxRoh-ox9TV5aGBK-ebzPyN3V5d3yS7m-_Xy9XKxLIxo5ljWlNZW0tdS2aHugiiOAMtK2quux7sHwDsBUtlPMMm5k00plrDBVbYXlZ-T6INsH2Op9dDuIv3QApx8CIW70bMMMqJs5j6ECDYAAplrsBUfWN0aA7ZjIWh8PWvup22Fvsp0IwxPRpz_e_dCbcK9bSfMo2izw_lEghp8TplHvXDI4DOAxTEkzVam6aSpeZ-i7Z9BtmKLPnZpRtWyE5Cqjzg-oDWQDc5tzXpNPjztn8jpYl-MLJWrJmahkJlwcCCaGlCJabdyYxxnmgt2gK6rn3dF_dyczPjxj_PH7P_Y35efD-A |
| CitedBy_id | crossref_primary_10_1109_TSC_2024_3495503 crossref_primary_10_1109_ACCESS_2025_3533034 crossref_primary_10_1109_TMC_2024_3425723 crossref_primary_10_3390_s23156822 crossref_primary_10_3390_app13010191 crossref_primary_10_3390_s23031155 crossref_primary_10_3390_fi16010019 crossref_primary_10_3390_s22228718 |
| Cites_doi | 10.1109/JIOT.2021.3097754 10.1109/JIOT.2020.3015970 10.1145/322077.322090 10.1109/JIOT.2021.3064995 10.1109/COMST.2017.2682318 10.1016/j.jnca.2022.103366 10.1145/3318265.3318276 10.1109/GLOCOM.2018.8647906 10.1109/TNSM.2020.3020249 10.1109/JIOT.2021.3110319 10.1109/ACCESS.2020.3011705 10.1007/s11276-021-02554-w 10.1109/JIOT.2015.2497712 10.1109/ICC.2017.7997138 10.1109/COMST.2017.2705720 10.1109/WCNC.2018.8377343 10.1016/j.comnet.2020.107496 10.1109/JIOT.2021.3118016 10.1016/j.jnca.2021.102974 10.1109/TWC.2019.2896999 10.1109/INFOCOM.2006.145 10.1109/TVT.2020.2978027 10.1109/TSC.2021.3116280 10.1109/ACCESS.2018.2791504 10.1109/TWC.2012.121112.120018 10.1109/TPDS.2020.3042224 10.1109/JIOT.2020.3042433 10.1109/TVT.2020.3041929 10.1145/3097895.3097901 10.1109/ICC.2019.8761349 10.3389/fnbot.2019.00103 10.1109/JSYST.2019.2921115 10.1109/TWC.2021.3062616 10.1109/ECTICon.2016.7561437 10.23919/SOFTCOM.2019.8903763 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22187004 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central (New) ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_80509c04ecaa4a279ed43e2d8c4afb24 PMC9502189 A746532415 10_3390_s22187004 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: Basic Scientific Research Project grantid: NS2022046 – fundername: National Natural Science Foundation of China grantid: 62271068; 61827801 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c485t-60060509f0f9efda073eaa7c5f97bde6dac3baac1fb72f23c58957cf4c16f4f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000856854500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:50:43 EDT 2025 Tue Nov 04 02:07:08 EST 2025 Fri Sep 05 08:41:39 EDT 2025 Tue Oct 07 07:12:53 EDT 2025 Tue Nov 04 18:17:14 EST 2025 Tue Nov 18 22:21:04 EST 2025 Sat Nov 29 07:16:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c485t-60060509f0f9efda073eaa7c5f97bde6dac3baac1fb72f23c58957cf4c16f4f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6111-9687 |
| OpenAccessLink | https://doaj.org/article/80509c04ecaa4a279ed43e2d8c4afb24 |
| PMID | 36146350 |
