Evolution of Termite Symbiosis Informed by Transcriptome-Based Phylogenies
Termitidae comprises ∼80% of all termite species [1] that play dominant decomposer roles in tropical ecosystems [2, 3]. Two major events during termite evolution were the loss of cellulolytic gut protozoans in the ancestor of Termitidae and the subsequent gain in the termitid subfamily Macrotermitin...
Gespeichert in:
| Veröffentlicht in: | Current biology Jg. 29; H. 21; S. 3728 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
04.11.2019
|
| ISSN: | 1879-0445, 1879-0445 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Termitidae comprises ∼80% of all termite species [1] that play dominant decomposer roles in tropical ecosystems [2, 3]. Two major events during termite evolution were the loss of cellulolytic gut protozoans in the ancestor of Termitidae and the subsequent gain in the termitid subfamily Macrotermitinae of fungal symbionts cultivated externally in "combs" constructed within the nest [4, 5]. How these symbiotic transitions occurred remains unresolved. Phylogenetic analyses of mitochondrial data previously suggested that Macrotermitinae is the earliest branching termitid lineage, followed soon after by Sphaerotermitinae [6], which cultivates bacterial symbionts on combs inside its nests [7]. This has led to the hypothesis that comb building was an important evolutionary step in the loss of gut protozoa in ancestral termitids [8]. We sequenced genomes and transcriptomes of 55 termite species and reconstructed phylogenetic trees from up to 4,065 orthologous genes of 68 species. We found strong support for a novel sister-group relationship between the bacterial comb-building Sphaerotermitinae and fungus comb-building Macrotermitinae. This key finding indicates that comb building is a derived trait within Termitidae and that the creation of a comb-like "external rumen" involving bacteria or fungi may not have driven the loss of protozoa from ancestral termitids, as previously hypothesized. Instead, associations with gut prokaryotic symbionts, combined with dietary shifts from wood to other plant-based substrates, may have played a more important role in this symbiotic transition. Our phylogenetic tree provides a platform for future studies of comparative termite evolution and the evolution of symbiosis in this taxon.Termitidae comprises ∼80% of all termite species [1] that play dominant decomposer roles in tropical ecosystems [2, 3]. Two major events during termite evolution were the loss of cellulolytic gut protozoans in the ancestor of Termitidae and the subsequent gain in the termitid subfamily Macrotermitinae of fungal symbionts cultivated externally in "combs" constructed within the nest [4, 5]. How these symbiotic transitions occurred remains unresolved. Phylogenetic analyses of mitochondrial data previously suggested that Macrotermitinae is the earliest branching termitid lineage, followed soon after by Sphaerotermitinae [6], which cultivates bacterial symbionts on combs inside its nests [7]. This has led to the hypothesis that comb building was an important evolutionary step in the loss of gut protozoa in ancestral termitids [8]. We sequenced genomes and transcriptomes of 55 termite species and reconstructed phylogenetic trees from up to 4,065 orthologous genes of 68 species. We found strong support for a novel sister-group relationship between the bacterial comb-building Sphaerotermitinae and fungus comb-building Macrotermitinae. This key finding indicates that comb building is a derived trait within Termitidae and that the creation of a comb-like "external rumen" involving bacteria or fungi may not have driven the loss of protozoa from ancestral termitids, as previously hypothesized. Instead, associations with gut prokaryotic symbionts, combined with dietary shifts from wood to other plant-based substrates, may have played a more important role in this symbiotic transition. Our phylogenetic tree provides a platform for future studies of comparative termite evolution and the evolution of symbiosis in this taxon. |
