A New Stochastic Computing Methodology for Efficient Neural Network Implementation

This paper presents a new methodology for the hardware implementation of neural networks (NNs) based on probabilistic laws. The proposed encoding scheme circumvents the limitations of classical stochastic computing (based on unipolar or bipolar encoding) extending the representation range to any rea...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transaction on neural networks and learning systems Ročník 27; číslo 3; s. 551 - 564
Hlavní autori: Canals, Vincent, Morro, Antoni, Oliver, Antoni, Alomar, Miquel L., Rossello, Josep L.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.03.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper presents a new methodology for the hardware implementation of neural networks (NNs) based on probabilistic laws. The proposed encoding scheme circumvents the limitations of classical stochastic computing (based on unipolar or bipolar encoding) extending the representation range to any real number using the ratio of two bipolar-encoded pulsed signals. Furthermore, the novel approach presents practically a total noise-immunity capability due to its specific codification. We introduce different designs for building the fundamental blocks needed to implement NNs. The validity of the present approach is demonstrated through a regression and a pattern recognition task. The low cost of the methodology in terms of hardware, along with its capacity to implement complex mathematical functions (such as the hyperbolic tangent), allows its use for building highly reliable systems and parallel computing.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2015.2413754