Dynamically generated cutting planes for mixed-integer quadratically constrained quadratic programs and their incorporation into GloMIQO 2

The global mixed-integer quadratic optimizer, GloMIQO, addresses mixed-integer quadratically constrained quadratic programs (MIQCQP) to ε-global optimality. This paper documents the branch-and-cut framework integrated into GloMIQO 2. Cutting planes are derived from reformulation-linearization techni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization methods & software Jg. 30; H. 1; S. 215 - 249
Hauptverfasser: Misener, Ruth, Smadbeck, James B., Floudas, Christodoulos A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 02.01.2015
Taylor & Francis Ltd
Schlagworte:
ISSN:1055-6788, 1029-4937
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The global mixed-integer quadratic optimizer, GloMIQO, addresses mixed-integer quadratically constrained quadratic programs (MIQCQP) to ε-global optimality. This paper documents the branch-and-cut framework integrated into GloMIQO 2. Cutting planes are derived from reformulation-linearization technique equations, convex multivariable terms, αBB convexifications, and low- and high-dimensional edge-concave aggregations. Cuts are based on both individual equations and collections of nonlinear terms in MIQCQP. Novel contributions of this paper include: development of a corollary to Crama's [Concave extensions for nonlinear 0-1 maximization problems, Math. Program. 61 (1993), pp. 53-60] necessary and sufficient condition for the existence of a cut dominating the termwise relaxation of a bilinear expression; algorithmic descriptions for deriving each class of cut; presentation of a branch-and-cut framework integrating the cuts. Computational results are presented along with comparison of the GloMIQO 2 performance to several state-of-the-art solvers.
AbstractList The global mixed-integer quadratic optimizer, GloMIQO, addresses mixed-integer quadratically constrained quadratic programs (MIQCQP) to epsilon -global optimality. This paper documents the branch-and-cut framework integrated into GloMIQO 2. Cutting planes are derived from reformulation-linearization technique equations, convex multivariable terms, alpha BB convexifications, and low- and high-dimensional edge-concave aggregations. Cuts are based on both individual equations and collections of nonlinear terms in MIQCQP. Novel contributions of this paper include: development of a corollary to Crama's [Concave extensions for nonlinear 0-1 maximization problems, Math. Program. 61 (1993), pp. 53-60] necessary and sufficient condition for the existence of a cut dominating the termwise relaxation of a bilinear expression; algorithmic descriptions for deriving each class of cut; presentation of a branch-and-cut framework integrating the cuts. Computational results are presented along with comparison of the GloMIQO 2 performance to several state-of-the-art solvers.
The global mixed-integer quadratic optimizer, GloMIQO, addresses mixed-integer quadratically constrained quadratic programs (MIQCQP) to ε-global optimality. This paper documents the branch-and-cut framework integrated into GloMIQO 2. Cutting planes are derived from reformulation-linearization technique equations, convex multivariable terms, αBB convexifications, and low- and high-dimensional edge-concave aggregations. Cuts are based on both individual equations and collections of nonlinear terms in MIQCQP. Novel contributions of this paper include: development of a corollary to Crama's [Concave extensions for nonlinear 0-1 maximization problems, Math. Program. 61 (1993), pp. 53-60] necessary and sufficient condition for the existence of a cut dominating the termwise relaxation of a bilinear expression; algorithmic descriptions for deriving each class of cut; presentation of a branch-and-cut framework integrating the cuts. Computational results are presented along with comparison of the GloMIQO 2 performance to several state-of-the-art solvers.
The global mixed-integer quadratic optimizer, GloMIQO, addresses mixed-integer quadratically constrained quadratic programs (MIQCQP) to [epsilon]-global optimality. This paper documents the branch-and-cut framework integrated into GloMIQO 2. Cutting planes are derived from reformulation-linearization technique equations, convex multivariable terms, αBB convexifications, and low- and high-dimensional edge-concave aggregations. Cuts are based on both individual equations and collections of nonlinear terms in MIQCQP. Novel contributions of this paper include: development of a corollary to Crama's [Concave extensions for nonlinear 0-1 maximization problems, Math. Program. 61 (1993), pp. 53-60] necessary and sufficient condition for the existence of a cut dominating the termwise relaxation of a bilinear expression; algorithmic descriptions for deriving each class of cut; presentation of a branch-and-cut framework integrating the cuts. Computational results are presented along with comparison of the GloMIQO 2 performance to several state-of-the-art solvers.