|---|---|
| AbstractList | Termitidae comprises ∼80% of all termite species [1] that play dominant decomposer roles in tropical ecosystems [2, 3]. Two major events during termite evolution were the loss of cellulolytic gut protozoans in the ancestor of Termitidae and the subsequent gain in the termitid subfamily Macrotermitinae of fungal symbionts cultivated externally in "combs" constructed within the nest [4, 5]. How these symbiotic transitions occurred remains unresolved. Phylogenetic analyses of mitochondrial data previously suggested that Macrotermitinae is the earliest branching termitid lineage, followed soon after by Sphaerotermitinae [6], which cultivates bacterial symbionts on combs inside its nests [7]. This has led to the hypothesis that comb building was an important evolutionary step in the loss of gut protozoa in ancestral termitids [8]. We sequenced genomes and transcriptomes of 55 termite species and reconstructed phylogenetic trees from up to 4,065 orthologous genes of 68 species. We found strong support for a novel sister-group relationship between the bacterial comb-building Sphaerotermitinae and fungus comb-building Macrotermitinae. This key finding indicates that comb building is a derived trait within Termitidae and that the creation of a comb-like "external rumen" involving bacteria or fungi may not have driven the loss of protozoa from ancestral termitids, as previously hypothesized. Instead, associations with gut prokaryotic symbionts, combined with dietary shifts from wood to other plant-based substrates, may have played a more important role in this symbiotic transition. Our phylogenetic tree provides a platform for future studies of comparative termite evolution and the evolution of symbiosis in this taxon.Termitidae comprises ∼80% of all termite species [1] that play dominant decomposer roles in tropical ecosystems [2, 3]. Two major events during termite evolution were the loss of cellulolytic gut protozoans in the ancestor of Termitidae and the subsequent gain in the termitid subfamily Macrotermitinae of fungal symbionts cultivated externally in "combs" constructed within the nest [4, 5]. How these symbiotic transitions occurred remains unresolved. Phylogenetic analyses of mitochondrial data previously suggested that Macrotermitinae is the earliest branching termitid lineage, followed soon after by Sphaerotermitinae [6], which cultivates bacterial symbionts on combs inside its nests [7]. This has led to the hypothesis that comb building was an important evolutionary step in the loss of gut protozoa in ancestral termitids [8]. We sequenced genomes and transcriptomes of 55 termite species and reconstructed phylogenetic trees from up to 4,065 orthologous genes of 68 species. We found strong support for a novel sister-group relationship between the bacterial comb-building Sphaerotermitinae and fungus comb-building Macrotermitinae. This key finding indicates that comb building is a derived trait within Termitidae and that the creation of a comb-like "external rumen" involving bacteria or fungi may not have driven the loss of protozoa from ancestral termitids, as previously hypothesized. Instead, associations with gut prokaryotic symbionts, combined with dietary shifts from wood to other plant-based substrates, may have played a more important role in this symbiotic transition. Our phylogenetic tree provides a platform for future studies of comparative termite evolution and the evolution of symbiosis in this taxon. |
| Author | Shi, Mang Šobotník, Jan Roisin, Yves McMahon, Dino P Bucek, Ales He, Shulin Lo, Nathan Holmes, Edward C Bourguignon, Thomas |