| PQID | 2716584537 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_80509c04ecaa4a279ed43e2d8c4afb24 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9502189 proquest_miscellaneous_2717688136 proquest_journals_2716584537 gale_infotracacademiconefile_A746532415 crossref_citationtrail_10_3390_s22187004 crossref_primary_10_3390_s22187004 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Shakarami (ref_30) 2020; 182 Saleem (ref_35) 2020; 69 Zhou (ref_24) 2015; 3 ref_12 Wu (ref_14) 2018; 6 Elgendy (ref_5) 2020; 17 Mach (ref_10) 2017; 19 Qin (ref_31) 2020; 8 Garey (ref_39) 1978; 25 ref_19 Elgendy (ref_17) 2021; 27 ref_16 Guo (ref_32) 2021; 9 ref_38 ref_15 Fooladivanda (ref_37) 2013; 12 Taleb (ref_8) 2017; 19 He (ref_25) 2019; 18 Zhang (ref_7) 2020; 8 Shakarami (ref_9) 2021; 178 Dinh (ref_3) 2017; 65 Shi (ref_34) 2020; 69 Othman (ref_13) 2013; 16 ref_23 ref_22 Fang (ref_28) 2022; 9 Truong (ref_33) 2021; 8 Feng (ref_4) 2022; 202 Sahni (ref_18) 2020; 32 ref_21 Chai (ref_26) 2019; 13 Hamdi (ref_27) 2022; 9 ref_1 Khayyat (ref_6) 2020; 8 Ohnishi (ref_36) 2019; 13 ref_2 Hu (ref_11) 2021; 15 Peng (ref_20) 2021; 20 Waqar (ref_29) 2022; 14 |
| References_xml | – volume: 9 start-page: 3226 year: 2022 ident: ref_28 article-title: Joint Task Offloading, D2D Pairing, and Resource Allocation in Device-Enhanced MEC: A Potential Game Approach publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3097754 – volume: 8 start-page: 1896 year: 2020 ident: ref_31 article-title: Service-oriented energy-latency tradeoff for IoT task partial offloading in MEC-enhanced multi-RAT networks publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3015970 – volume: 25 start-page: 499 year: 1978 ident: ref_39 article-title: “Strong” np-completeness results: Motivation, examples, and implications publication-title: J. ACM doi: 10.1145/322077.322090 – volume: 8 start-page: 13196 year: 2021 ident: ref_33 article-title: Partial computation offloading in NOMA-assisted mobile-edge computing systems using deep reinforcement learning publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3064995 – volume: 16 start-page: 393 year: 2013 ident: ref_13 article-title: A survey of mobile cloud computing application models publication-title: IEEE Commun. Surv. Tutor. – volume: 19 start-page: 1628 year: 2017 ident: ref_10 article-title: Mobile edge computing: A survey on architecture and computation offloading publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2017.2682318 – volume: 202 start-page: 103366 year: 2022 ident: ref_4 article-title: Computation offloading in mobile edge computing networks: A survey publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2022.103366 – ident: ref_22 doi: 10.1145/3318265.3318276 – ident: ref_23 doi: 10.1109/GLOCOM.2018.8647906 – volume: 17 start-page: 2410 year: 2020 ident: ref_5 article-title: Efficient and secure multi-user multi-task computation offloading for mobile-edge computing in mobile IoT networks publication-title: IEEE Trans. Netw. Serv. Manag. doi: 10.1109/TNSM.2020.3020249 – volume: 9 start-page: 6018 year: 2022 ident: ref_27 article-title: Energy-Efficient Joint Task Assignment and Power Control in Energy-Harvesting D2D Offloading Communications publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3110319 – volume: 8 start-page: 137052 year: 2020 ident: ref_6 article-title: Advanced deep learning-based computational offloading for multilevel vehicular edge-cloud computing networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011705 – volume: 27 start-page: 