Multi-objective virtual network embedding algorithm based on Q-learning and curiosity-driven

Network virtualization is a vital technology that helps overcome shortcomings such as network ossification of the current Internet architecture. However, virtual network embedding (VNE) involving the allocation of resources for heterogeneous virtual network requests (VNRs) on the substrate network (...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:EURASIP journal on wireless communications and networking Ročník 2018; číslo 1; s. 1 - 12
Hlavní autoři: He, Mengyang, Zhuang, Lei, Tian, Shuaikui, Wang, Guoqing, Zhang, Kunli
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 15.06.2018
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1687-1499, 1687-1472, 1687-1499
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Network virtualization is a vital technology that helps overcome shortcomings such as network ossification of the current Internet architecture. However, virtual network embedding (VNE) involving the allocation of resources for heterogeneous virtual network requests (VNRs) on the substrate network (SN) is considered as NP-hard problem. VNE process may involve conflicting objectives, including energy saving and VNR acceptance rate as the most critical. In this paper, we propose a virtual network multi-objective embedding algorithm based on Q-learning and curiosity-driven (Q-CD-VNE) for improving the performance of the system by optimizing conflicting objectives, namely energy saving and acceptance rate. The proposed algorithm employs Q-learning and curiosity-driven mechanism by considering other non-deterministic factors to avoid falling into a local optimum. The major contributions of this work involve (1) modeling of the multi-objective deterministic factors as binary (0, 1) integer programming problem, (2) formulating the virtual node mapping problem using the Markov decision process (MDP), (3) solving the VNE problem using Q-learning algorithm, (4) mining non-deterministic factors using curiosity-driven mechanism for avoiding prematurely falling into the Exploration-Exploitation dilemma and local optimal. Experimental results in comparison with representative researches in the field prove that the proposed algorithm can reduce energy consumption, improve the request acceptance rate, and improve the long-term average income.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-1499
1687-1472
1687-1499
DOI:10.1186/s13638-018-1170-x