Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem

We consider semidefinite programming relaxations of the quadratic assignment problem, and show how to exploit group symmetry in the problem data. Thus we are able to compute the best known lower bounds for several instances of quadratic assignment problems from the problem library: (Burkard et al. i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming Ročník 122; číslo 2; s. 225 - 246
Hlavní autori: de Klerk, Etienne, Sotirov, Renata
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer-Verlag 01.04.2010
Springer
Springer Nature B.V
Predmet:
ISSN:0025-5610, 1436-4646
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider semidefinite programming relaxations of the quadratic assignment problem, and show how to exploit group symmetry in the problem data. Thus we are able to compute the best known lower bounds for several instances of quadratic assignment problems from the problem library: (Burkard et al. in J Global Optim 10:291–403, 1997).
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-008-0246-5