Author Floudas, Christodoulos A.
Smadbeck, James B.
Misener, Ruth
Author_xml – sequence: 1
  givenname: Ruth
  surname: Misener
  fullname: Misener, Ruth
  organization: Department of Chemical Engineering, Imperial College London, South Kensington Campus
– sequence: 2
  givenname: James B.
  surname: Smadbeck
  fullname: Smadbeck, James B.
  organization: Department of Chemical and Biological Engineering, Princeton University
– sequence: 3
  givenname: Christodoulos A.
  surname: Floudas
  fullname: Floudas, Christodoulos A.
  email: floudas@titan.princeton.edu
  organization: Department of Chemical and Biological Engineering, Princeton University
BookMark eNqFkU1vFSEUholpE9vqP3BB4sbNXGGGj8GNMbXWJjWNia4Jw8eVhoFbYGLvX_BXy_RWF13oCsh5npPDeU_BUUzRAvAKow1GI3qLEaWMj-OmR5hsBGb9yJ-BE4x60REx8KP1Tmm3Ms_BaSm3CCGCCTsBvz7uo5q9ViHs4dZGm1W1BuqlVh-3cBdUtAW6lOHs763pfKx2azO8W5Rp6KOoUyw1Kx-b-rcCdzlts5oLVNHA-sP6DH3UKe_SWk-xvWqClyF9ufp6A_sX4NipUOzLx_MMfP908e38c3d9c3l1_uG602QktVPDMDHKse0FpY6LSTnh7MR6ZSbhiJgQ19xQ55higqIJU24GSi3h1Iyc2eEMvDn0bfPdLbZUOfuibVi_mpYiMaOYYIERaejrJ-htWnJs0zWqZ_3ABUKNIgdK51RKtk7usp9V3kuM5BqQ_BOQXAOSh4Ca9u6Jpn19WMy6yvA_-f1B9rGFM6ufKQcjq9qHlF1WUfsih392-A0uBa2t
CitedBy_id crossref_primary_10_1007_s10107_020_01484_3
crossref_primary_10_1007_s12532_018_0133_x
crossref_primary_10_1007_s10898_019_00844_4
crossref_primary_10_1007_s10107_020_01541_x
crossref_primary_10_1016_j_compchemeng_2022_107909
crossref_primary_10_1007_s40998_018_0082_4
crossref_primary_10_1007_s10107_016_1095_2
crossref_primary_10_1080_10556788_2016_1264397
crossref_primary_10_1007_s10107_017_1158_z
crossref_primary_10_1016_j_ces_2016_10_039
crossref_primary_10_1016_j_compchemeng_2016_07_002
crossref_primary_10_1016_j_compchemeng_2018_04_022
crossref_primary_10_1016_j_compchemeng_2019_106599
crossref_primary_10_1002_aic_15308
crossref_primary_10_1080_10556788_2022_2157002
crossref_primary_10_1007_s10107_016_1031_5
crossref_primary_10_1016_j_ejor_2015_12_018
crossref_primary_10_1007_s10898_023_01345_1
crossref_primary_10_1287_ijoc_2024_0909
crossref_primary_10_1002_aic_15220
crossref_primary_10_1007_s10107_018_1246_8
crossref_primary_10_1287_ijoc_2023_0390
crossref_primary_10_1137_19M1277333
crossref_primary_10_1002_aic_15168
crossref_primary_10_1016_j_disopt_2020_100569
crossref_primary_10_1080_10556788_2017_1350675
crossref_primary_10_1007_s10898_016_0434_4
crossref_primary_10_1007_s10898_018_0649_7
crossref_primary_10_1007_s10898_025_01513_5
crossref_primary_10_1016_j_compchemeng_2017_03_001
crossref_primary_10_1007_s11081_020_09551_6
crossref_primary_10_1287_moor_2021_1162
crossref_primary_10_1287_moor_2021_1121
crossref_primary_10_1137_19M1271762
crossref_primary_10_1002_aic_15416