2023 year: 2021 ident: ref_17 article-title: Joint computation offloading and task caching for multi-user and multi-task MEC systems: Reinforcement learning-based algorithms publication-title: Wirel. Netw. doi: 10.1007/s11276-021-02554-w – volume: 3 start-page: 428 year: 2015 ident: ref_24 article-title: Energy-efficient resource allocation for D2D communications underlaying cloud-RAN-based LTE-A networks publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2015.2497712 – volume: 65 start-page: 3571 year: 2017 ident: ref_3 article-title: Offloading in Mobile Edge Computing: Task Allocation and Computational Frequency Scaling publication-title: IEEE Trans. Commun. – ident: ref_21 doi: 10.1109/ICC.2017.7997138 – volume: 19 start-page: 1657 year: 2017 ident: ref_8 article-title: On multi-access edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2017.2705720 – ident: ref_16 doi: 10.1109/WCNC.2018.8377343 – volume: 182 start-page: 107496 year: 2020 ident: ref_30 article-title: A survey on the computation offloading approaches in mobile edge computing: A machine learning-based perspective publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107496 – volume: 9 start-page: 9025 year: 2021 ident: ref_32 article-title: Lyapunov-based Partial Computation Offloading for Multiple Mobile Devices Enabled by Harvested Energy in MEC publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3118016 – volume: 178 start-page: 102974 year: 2021 ident: ref_9 article-title: An autonomous computation offloading strategy in Mobile Edge Computing: A deep learning-based hybrid approach publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2021.102974 – ident: ref_12 – volume: 18 start-page: 1750 year: 2019 ident: ref_25 article-title: D2D communications meet mobile edge computing for enhanced computation capacity in cellular networks publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2019.2896999 – ident: ref_38 doi: 10.1109/INFOCOM.2006.145 – volume: 69 start-page: 4472 year: 2020 ident: ref_35 article-title: Latency Minimization for D2D-Enabled Partial Computation Offloading in Mobile Edge Computing publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.2978027 – volume: 15 start-page: 669 year: 2021 ident: ref_11 article-title: An efficient online computation offloading approach for large-scale mobile edge computing via deep reinforcement learning publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2021.3116280 – volume: 6 start-page: 3962 year: 2018 ident: ref_14 article-title: Multi-objective decision-making for mobile cloud offloading: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2791504 – volume: 12 start-page: 248 year: 2013 ident: ref_37 article-title: Joint Resource Allocation and User Association for Heterogeneous Wireless Cellular Networks publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2012.121112.120018 – volume: 32 start-page: 1133 year: 2020 ident: ref_18 article-title: Multi-hop multi-task partial computation offloading in collaborative edge computing publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2020.3042224 – volume: 8 start-page: 8119 year: 2020 ident: ref_7 article-title: Secure and optimized load balancing for multitier IoT and edge-cloud computing systems publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3042433 – volume: 69 start-page: 16067 year: 2020 ident: ref_34 article-title: Priority-aware task offloading in vehicular fog computing based on deep reinforcement learning publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3041929 – ident: ref_1 doi: 10.1145/3097895.3097901 – ident: ref_2 doi: 10.1109/ICC.2019.8761349 – volume: 13 start-page: 103 year: 2019 ident: ref_36 article-title: Constrained deep q-learning gradually approaching ordinary q-learning publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2019.00103 – volume: 13 start-page: 4110 year: 2019 ident: ref_26 article-title: Task Execution Cost Minimization-Based Joint Computation Offloading and Resource Allocation for Cellular D2D MEC Systems publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2019.2921115 – volume: 20 start-page: 4858 year: 2021 ident: ref_20 article-title: D2D-assisted multi-user cooperative partial offloading, transmission scheduling and computation allocating for MEC publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2021.3062616 – volume: 14 start-page: 1 year: 2022 ident: ref_29 article-title: Computation Offloading and Resource Allocation in MEC-Enabled Integrated Aerial-Terrestrial Vehicular Networks: A Reinforcement Learning Approach publication-title: IEEE Trans. Intell. Transp. Syst. – ident: ref_15 doi: 10.1109/ECTICon.2016.7561437 – ident: ref_19 doi: 10.23919/SOFTCOM.2019.8903763 |
| SSID | ssj0023338 |
| Score | 2.423186 |
| Snippet | Mobile edge computing (MEC) and device-to-device (D2D) communication can alleviate the resource constraints of mobile devices and reduce communication latency.... |
| SourceID | doaj pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 7004 |
| SubjectTerms | Algorithms Communication D2D communication Data mining deep Q-network Distributed processing Efficiency Energy consumption Game theory Integer programming Machine learning Markov processes Mobile devices mobile edge computing Optimization partial offloading Q learning Questions and answers |
| SummonAdditionalLinks | – databaseName: ProQuest Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgy4EeeFcECjIICS7WJo4TxyfU7rYCiZYVKlI5RY4fZaUq2e5u-f3MON7QBcSJazxynMx4HvbMN4S8AZPjpVUZU9JZJpoiY41JLWss9w7MFQQloVD4kzw9rc7P1SyWR69iWuVGJwZF3aM9Y942KOGx7QyemI85uPlgOotcvl9cMewhhXetsaHGbbKDwFvpiOzMPp7Mvg0BWA7xWI8ulEOoP15xsG8I775lkwJ0_58K-vekyRtW6Pj-_13_A3IveqP0oBefh-SWax-R3RsYhY9JM-VTBkxEcbA01OuyryC3dNJ1C9fjhtMZCiBM9Nn7yy5k5dN5S0-OJvQQrKSlXUunzi3oFxeAWk04k6QR2_XiCTk7PjqbfGCxMQMzoirWrEQUF_A0fOqV81aDmnBaS1N4JRvrSqtN3mhtMt9I7nluikoV0nhhstILn--RUdu17imhJq2k0BhjlY2A-RQ4HBrkQ-VFaoyyCXm34UxtImg59s64rCF4QSbWAxMT8nogXfRIHX8jOkT2DgQIrh0edMuLOu7VusJvM6lwRmuhuVTOitxxWxmhfcNhkrcoHDX-MViM0bGSAT4JwbTqA4mgdegaJWR_Iwx11A2r-hfvE_JqGIZdjVc1unXddaCBOLDK8jIhckvutpa-PdLOvwd8cFWg46ae_fvlz8ldjqUcIV9un4zWy2v3gtwxP9bz1fJl3Do_AWs4LLw priority: 102 providerName: ProQuest |
| Title | D2D-Assisted Multi-User Cooperative Partial Offloading in MEC Based on Deep Reinforcement Learning |
