Evolution of Termite Symbiosis Informed by Transcriptome-Based Phylogenies

Termitidae comprises ∼80% of all termite species [1] that play dominant decomposer roles in tropical ecosystems [2, 3]. Two major events during termite evolution were the loss of cellulolytic gut protozoans in the ancestor of Termitidae and the subsequent gain in the termitid subfamily Macrotermitin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology Jg. 29; H. 21; S. 3728
Hauptverfasser: Bucek, Ales, Šobotník, Jan, He, Shulin, Shi, Mang, McMahon, Dino P, Holmes, Edward C, Roisin, Yves, Lo, Nathan, Bourguignon, Thomas
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 04.11.2019
ISSN:1879-0445, 1879-0445
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Termitidae comprises ∼80% of all termite species [1] that play dominant decomposer roles in tropical ecosystems [2, 3]. Two major events during termite evolution were the loss of cellulolytic gut protozoans in the ancestor of Termitidae and the subsequent gain in the termitid subfamily Macrotermitinae of fungal symbionts cultivated externally in "combs" constructed within the nest [4, 5]. How these symbiotic transitions occurred remains unresolved. Phylogenetic analyses of mitochondrial data previously suggested that Macrotermitinae is the earliest branching termitid lineage, followed soon after by Sphaerotermitinae [6], which cultivates bacterial symbionts on combs inside its nests [7]. This has led to the hypothesis that comb building was an important evolutionary step in the loss of gut protozoa in ancestral termitids [8]. We sequenced genomes and transcriptomes of 55 termite species and reconstructed phylogenetic trees from up to 4,065 orthologous genes of 68 species. We found strong support for a novel sister-group relationship between the bacterial comb-building Sphaerotermitinae and fungus comb-building Macrotermitinae. This key finding indicates that comb building is a derived trait within Termitidae and that the creation of a comb-like "external rumen" involving bacteria or fungi may not have driven the loss of protozoa from ancestral termitids, as previously hypothesized. Instead, associations with gut prokaryotic symbionts, combined with dietary shifts from wood to other plant-based substrates, may have played a more important role in this symbiotic transition. Our phylogenetic tree provides a platform for future studies of comparative termite evolution and the evolution of symbiosis in this taxon.Termitidae comprises ∼80% of all termite species [1] that play dominant decomposer roles in tropical ecosystems [2, 3]. Two major events during termite evolution were the loss of cellulolytic gut protozoans in the ancestor of Termitidae and the subsequent gain in the termitid subfamily Macrotermitinae of fungal symbionts cultivated externally in "combs" constructed within the nest [4, 5]. How these symbiotic transitions occurred remains unresolved. Phylogenetic analyses of mitochondrial data previously suggested that Macrotermitinae is the earliest branching termitid lineage, followed soon after by Sphaerotermitinae [6], which cultivates bacterial symbionts on combs inside its nests [7]. This has led to the hypothesis that comb building was an important evolutionary step in the loss of gut protozoa in ancestral termitids [8]. We sequenced genomes and transcriptomes of 55 termite species and reconstructed phylogenetic trees from up to 4,065 orthologous genes of 68 species. We found strong support for a novel sister-group relationship between the bacterial comb-building Sphaerotermitinae and fungus comb-building Macrotermitinae. This key finding indicates that comb building is a derived trait within Termitidae and that the creation of a comb-like "external rumen" involving bacteria or fungi may not have driven the loss of protozoa from ancestral termitids, as previously hypothesized. Instead, associations with gut prokaryotic symbionts, combined with dietary shifts from wood to other plant-based substrates, may have played a more important role in this symbiotic transition. Our phylogenetic tree provides a platform for future studies of comparative termite evolution and the evolution of symbiosis in this taxon.