crossref_primary_10_1007_s10898_017_0577_y
crossref_primary_10_1007_s10957_024_02569_1
crossref_primary_10_3390_pr7110838
Cites_doi 10.1080/10556780902753221
10.1007/s10898-014-0166-2
10.1287/moor.20.3.550
10.1002/aic.10717
10.1080/10556788.2013.783032
10.1007/978-1-4614-1927-3_14
10.1007/s10107-004-0549-0
10.1016/j.jcta.2006.04.002
10.1021/ie950519h
10.1007/BF01099647
10.1016/j.compchemeng.2013.01.016
10.1007/s10107-003-0437-z
10.1007/s10479-009-0592-6
10.1093/oso/9780195100563.001.0001
10.1007/BF01096418
10.1016/j.compchemeng.2005.02.006
10.1021/ie0340995
10.1007/s10107-006-0080-6
10.1007/BF01096415
10.1287/opre.38.2.217
10.1007/BF01580665
10.1016/S0098-1354(98)00027-1
10.1007/978-1-4614-1927-3_15
10.1016/S0098-1354(98)00218-X
10.1007/s101079900106
10.1147/rd.471.0057
10.1007/BF01097059
10.1016/j.resconrec.2006.06.013
10.1021/ie8019592
10.1007/s10098-008-0172-5
10.1002/aic.11280
10.1016/0167-6377(90)90057-C
10.1007/s10957-013-0396-3
10.1007/BF01100203
10.1016/0095-8956(82)90028-4
10.1007/978-3-540-68155-7_4
10.1007/978-1-4614-1927-3_18
10.1002/aic.11385
10.1007/s10898-013-0129-z
10.1007/s10107-012-0606-z
10.1007/s10107-005-0581-8
10.1080/10556780902883184
10.1016/S0167-6377(97)00013-8
10.1016/0166-218X(88)90093-5
10.3934/naco.2012.2.739
10.1007/s10107-012-0555-6
10.1007/BF01098364
10.1023/A:1013886408463
10.1007/978-1-4757-4949-6
10.1007/s10898-011-9792-0
10.1016/j.compchemeng.2010.02.014
10.1007/s10107-010-0371-9
10.1016/j.compchemeng.2005.11.005
10.1007/BF01587085
10.1007/11751595_95
10.1021/ie800257x
10.1007/978-1-4757-3040-1
10.1016/j.disopt.2006.10.011
10.1007/s10898-007-9274-6
10.1016/S0165-1889(97)00032-8
10.1007/s10898-008-9372-0
10.1007/s10107-012-0581-4
10.1080/10556780903087124
10.1007/s101070100263
10.1023/A:1009795911987
10.1007/s10107-004-0550-7
10.1016/j.dam.2007.09.020
10.1287/mnsc.1030.0207
10.1016/j.compchemeng.2012.02.018
10.1007/s10898-010-9630-9
10.1007/s10107-012-0602-3
10.1007/978-3-662-03199-5
10.1007/BF01582138
10.1007/s11590-007-0065-2
10.1007/978-1-4614-1927-3_13
10.1007/s12532-011-0033-9
10.1002/aic.12419
10.1016/j.apenergy.2009.01.022
10.1007/s10107-010-0340-3
10.1007/s101070100251
10.1016/j.compchemeng.2011.01.041
10.1007/s10898-006-9005-4
10.1287/ijoc.15.1.114.15159
10.1021/ie100064q
10.1002/aic.12623
10.1016/j.ces.2007.09.033
10.1007/BF00122429
10.1007/s10898-012-0022-1
10.1090/dimacs/016/02
10.1007/s12532-008-0001-1
10.1023/A:1008217604285
10.1002/aic.12276
10.1016/j.compchemeng.2011.01.026
10.1016/j.ejor.2005.09.032
10.1007/s10898-012-9874-7
10.1007/s10898-008-9332-8
10.1016/j.compchemeng.2013.01.013
10.1007/978-3-642-38171-3_26
10.1006/jcta.2001.3225
10.1006/jctb.2000.2011
ContentType Journal Article
Copyright 2014 Taylor & Francis 2014
2014 Taylor & Francis
Copyright_xml – notice: 2014 Taylor & Francis 2014
– notice: 2014 Taylor & Francis
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/10556788.2014.916287
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4937
EndPage 249
ExternalDocumentID 3501991801
10_1080_10556788_2014_916287
916287
Genre Article
GroupedDBID .4S
.7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c484t-a33b6571e2955f79baf9feb62adb9f49b07c7d5ff6a6950b157d355e475d876e3
IEDL.DBID TFW
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345371800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1055-6788
IngestDate Wed Jul 30 10:25:25 EDT 2025
Wed Aug 13 03:12:38 EDT 2025
Tue Nov 18 22:09:57 EST 2025
Sat Nov 29 02:36:05 EST 2025
Mon Oct 20 23:35:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-a33b6571e2955f79baf9feb62adb9f49b07c7d5ff6a6950b157d355e475d876e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://figshare.com/articles/journal_contribution/Dynamically_generated_cutting_planes_for_mixed_integer_quadratically_constrained_quadratic_programs_and_their_incorporation_into_GloMIQO_2/1310478
PQID 1626237900
PQPubID 186278
PageCount 35
ParticipantIDs informaworld_taylorfrancis_310_1080_10556788_2014_916287
crossref_primary_10_1080_10556788_2014_916287
crossref_citationtrail_10_1080_10556788_2014_916287
proquest_miscellaneous_1651419104
proquest_journals_1626237900
PublicationCentury 2000
PublicationDate 2015-01-02
PublicationDateYYYYMMDD 2015-01-02
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-02
  day: 02
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Optimization methods & software
PublicationYear 2015
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0071
CIT0074
CIT0076
CIT0075
CIT0078
CIT0111
CIT0077
CIT0110
CIT0070
De Loera J. (CIT0036) 2010
CIT0113
CIT0079
CIT0112
CIT0115
CIT0114
CIT0117
CIT0118
CIT0083
CIT0085
CIT0087
CIT0120
CIT0086
CIT0001
CIT0089
CIT0088
CIT0081
CIT0080
Nowak I. (CIT0084) 2005
CIT0003
CIT0002
CIT0005
CIT0006
CIT0009
CIT0008
CIT0094
CIT0093
CIT0096
CIT0098
CIT0097
CIT0012
CIT0011
CIT0099
CIT0090
CIT0092
CIT0014
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0023
CIT0022
Tawarmalani M. (CIT0107) 2002
Gau C.Y. (CIT0046) 2003
CIT0025
CIT0024
CIT0026
CIT0029
Adams W.P. (CIT0004) 1994
CIT0028
CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
Floudas C.A. (CIT0040) 1995
Schrijver A. (CIT0095) 1998
CIT0035
CIT0037
Jünger M. (CIT0051) 2001; 91
CIT0039
Strang G. (CIT0103) 2003
CIT0041
CIT0043
CIT0042
CIT0045
CIT0044
Sherali H.D. (CIT0100) 1997; 22
CIT0049
CIT0048
CIT0050
Tardella F. (CIT0105) 2003
CIT0052
Anstreicher K.M. (CIT0010) 2003; 97