| Author_xml | – sequence: 1 givenname: Ales surname: Bucek fullname: Bucek, Ales – sequence: 2 givenname: Jan surname: Šobotník fullname: Šobotník, Jan – sequence: 3 givenname: Shulin surname: He fullname: He, Shulin – sequence: 4 givenname: Mang surname: Shi fullname: Shi, Mang – sequence: 5 givenname: Dino P surname: McMahon fullname: McMahon, Dino P – sequence: 6 givenname: Edward C surname: Holmes fullname: Holmes, Edward C – sequence: 7 givenname: Yves surname: Roisin fullname: Roisin, Yves – sequence: 8 givenname: Nathan surname: Lo fullname: Lo, Nathan – sequence: 9 givenname: Thomas surname: Bourguignon fullname: Bourguignon, Thomas |
| BookMark | eNpNjD1PwzAUAC1UJNrCD2DLyJLwnuP4Y4SqQFElkMheJc4LuErsEidI-fcgwcB0pxtuxRY-eGLsGiFDQHl7zOxUZxzQZKAzUPKMLVErk4IQxeKfX7BVjEcA5NrIJXvefoVuGl3wSWiTkobejZS8zX3tQnQx2fk2DD01ST0n5VD5aAd3GkNP6X0Vf_Lrx9yFd_KO4iU7b6su0tUf16x82Jabp3T_8rjb3O1TK3Q-pqapAa2yYLkgJLJS5NCqirRA1Bqo0IgNt5i3lkDaiqRVLRRGg6wb4mt287s9DeFzojgeehctdV3lKUzxwHNQuZG5Qv4NGpdUEw |
| CitedBy_id | crossref_primary_10_1080_08912963_2022_2098490 crossref_primary_10_1007_s00248_020_01664_w crossref_primary_10_1038_s41467_024_51028_y crossref_primary_10_1016_j_cois_2022_100880 crossref_primary_10_1016_j_genrep_2024_101985 crossref_primary_10_3389_fevo_2022_924151 crossref_primary_10_1016_j_protis_2021_125836 crossref_primary_10_1007_s10886_020_01180_8 crossref_primary_10_1111_ede_12335 crossref_primary_10_1146_annurev_ento_022420_074746 crossref_primary_10_1371_journal_pone_0328685 crossref_primary_10_3897_zookeys_1167_100001 crossref_primary_10_14411_eje_2021_020 crossref_primary_10_1111_ecog_06463 crossref_primary_10_3897_zookeys_1057_65877 crossref_primary_10_1111_1440_1703_12510 crossref_primary_10_1093_molbev_msac093 crossref_primary_10_1111_evo_14128 crossref_primary_10_1038_s42003_024_07146_w crossref_primary_10_1111_syen_12477 crossref_primary_10_1016_j_funeco_2020_100991 crossref_primary_10_1038_s42003_025_07771_z crossref_primary_10_1093_isd_ixae043 crossref_primary_10_24072_pcjournal_476 crossref_primary_10_1002_ece3_6381 crossref_primary_10_1111_syen_12548 crossref_primary_10_1111_cla_12601 crossref_primary_10_1186_s12983_024_00538_y crossref_primary_10_1093_zoolinnean_zlac064 crossref_primary_10_1007_s00040_023_00929_0 crossref_primary_10_1016_j_cub_2019_09_016 crossref_primary_10_1186_s40168_022_01258_3 crossref_primary_10_1080_00379271_2022_2081606 crossref_primary_10_1111_zsc_12502 crossref_primary_10_3897_asp_80_e75819 crossref_primary_10_1111_een_12946 crossref_primary_10_1111_evo_14457 crossref_primary_10_1017_jpa_2021_106 crossref_primary_10_3389_fevo_2021_632590 crossref_primary_10_3390_insects16030325 crossref_primary_10_7717_peerj_15259 crossref_primary_10_1073_pnas_2110361119 crossref_primary_10_1007_s00049_023_00396_w crossref_primary_10_1016_j_tree_2022_02_007 crossref_primary_10_3390_insects14050444 crossref_primary_10_1007_s00265_021_03090_5 crossref_primary_10_1128_aem_00361_23 crossref_primary_10_1016_j_biotechadv_2025_108676 crossref_primary_10_3389_fevo_2022_1065947 crossref_primary_10_3389_fevo_2022_1055382 crossref_primary_10_1038_s41598_021_95423_7 crossref_primary_10_1007_s00018_020_03728_z crossref_primary_10_15252_embj_2020106249 crossref_primary_10_1016_j_cretres_2020_104385 crossref_primary_10_1016_j_ejop_2020_125742 crossref_primary_10_3389_fmicb_2020_635786 crossref_primary_10_3389_fevo_2021_698937 crossref_primary_10_1007_s13199_022_00843_2 crossref_primary_10_1016_j_cub_2021_07_070 crossref_primary_10_3389_fbioe_2021_808075 crossref_primary_10_1093_molbev_msad087 crossref_primary_10_1111_imb_12818 crossref_primary_10_1111_brv_13038 crossref_primary_10_1111_syen_12458 crossref_primary_10_3897_zookeys_1197_114452 crossref_primary_10_1016_j_ympev_2022_107520 crossref_primary_10_1111_syen_12607 crossref_primary_10_3389_fevo_2021_552624 crossref_primary_10_3390_v12101145 crossref_primary_10_1093_femsre_fuac034 crossref_primary_10_3389_ffgc_2023_1240804 