AbstractList Termitidae comprises ∼80% of all termite species [1] that play dominant decomposer roles in tropical ecosystems [2, 3]. Two major events during termite evolution were the loss of cellulolytic gut protozoans in the ancestor of Termitidae and the subsequent gain in the termitid subfamily Macrotermitinae of fungal symbionts cultivated externally in "combs" constructed within the nest [4, 5]. How these symbiotic transitions occurred remains unresolved. Phylogenetic analyses of mitochondrial data previously suggested that Macrotermitinae is the earliest branching termitid lineage, followed soon after by Sphaerotermitinae [6], which cultivates bacterial symbionts on combs inside its nests [7]. This has led to the hypothesis that comb building was an important evolutionary step in the loss of gut protozoa in ancestral termitids [8]. We sequenced genomes and transcriptomes of 55 termite species and reconstructed phylogenetic trees from up to 4,065 orthologous genes of 68 species. We found strong support for a novel sister-group relationship between the bacterial comb-building Sphaerotermitinae and fungus comb-building Macrotermitinae. This key finding indicates that comb building is a derived trait within Termitidae and that the creation of a comb-like "external rumen" involving bacteria or fungi may not have driven the loss of protozoa from ancestral termitids, as previously hypothesized. Instead, associations with gut prokaryotic symbionts, combined with dietary shifts from wood to other plant-based substrates, may have played a more important role in this symbiotic transition. Our phylogenetic tree provides a platform for future studies of comparative termite evolution and the evolution of symbiosis in this taxon.Termitidae comprises ∼80% of all termite species [1] that play dominant decomposer roles in tropical ecosystems [2, 3]. Two major events during termite evolution were the loss of cellulolytic gut protozoans in the ancestor of Termitidae and the subsequent gain in the termitid subfamily Macrotermitinae of fungal symbionts cultivated externally in "combs" constructed within the nest [4, 5]. How these symbiotic transitions occurred remains unresolved. Phylogenetic analyses of mitochondrial data previously suggested that Macrotermitinae is the earliest branching termitid lineage, followed soon after by Sphaerotermitinae [6], which cultivates bacterial symbionts on combs inside its nests [7]. This has led to the hypothesis that comb building was an important evolutionary step in the loss of gut protozoa in ancestral termitids [8]. We sequenced genomes and transcriptomes of 55 termite species and reconstructed phylogenetic trees from up to 4,065 orthologous genes of 68 species. We found strong support for a novel sister-group relationship between the bacterial comb-building Sphaerotermitinae and fungus comb-building Macrotermitinae. This key finding indicates that comb building is a derived trait within Termitidae and that the creation of a comb-like "external rumen" involving bacteria or fungi may not have driven the loss of protozoa from ancestral termitids, as previously hypothesized. Instead, associations with gut prokaryotic symbionts, combined with dietary shifts from wood to other plant-based substrates, may have played a more important role in this symbiotic transition. Our phylogenetic tree provides a platform for future studies of comparative termite evolution and the evolution of symbiosis in this taxon.
Author Shi, Mang
Šobotník, Jan
Roisin, Yves
McMahon, Dino P
Bucek, Ales
He, Shulin
Lo, Nathan
Holmes, Edward C
Bourguignon, Thomas
Author_xml – sequence: 1
  givenname: Ales
  surname: Bucek
  fullname: Bucek, Ales
– sequence: 2
  givenname: Jan
  surname: Šobotník
  fullname: Šobotník, Jan