Bussieck M.R. (CIT0027) 2010
CIT0054
CIT0053
CIT0056
CIT0055
CIT0058
CIT0057
CIT0059
CIT0061
CIT0060
Gerschgorin S. (CIT0047) 1931; 6
CIT0063
CIT0062
CIT0065
CIT0064
CIT0067
CIT0066
CIT0109
Sherali H.D. (CIT0102) 1999
CIT0069
CIT0068
CIT0101
CIT0104
CIT0106
Audet C. (CIT0013) 2000; 87
CIT0108
References_xml – ident: CIT0064
  doi: 10.1080/10556780902753221
– ident: CIT0076
  doi: 10.1007/s10898-014-0166-2
– ident: CIT0087
  doi: 10.1287/moor.20.3.550
– ident: CIT0074
  doi: 10.1002/aic.10717
– volume: 22
  start-page: 245
  year: 1997
  ident: CIT0100
  publication-title: Acta Math. Vietnam
– ident: CIT0120
  doi: 10.1080/10556788.2013.783032
– ident: CIT0088
  doi: 10.1007/978-1-4614-1927-3_14
– ident: CIT0114
  doi: 10.1007/s10107-004-0549-0
– ident: CIT0016
  doi: 10.1016/j.jcta.2006.04.002
– ident: CIT0058
  doi: 10.1021/ie950519h
– ident: CIT0009
  doi: 10.1007/BF01099647
– volume: 6
  start-page: 749
  year: 1931
  ident: CIT0047
  publication-title: Izv. Akad. Nauk SSSR, Ser, Fiz. mat
– ident: CIT0057
  doi: 10.1016/j.compchemeng.2013.01.016
– volume: 97
  start-page: 27
  year: 2003
  ident: CIT0010
  publication-title: Math. Program
  doi: 10.1007/s10107-003-0437-z
– ident: CIT0090
  doi: 10.1007/s10479-009-0592-6
– volume-title: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications
  year: 1995
  ident: CIT0040
  doi: 10.1093/oso/9780195100563.001.0001
– ident: CIT0065
  doi: 10.1007/BF01096418
– ident: CIT0043
  doi: 10.1016/j.compchemeng.2005.02.006
– ident: CIT0055
  doi: 10.1021/ie0340995
– ident: CIT0024
  doi: 10.1007/s10107-006-0080-6
– ident: CIT0049
  doi: 10.1007/BF01096415
– ident: CIT0003
  doi: 10.1287/opre.38.2.217
– ident: CIT0071
  doi: 10.1007/BF01580665
– start-page: 563
  volume-title: Frontiers in Global Optimization
  year: 2003
  ident: CIT0105
– ident: CIT0006
  doi: 10.1016/S0098-1354(98)00027-1
– ident: CIT0020
  doi: 10.1007/978-1-4614-1927-3_15
– ident: CIT0005
  doi: 10.1016/S0098-1354(98)00218-X
– volume: 87
  start-page: 131
  year: 2000
  ident: CIT0013
  publication-title: Math. Program
  doi: 10.1007/s101079900106
– ident: CIT0067
  doi: 10.1147/rd.471.0057
– ident: CIT0069
  doi: 10.1007/BF01097059
– ident: CIT0029
  doi: 10.1016/j.resconrec.2006.06.013
– ident: CIT0081
  doi: 10.1021/ie8019592
– ident: CIT0030
  doi: 10.1007/s10098-008-0172-5
– ident: CIT0059
  doi: 10.1002/aic.11280
– ident: CIT0028
  doi: 10.1016/0167-6377(90)90057-C
– ident: CIT0075
  doi: 10.1007/s10957-013-0396-3
– ident: CIT0099
  doi: 10.1007/BF01100203
– ident: CIT0112
  doi: 10.1016/0095-8956(82)90028-4
– start-page: 114
  volume-title: Wiley Encyclopedia of Operations Research and Management Science
  year: 2010
