Lightweight Self-Detection and Self-Calibration Strategy for MEMS Gas Sensor Arrays

With the development of Internet of Things (IoT) and edge computing technology, gas sensor arrays based on Micro-Electro-Mechanical System (MEMS) fabrication technique have broad application prospects in intelligent integrated systems, portable devices, and other fields. In such complex scenarios, t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 22; číslo 12; s. 4315
Hlavní autoři: Liu, Bing, Zhou, Yanzhen, Fu, Hongshuo, Fu, Ping, Feng, Lei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.06.2022
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:With the development of Internet of Things (IoT) and edge computing technology, gas sensor arrays based on Micro-Electro-Mechanical System (MEMS) fabrication technique have broad application prospects in intelligent integrated systems, portable devices, and other fields. In such complex scenarios, the normal operation of a gas sensing system depends heavily on the accuracy of the sensor output. Therefore, a lightweight Self-Detection and Self-Calibration strategy for MEMS gas sensor arrays is proposed in this paper to monitor the working status of sensor arrays and correct the abnormal data in real time. Evaluations on real-world datasets indicate that the strategy has high performance of fault detection, isolation, and data recovery. Furthermore, our method has low computation complexity and low storage resource occupation. The board-level verification on CC1350 shows that the average calculation time and running power consumption of the algorithm are 0.28 ms and 9.884 mW. The proposed strategy can be deployed on most resource-limited IoT devices to improve the reliability of gas sensing systems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s22124315