crossref_primary_10_1007_s13199_021_00809_w crossref_primary_10_1038_s42003_023_04438_5 crossref_primary_10_1007_s00049_020_00324_2 crossref_primary_10_3390_d17080537 crossref_primary_10_1016_j_asd_2021_101136 crossref_primary_10_1016_j_jsames_2021_103260 crossref_primary_10_1111_jeu_12815 crossref_primary_10_47371_mycosci_2021_11_001 crossref_primary_10_1007_s10886_023_01447_w crossref_primary_10_1016_j_cretres_2020_104612 crossref_primary_10_1111_syen_12560 crossref_primary_10_1186_s13213_023_01741_8 crossref_primary_10_3389_fevo_2023_1111484 crossref_primary_10_1038_s41598_021_00674_z crossref_primary_10_1111_syen_12486 crossref_primary_10_1038_s41467_022_34446_8 |
| ContentType | Journal Article |
| Copyright | Copyright © 2019 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
| DBID | 7X8 |
| DOI | 10.1016/j.cub.2019.08.076 |
| DatabaseName | MEDLINE - Academic |
| DatabaseTitle | MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1879-0445 |
| GroupedDBID | --- --K -DZ -~X 0R~ 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 7X8 AAEDT AAEDW AAFWJ AAKRW AALRI AAMRU AAVLU AAXUO AAYWO ABDGV ABJNI ABMAC ACGFO ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEFWE AENEX AEUPX AEXQZ AFPUW AFTJW AGHSJ AGKMS AGUBO AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP AZFZN BAWUL CS3 DIK DU5 E3Z EBS EFKBS F5P FCP FDB FIRID IHE IXB J1W JIG LX5 M3Z M41 O-L O9- OK1 P2P ROL RPZ SCP SDG SES SSZ TR2 |
| ID | FETCH-LOGICAL-c483t-9db01c7c0c24e1eec6430f7ae8411880e5811d2c13fce06cae6c7f059806bde2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 105 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000494940000035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1879-0445 |
| IngestDate | Thu Oct 02 11:52:25 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c483t-9db01c7c0c24e1eec6430f7ae8411880e5811d2c13fce06cae6c7f059806bde2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://id.nii.ac.jp/1394/00001411/ |
| PQID | 2307396371 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2307396371 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-04 |
| PublicationDateYYYYMMDD | 2019-11-04 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-04 day: 04 |
| PublicationDecade | 2010 |
| PublicationTitle | Current biology |
| PublicationYear | 2019 |
| SSID | ssj0012896 |
| Score | 2.6082537 |
| Snippet | Termitidae comprises ∼80% of all termite species [1] that play dominant decomposer roles in tropical ecosystems [2, 3]. Two major events during termite... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 3728 |
| Title | Evolution of Termite Symbiosis Informed by Transcriptome-Based Phylogenies |
| URI | https://www.proquest.com/docview/2307396371 |
| Volume | 29 |
| WOSCitedRecordID | wos000494940000035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qFbz4Ft9E8BpMNtlNehKVFhEpBXvoreQxwR66q25b6L83Sbf04EXwnkNIvsx8k28eCN156bkUmhIHihNhvCKxixqx2hthDDAOqYnrm-z11HDY7jcfbnWTVrmyiclQu8rGP_L7mLDMA1oke_j8InFqVFRXmxEam6jFA5WJqJbDtYoQgolUXaRkFABEvlI1U36XnZmY2dVOHTxl8csWJwfT3f_v1g7QXkMt8eMSC4doA8ojtLMcNrk4Rq-deQMzXHk8iEkwU8Dvi4kZV_W4xsvCJHDYLHDyYMmeVBMgT8HTOdz_CLF9gFsIrU_QoNsZPL-QZpICsULxKWk7Q5mVltpMAAOwgYdQLzUowWJDNsgVYy6zjHsLtLAaCit9YF6KFsZBdoq2yqqEM4QzHQiaEU7mNsQWvNAFmCilSuaoM96fo9vVGY0CUKP6oEuoZvVofUoXf1hziXbj5aSqP3GFWj48RrhG23Y-HdffN-mefwAeYLND |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+Termite+Symbiosis+Informed+by+Transcriptome-Based+Phylogenies&rft.jtitle=Current+biology&rft.au=Bucek%2C+Ales&rft.au=%C5%A0obotn%C3%ADk%2C+Jan&rft.au=He%2C+Shulin&rft.au=Shi%2C+Mang&rft.date=2019-11-04&rft.issn=1879-0445&rft.eissn=1879-0445&rft.volume=29&rft.issue=21&rft.spage=3728&rft_id=info:doi/10.1016%2Fj.cub.2019.08.076&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1879-0445&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1879-0445&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1879-0445&client=summon |