  ident: CIT0027
– ident: CIT0001
  doi: 10.1007/978-3-540-68155-7_4
– ident: CIT0045
  doi: 10.1007/978-1-4614-1927-3_18
– ident: CIT0097
  doi: 10.1002/aic.11385
– ident: CIT0052
  doi: 10.1007/s10898-013-0129-z
– ident: CIT0068
  doi: 10.1007/s10107-012-0606-z
– ident: CIT0108
  doi: 10.1007/s10107-005-0581-8
– ident: CIT0018
  doi: 10.1080/10556780902883184
– ident: CIT0101
  doi: 10.1016/S0167-6377(97)00013-8
– ident: CIT0104
  doi: 10.1016/0166-218X(88)90093-5
– ident: CIT0021
  doi: 10.3934/naco.2012.2.739
– ident: CIT0079
  doi: 10.1007/s10107-012-0555-6
– ident: CIT0085
  doi: 10.1007/BF01098364
– ident: CIT0022
  doi: 10.1023/A:1013886408463
– ident: CIT0042
  doi: 10.1007/978-1-4757-4949-6
– ident: CIT0062
  doi: 10.1007/s10898-011-9792-0
– ident: CIT0077
  doi: 10.1016/j.compchemeng.2010.02.014
– ident: CIT0093
  doi: 10.1007/s10107-010-0371-9
– ident: CIT0054
  doi: 10.1016/j.compchemeng.2005.11.005
– ident: CIT0034
  doi: 10.1007/BF01587085
– ident: CIT0086
  doi: 10.1007/11751595_95
– ident: CIT0115
  doi: 10.1021/ie800257x
– ident: CIT0041
  doi: 10.1007/978-1-4757-3040-1
– ident: CIT0023
  doi: 10.1016/j.disopt.2006.10.011
– ident: CIT0092
– ident: CIT0053
  doi: 10.1007/s10898-007-9274-6
– ident: CIT0070
  doi: 10.1016/S0165-1889(97)00032-8
– ident: CIT0011
  doi: 10.1007/s10898-008-9372-0
– ident: CIT0109
  doi: 10.1007/s10107-012-0581-4
– ident: CIT0019
  doi: 10.1080/10556780903087124
– ident: CIT0037
  doi: 10.1007/s101070100263
– volume-title: International Series of Numerical Mathematics
  year: 2005
  ident: CIT0084
– ident: CIT0117
  doi: 10.1023/A:1009795911987
– ident: CIT0113
  doi: 10.1007/s10107-004-0550-7
– volume-title: Algorithms and Computation in Mathematics
  year: 2010
  ident: CIT0036
– start-page: 145
  volume-title: Frontiers in Global Optimization
  year: 2003
  ident: CIT0046
– ident: CIT0096
  doi: 10.1016/j.dam.2007.09.020
– ident: CIT0015
  doi: 10.1287/mnsc.1030.0207
– ident: CIT0111
  doi: 10.1016/j.compchemeng.2012.02.018
– ident: CIT0118
  doi: 10.1007/s10898-010-9630-9
– ident: CIT0012
  doi: 10.1007/s10107-012-0602-3
– ident: CIT0050
  doi: 10.1007/978-3-662-03199-5
– ident: CIT0035
  doi: 10.1007/BF01582138
– ident: CIT0106
  doi: 10.1007/s11590-007-0065-2
– ident: CIT0025
  doi: 10.1007/978-1-4614-1927-3_13
– ident: CIT0032
  doi: 10.1007/s12532-011-0033-9
– volume-title: Nonconvex Optimization and its Applications
  year: 2002
  ident: CIT0107
– ident: CIT0060
  doi: 10.1002/aic.12419
– ident: CIT0083
  doi: 10.1016/j.apenergy.2009.01.022
– volume-title: Nonconvex Optimization and its Applications
  year: 1999
  ident: CIT0102
– ident: CIT0094
  doi: 10.1007/s10107-010-0340-3
– volume: 91