| URI | https://www.proquest.com/docview/2716584537 https://www.proquest.com/docview/2717688136 https://pubmed.ncbi.nlm.nih.gov/PMC9502189 https://doaj.org/article/80509c04ecaa4a279ed43e2d8c4afb24 |
| Volume | 22 |
| WOSCitedRecordID | wos000856854500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Lj9MwEIdHsHCAA-IpAktlEBJcok0cJ46P28cKJFqq1SKVU-T4AZVWSbXtcty_fWectGoBiQuXHBIrsmfGnfml9meA95hyvLQqjZV0NhZ1nsa1SWxcW-4dpisUJWGj8Bc5m5WLhZrvHfVFa8I6PHBnuJOSACUmEc5oLTSXylmROW5LI7SveSCBJlJtxVQvtTJUXh1HKENRf7LmmMkI5H6QfQKk_8-f4t-XR-7lm7PH8KgvFNlp18EncMc1T-HhHj7wGdRjPo7RvuQpy8JW2vgbhhQbte3KdUhvNqch4ou-en_ZhgXzbNmw6WTEhpjALGsbNnZuxc5dYKia8LmQ9djVH8_h4mxyMfoU92cmxEaU-SYuCLCCFvOJV85bjTPYaS1N7pWsrSusNlmttUl9LbnnmclLlUvjhUkLL3z2Ao6atnEvgZmklEKT_Clqge9TWAtodJ3K8sQYZSP4uDVlZXqeOB1rcVmhriCrVzurR_Bu13TVQTT-1mhI_tg1IO51uIHRUPXRUP0rGiL4QN6syGLYGaP7TQY4JOJcVaeSeHJUtURwvHV41U_bdcVRPWJFlmcygre7xzjh6F8U3bj2OrRBiVamWRGBPAiUg64fPmmWPwO6W-VUU6lX_2Osr-EBp70YYcHbMRxtrq7dG7hvfm2W66sB3JULGa7lAO4NJ7P5-SDMEbxObyZ4b_55Ov9-C8dhGLw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDgl44DeiMMAgELxESx2njh8Q2tpNq9aWChVpPFmOf4xKU1LaDsQfxf_IXZqWFRBve-A1thw7-XzfXeL7DuAlUk6QTrUiJb2LRJ62otzGLsodDx7pCoOSKlG4L4fD7OREjbbgxyoXho5VrmxiZahdaekb-S5Hxx7JMk3ku-mXiKpG0d_VVQmNJSyO_fdvGLLN3_a6-H5fcX54MO4cRXVVgciKLF1EbZIgQZoMcVA-OIMY98ZImwYlc-fbztgkN8a2Qi554IlNM5VKG4RttYMICQ57BbYFYj1uwPaoNxh9Wkd4CQZ8S_miJFHx7pwjgZJ-_AbpVbUB_mSA309lXqC5w1v_2QO6DTdrf5rtLTfAHdjyxV24cUFl8R7kXd6NEIYEaMeqjOPoI-481inLqV8qn7MRbSEc6H0IZ2WVV8AmBRscdNg-8rxjZcG63k_ZB19Jzdrqqyqr1WlP78P4Mtb4ABpFWfiHwGycSWEoSmznAsdT6DIZRLhK0tha5ZrwZvXqta1l16n6x5nG8ItQotcoacKLddfpUmvkb532CT_rDiQPXl0oZ6e6tjY6o7XZWHhrjDBcKu9E4rnLrDAh5zjIa0KfpieGk7GmzsXAJZEcmN6TJLtHzl0TdlZo07V1m-tfUGvC83Uz2iX62WQKX55XfTCSzVpJuwlyA9gbU99sKSafK4VzlZLrqR79--bP4NrReNDX_d7w-DFc55SYUp3-24HGYnbun8BV-3Uxmc-e1vuUgb5k4P8EwfyAtw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48EYNFFgQCC5WnLWd9R4Qal6iaglRVaTeVut9tJEqOyQpiJ_Gv2Nm44QGELceuHpXa-_62_lm7J1vAF4h5XhhZTuSwtkoLbJ2VJjYRoXl3iFdYVASEoUPxWiUn5zI8Rb8WOXC0LHKlU0MhtpWhr6Rtzg69kiWWSJavj4WMe4P30-_RFRBiv60rsppLCFy4L5_w_Bt_m6_j-_6NefDwXHvQ1RXGIhMmmeLqENyJEiZPvbSeasR705rYTIvRWFdx2qTFFqbti8E9zwxWS4zYXxq2h2f-gSHvQbbIsGYpwHb3cFofLSO9hIM_pZSRkki49acI5mSlvwGAYY6AX-ywe8nNC9R3vDOf7xYd-F27WezveXGuAdbrrwPty6pLz6Aos_7EcKTgG5ZyESOPuOOZL2qmrqlIjob09bCgT55f16FfAM2KdnHQY91kf8tq0rWd27KjlyQoDXhayurVWtPH8LxVczxETTKqnQ7wEyci1RT9NgpUhxPoiulEfkyyWJjpG3C2xUMlKnl2KkqyLnCsIwQo9aIacLLddfpUoPkb526hKV1B5INDxeq2amqrZDKaW4mTp3ROtVcSGfTxHGbm1T7guMgbwiJilYMH8boOkcDp0QyYWpPkBwfOX1N2F0hT9VWb65-wa4JL9bNaK_oJ5QuXXUR-mCEm7eTThPEBsg3Hn2zpZycBeVzmZFLKh__--bP4QaiXR3ujw6ewE1O-SrhUOAuNBazC_cUrpuvi8l89qzesgzUFeP-J6tWiVE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=D2D-Assisted+Multi-User+Cooperative+Partial+Offloading+in+MEC+Based+on+Deep+Reinforcement+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Guan%2C+Xin&rft.au=Lv%2C+Tiejun&rft.au=Lin%2C+Zhipeng&rft.au=Huang%2C+Pingmu&rft.date=2022-09-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=18&rft.spage=7004&rft_id=info:doi/10.3390%2Fs22187004&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s22187004 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |