D2D-Assisted Multi-User Cooperative Partial Offloading in MEC Based on Deep Reinforcement Learning

Mobile edge computing (MEC) and device-to-device (D2D) communication can alleviate the resource constraints of mobile devices and reduce communication latency. In this paper, we construct a D2D-MEC framework and study the multi-user cooperative partial offloading and computing resource allocation. W...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 22; číslo 18; s. 7004
Hlavní autoři: Guan, Xin, Lv, Tiejun, Lin, Zhipeng, Huang, Pingmu, Zeng, Jie
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.09.2022
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Mobile edge computing (MEC) and device-to-device (D2D) communication can alleviate the resource constraints of mobile devices and reduce communication latency. In this paper, we construct a D2D-MEC framework and study the multi-user cooperative partial offloading and computing resource allocation. We maximize the number of devices under the maximum delay constraints of the application and the limited computing resources. In the considered system, each user can offload its tasks to an edge server and a nearby D2D device. We first formulate the optimization problem as an NP-hard problem and then decouple it into two subproblems. The convex optimization method is used to solve the first subproblem, and the second subproblem is defined as a Markov decision process (MDP). A deep reinforcement learning algorithm based on a deep Q network (DQN) is developed to maximize the amount of tasks that the system can compute. Extensive simulation results demonstrate the effectiveness and superiority of the proposed scheme.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s22187004