– sequence: 3
  givenname: Shulin
  surname: He
  fullname: He, Shulin
– sequence: 4
  givenname: Mang
  surname: Shi
  fullname: Shi, Mang
– sequence: 5
  givenname: Dino P
  surname: McMahon
  fullname: McMahon, Dino P
– sequence: 6
  givenname: Edward C
  surname: Holmes
  fullname: Holmes, Edward C
– sequence: 7
  givenname: Yves
  surname: Roisin
  fullname: Roisin, Yves
– sequence: 8
  givenname: Nathan
  surname: Lo
  fullname: Lo, Nathan
– sequence: 9
  givenname: Thomas
  surname: Bourguignon
  fullname: Bourguignon, Thomas
BookMark eNpNjD1PwzAUAC1UJNrCD2DLyJLwnuP4Y4SqQFElkMheJc4LuErsEidI-fcgwcB0pxtuxRY-eGLsGiFDQHl7zOxUZxzQZKAzUPKMLVErk4IQxeKfX7BVjEcA5NrIJXvefoVuGl3wSWiTkobejZS8zX3tQnQx2fk2DD01ST0n5VD5aAd3GkNP6X0Vf_Lrx9yFd_KO4iU7b6su0tUf16x82Jabp3T_8rjb3O1TK3Q-pqapAa2yYLkgJLJS5NCqirRA1Bqo0IgNt5i3lkDaiqRVLRRGg6wb4mt287s9DeFzojgeehctdV3lKUzxwHNQuZG5Qv4NGpdUEw
CitedBy_id crossref_primary_10_1080_08912963_2022_2098490
crossref_primary_10_1007_s00248_020_01664_w
crossref_primary_10_1038_s41467_024_51028_y
crossref_primary_10_1016_j_cois_2022_100880
crossref_primary_10_1016_j_genrep_2024_101985
crossref_primary_10_3389_fevo_2022_924151
crossref_primary_10_1016_j_protis_2021_125836
crossref_primary_10_1007_s10886_020_01180_8
crossref_primary_10_1111_ede_12335
crossref_primary_10_1146_annurev_ento_022420_074746
crossref_primary_10_1371_journal_pone_0328685
crossref_primary_10_3897_zookeys_1167_100001
crossref_primary_10_14411_eje_2021_020
crossref_primary_10_1111_ecog_06463
crossref_primary_10_3897_zookeys_1057_65877
crossref_primary_10_1111_1440_1703_12510
crossref_primary_10_1093_molbev_msac093
crossref_primary_10_1111_evo_14128
crossref_primary_10_1038_s42003_024_07146_w
crossref_primary_10_1111_syen_12477
crossref_primary_10_1016_j_funeco_2020_100991
crossref_primary_10_1038_s42003_025_07771_z
crossref_primary_10_1093_isd_ixae043
crossref_primary_10_24072_pcjournal_476
crossref_primary_10_1002_ece3_6381
crossref_primary_10_1111_syen_12548
crossref_primary_10_1111_cla_12601
crossref_primary_10_1186_s12983_024_00538_y
crossref_primary_10_1093_zoolinnean_zlac064
crossref_primary_10_1007_s00040_023_00929_0
crossref_primary_10_1016_j_cub_2019_09_016
crossref_primary_10_1186_s40168_022_01258_3
crossref_primary_10_1080_00379271_2022_2081606
crossref_primary_10_1111_zsc_12502
crossref_primary_10_3897_asp_80_e75819
crossref_primary_10_1111_een_12946
crossref_primary_10_1111_evo_14457
crossref_primary_10_1017_jpa_2021_106
crossref_primary_10_3389_fevo_2021_632590
crossref_primary_10_3390_insects16030325
crossref_primary_10_7717_peerj_15259
crossref_primary_10_1073_pnas_2110361119
crossref_primary_10_1007_s00049_023_00396_w
crossref_primary_10_1016_j_tree_2022_02_007
crossref_primary_10_3390_insects14050444
crossref_primary_10_1007_s00265_021_03090_5
crossref_primary_10_1128_aem_00361_23
crossref_primary_10_1016_j_biotechadv_2025_108676
crossref_primary_10_3389_fevo_2022_1065947
crossref_primary_10_3389_fevo_2022_1055382
crossref_primary_10_1038_s41598_021_95423_7
crossref_primary_10_1007_s00018_020_03728_z
crossref_primary_10_15252_embj_2020106249
crossref_primary_10_1016_j_cretres_2020_104385
crossref_primary_10_1016_j_ejop_2020_125742
crossref_primary_10_3389_fmicb_2020_635786
crossref_primary_10_3389_fevo_2021_698937
crossref_primary_10_1007_s13199_022_00843_2
crossref_primary_10_1016_j_cub_2021_07_070
crossref_primary_10_3389_fbioe_2021_808075
crossref_primary_10_1093_molbev_msad087
crossref_primary_10_1111_imb_12818
crossref_primary_10_1111_brv_13038
crossref_primary_10_1111_syen_12458
crossref_primary_10_3897_zookeys_1197_114452
crossref_primary_10_1016_j_ympev_2022_107520
crossref_primary_10_1111_syen_12607
crossref_primary_10_3389_fevo_2021_552624
crossref_primary_10_3390_v12101145
crossref_primary_10_1093_femsre_fuac034