  start-page: 175
  year: 2001
  ident: CIT0051
  publication-title: Math. Program
  doi: 10.1007/s101070100251
– volume-title: Introduction to Linear Algebra
  year: 2003
  ident: CIT0103
– ident: CIT0017
  doi: 10.1016/j.compchemeng.2011.01.041
– ident: CIT0063
  doi: 10.1007/s10898-006-9005-4
– ident: CIT0026
  doi: 10.1287/ijoc.15.1.114.15159
– ident: CIT0039
  doi: 10.1021/ie100064q
– ident: CIT0061
  doi: 10.1002/aic.12623
– ident: CIT0110
  doi: 10.1016/j.ces.2007.09.033
– ident: CIT0098
  doi: 10.1007/BF00122429
– ident: CIT0056
  doi: 10.1007/s10898-012-0022-1
– start-page: 43
  volume-title: Quadratic Assignment and Related Problems: DIMACS Workshop
  year: 1994
  ident: CIT0004
  doi: 10.1090/dimacs/016/02
– ident: CIT0002
  doi: 10.1007/s12532-008-0001-1
– ident: CIT0089
  doi: 10.1023/A:1008217604285
– ident: CIT0008
  doi: 10.1002/aic.12276
– ident: CIT0078
  doi: 10.1016/j.compchemeng.2011.01.026
– volume-title: Wiley-Interscience Series in Discrete Mathematics and Optimization
  year: 1998
  ident: CIT0095
– ident: CIT0066
  doi: 10.1016/j.ejor.2005.09.032
– ident: CIT0080
  doi: 10.1007/s10898-012-9874-7
– ident: CIT0044
  doi: 10.1007/s10898-008-9332-8
– ident: CIT0031
  doi: 10.1016/j.compchemeng.2013.01.013
– ident: CIT0048
  doi: 10.1007/978-3-642-38171-3_26
– ident: CIT0014
  doi: 10.1006/jcta.2001.3225
– ident: CIT0033
  doi: 10.1006/jctb.2000.2011
SSID ssj0004146
Score 2.2539897
Snippet The global mixed-integer quadratic optimizer, GloMIQO, addresses mixed-integer quadratically constrained quadratic programs (MIQCQP) to ε-global optimality....
The global mixed-integer quadratic optimizer, GloMIQO, addresses mixed-integer quadratically constrained quadratic programs (MIQCQP) to [epsilon]-global...
The global mixed-integer quadratic optimizer, GloMIQO, addresses mixed-integer quadratically constrained quadratic programs (MIQCQP) to epsilon -global...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 215
SubjectTerms Constraints
Cutting
cutting planes
global optimization
Integer programming
Mathematical analysis
Maximization
Nonlinearity
Optimization
Planes
quadratically constrained quadratic programming
Solvers
Title Dynamically generated cutting planes for mixed-integer quadratically constrained quadratic programs and their incorporation into GloMIQO 2
URI https://www.tandfonline.com/doi/abs/10.1080/10556788.2014.916287
https://www.proquest.com/docview/1626237900
https://www.proquest.com/docview/1651419104
Volume 30
WOSCitedRecordID wos000345371800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1029-4937
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004146
  issn: 1055-6788
  databaseCode: TFW
