Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem
We consider semidefinite programming relaxations of the quadratic assignment problem, and show how to exploit group symmetry in the problem data. Thus we are able to compute the best known lower bounds for several instances of quadratic assignment problems from the problem library: (Burkard et al. i...
Saved in:
| Published in: | Mathematical programming Vol. 122; no. 2; pp. 225 - 246 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer-Verlag
01.04.2010
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 0025-5610, 1436-4646 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We consider semidefinite programming relaxations of the quadratic assignment problem, and show how to exploit group symmetry in the problem data. Thus we are able to compute the best known lower bounds for several instances of quadratic assignment problems from the problem library: (Burkard et al. in J Global Optim 10:291–403, 1997). |
|---|---|
| Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-008-0246-5 |