crossref_primary_10_3389_ffgc_2023_1240804
crossref_primary_10_1007_s13199_021_00809_w
crossref_primary_10_1038_s42003_023_04438_5
crossref_primary_10_1007_s00049_020_00324_2
crossref_primary_10_3390_d17080537
crossref_primary_10_1016_j_asd_2021_101136
crossref_primary_10_1016_j_jsames_2021_103260
crossref_primary_10_1111_jeu_12815
crossref_primary_10_47371_mycosci_2021_11_001
crossref_primary_10_1007_s10886_023_01447_w
crossref_primary_10_1016_j_cretres_2020_104612
crossref_primary_10_1111_syen_12560
crossref_primary_10_1186_s13213_023_01741_8
crossref_primary_10_3389_fevo_2023_1111484
crossref_primary_10_1038_s41598_021_00674_z
crossref_primary_10_1111_syen_12486
crossref_primary_10_1038_s41467_022_34446_8
ContentType Journal Article
Copyright Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID 7X8
DOI 10.1016/j.cub.2019.08.076
DatabaseName MEDLINE - Academic
DatabaseTitle MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1879-0445
GroupedDBID ---
--K
-DZ
-~X
0R~
1RT
1~5
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
7X8
AAEDT
AAEDW
AAFWJ
AAKRW
AALRI
AAMRU
AAVLU
AAXUO
AAYWO
ABDGV
ABJNI
ABMAC
ACGFO
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEFWE
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGHSJ
AGKMS
AGUBO
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EFKBS
F5P
FCP
FDB
FIRID
IHE
IXB
J1W
JIG
LX5
M3Z
M41
O-L
O9-
OK1
P2P
ROL
RPZ
SCP
SDG
SES
SSZ
TR2
ID FETCH-LOGICAL-c483t-9db01c7c0c24e1eec6430f7ae8411880e5811d2c13fce06cae6c7f059806bde2
IEDL.DBID 7X8
ISICitedReferencesCount 105
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000494940000035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1879-0445
IngestDate Thu Oct 02 11:52:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-9db01c7c0c24e1eec6430f7ae8411880e5811d2c13fce06cae6c7f059806bde2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://id.nii.ac.jp/1394/00001411/
PQID 2307396371
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2307396371
PublicationCentury 2000
PublicationDate 2019-11-04
PublicationDateYYYYMMDD 2019-11-04
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-04
  day: 04
PublicationDecade 2010
PublicationTitle Current biology
PublicationYear 2019
SSID ssj0012896
Score 2.6082537
Snippet Termitidae comprises ∼80% of all termite species [1] that play dominant decomposer roles in tropical ecosystems [2, 3]. Two major events during termite...
SourceID proquest
SourceType Aggregation Database
StartPage 3728
Title Evolution of Termite Symbiosis Informed by Transcriptome-Based Phylogenies
URI https://www.proquest.com/docview/2307396371
Volume 29
WOSCitedRecordID wos000494940000035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qFbz4Ft9E8BpMNtlNehKVFhEpBXvoreQxwR66q25b6L83Sbf04EXwnkNIvsx8k28eCN156bkUmhIHihNhvCKxixqx2hthDDAOqYnrm-z11HDY7jcfbnWTVrmyiclQu8rGP_L7mLDMA1oke_j8InFqVFRXmxEam6jFA5WJqJbDtYoQgolUXaRkFABEvlI1U36XnZmY2dVOHTxl8csWJwfT3f_v1g7QXkMt8eMSC4doA8ojtLMcNrk4Rq-deQMzXHk8iEkwU8Dvi4kZV_W4xsvCJHDYLHDyYMmeVBMgT8HTOdz_CLF9gFsIrU_QoNsZPL-QZpICsULxKWk7Q5mVltpMAAOwgYdQLzUowWJDNsgVYy6zjHsLtLAaCit9YF6KFsZBdoq2yqqEM4QzHQiaEU7mNsQWvNAFmCilSuaoM96fo9vVGY0CUKP6oEuoZvVofUoXf1hziXbj5aSqP3GFWj48RrhG23Y-HdffN-mefwAeYLND
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+Termite+Symbiosis+Informed+by+Transcriptome-Based+Phylogenies&rft.jtitle=Current+biology&rft.au=Bucek%2C+Ales&rft.au=%C5%A0obotn%C3%ADk%2C+Jan&rft.au=He%2C+Shulin&rft.au=Shi%2C+Mang&rft.date=2019-11-04&rft.issn=1879-0445&rft.eissn=1879-0445&rft.volume=29&rft.issue=21&rft.spage=3728&rft_id=info:doi/10.1016%2Fj.cub.2019.08.076&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1879-0445&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1879-0445&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1879-0445&client=summon