A Formal Energy Consumption Analysis to Secure Cluster-Based WSN: A Case Study of Multi-Hop Clustering Algorithm Based on Spectral Classification Using Lightweight Blockchain

Wireless Sensors Networks are integrating human daily life at a fast rate. Applications cover a wide range of fields, including home security, agriculture, climate change, fire prevention, and so on and so forth. If WSN were initially flat networks, hierarchical, or cluster-based networks have been...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 22; číslo 20; s. 7730
Hlavní autoři: Ebobissé Djéné, Yves Frédéric, El Idrissi, Mohammed Sbai, Tardif, Pierre-Martin, Jorio, Ali, El Bhiri, Brahim, Fakhri, Youssef
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.10.2022
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Wireless Sensors Networks are integrating human daily life at a fast rate. Applications cover a wide range of fields, including home security, agriculture, climate change, fire prevention, and so on and so forth. If WSN were initially flat networks, hierarchical, or cluster-based networks have been introduced in order to achieve a better performance in terms of energy efficiency, topology management, delay minimization, load balancing, routing techniques, etc. As cluster-based algorithms proved to be efficient in terms of energy balancing, security has been of less importance in the field. Data shared by nodes in a WSN can be very sensitive depending on the field of application. Therefore, it is important to ensure security at various levels of WSN. This paper proposes a formal modeling of the energy consumed to secure communications in a cluster-based WSN in general. The concept is implemented using the Proof of Authentication (POAh) paradigm of blockchain and applied to a Multi-hop Clustering Algorithm based on spectral classification. The studied metrics are residual energy in the network, the number of alive nodes, first and last dead node.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s22207730