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQ6oEeSqGtukCRkXo1zcOO42NFu8CBRyUQ3CI_K6RlFzZZRP9CfzUzTrJdhEqlcozsSRx7PP5sz3xDyGcv8XbHeRZ4YRlXXDAtMw66zBOuBS9KaWKyCXl8XF5eqtOFKH50q8Q9dGiJIqKtxsmtTd17xH2JOR1h64aOWXwX8A2gfjDCsPLjzDwbXvwJjOzCi0CAoUQfO_eXlzxamx4xlz6x1HH5Ga6-vOFvyZsOetKvra6skSU_XievFwgJ35Hf39oE9Xo0-kV_RkZqQKTUzqJ3NL1Bz9iaQoPp9dW9dyySTfgpvZ1ph6rUClrEnJh6AkTnJbTzBKspNJ_G-wmKzBAtkTJoBzw1E7o_mhwd_jih2XtyPvx-tnfAumwNzPKSN0znuSmETH2mhAhSGR1U8KbItDMqcGUSaaUTIRS6UCIxqZAOwI7nUjgwyT7_QJbHk7H_SCioiMXgEuOSAHANNgEhNSG11qWBh7IckLwfp8p2VOb4W6Mq7RhP-56usKertqcHhM2lbloqj3_ULxdVoGriEUpo851U-fOiW726VJ1NqCsoAawpVZIMyM68GGYzXtHA8E1mWAcALGyhE77x_1_fJCvwJOJBUbZFlpvpzH8ir-xdc1VPt-MMeQAdDw5c
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagIAEHnkVdWsBIXA152HF8RKVLK9oFpEX0ZsUvVGnZbTdZBH-BX82M42xbIUBCHKPxJI49Hn-2x98Q8txLPN1xngVeWcYVF6yRBQdb5hlvBK9qaWKyCTmZ1MfH6n2KJmxTWCWuoUNPFBF9NQ5u3IweQuJexqSOsHbDyCz-AgAOwP6r5JqAqRbp86fjT-dXI9MFI9BgqDLcnvvNWy7NTpe4S3_x1XECGt_5D1W_S24n9Elf9eZyj1zx8_vk1gVOwgfkx-s-R30zm32nnyMpNYBSalcxQJqeYnBsS6HG9MvJN-9Y5JvwS3q2ahxaU69oEXZi9glQXUtoCgZrKdSfxiMKiuQQPZcyGAg8dQv6ZrY4Ovjwjhab5ON4b7q7z1LCBmZ5zTvWlKWphMx9oYQIUpkmqOBNVTTOqMCVyaSVToRQNZUSmcmFdIB3PJfCgVf25UOyMV_M_RahYCUW75cYlwVAbLAOCLkJubUuDzzU9YiUQ0dpm9jM8bdmOk-kp0NLa2xp3bf0iLC11mnP5vGX8vVFG9Bd3EUJfcoTXf5ZdWewF53cQqtBAnBTqiwbkWdrMQxoPKWB7lussAxgWFhFZ_zRv3_9KbmxPz061IcHk7fb5CZIRNw3KnbIRrdc-cfkuv3anbTLJ3G4_AQuORKG
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BgtBy4I0oLGAkroY87Dg-IpbCCiiLtIi9WfELrVTabpsi-Av8amacpHSFAAmOkT2JY4_tb-yZbwAeB0W3Oz7wKCrHhRaSN6oQqMsiE40UVa1sSjahJpP6-FgfbkXxk1sl2dCxI4pIazVN7oWPg0fc05TTEU03cswSTxDfIOo_DxcQOVek40fjjz8jI_v4IpTgJDIEz_3mLWc2pzPUpb8s1Wn_GV_9_5Zfgys99mTPOmW5DufC7AZc3mIkvAnf97sM9c10-o19SpTUCEmZWyf3aLYg19gVwwazzydfg-eJbSIs2em68aRLnaAj0Em5J1B0U8J6V7AVw-azdEHBiBqiY1JG9cCnds5eTudvD96_Y8Ut-DB-cfT8Fe_TNXAnatHypixtJVUeCi1lVNo2Ucdgq6LxVkehbaac8jLGqqm0zGwulUe0E4SSHtfkUN6Gndl8Fu4AQx1xFF1ifRYRr6EVEHMbc-d8HkWs6xGUwzgZ13OZ029NTd5Tng49bainTdfTI-AbqUXH5fGX-vW2Cpg2naHELuGJKf8sujeoi-kXhZXBEgSbSmfZCB5tinE60x0NDt98TXUQwaINnYm7__71h3DpcH9s3hxMXt-DXSyQ6dCo2IOddrkO9-Gi-9KerJYP0mT5AeRMETg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamically+generated+cutting+planes+for+mixed-integer+quadratically+constrained+quadratic+programs+and+their+incorporation+into+GloMIQO+2&rft.jtitle=Optimization+methods+%26+software&rft.au=Misener%2C+Ruth&rft.au=Smadbeck%2C+James+B.&rft.au=Floudas%2C+Christodoulos+A.&rft.date=2015-01-02&rft.pub=Taylor+%26+Francis&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=30&rft.issue=1&rft.spage=215&rft.epage=249&rft_id=info:doi/10.1080%2F10556788.2014.916287&rft.externalDocID=916287
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon