Combined IL-21-primed polyclonal CTL plus CTLA4 blockade controls refractory metastatic melanoma in a patient
Adoptive transfer of peripheral blood-derived, melanoma-reactive CD8(+) cytotoxic T lymphocytes (CTLs) alone is generally insufficient to eliminate bulky tumors. Similarly, monotherapy with anti-CTLA4 infrequently yields sustained remissions in patients with metastatic melanoma. We postulated that a...
Saved in:
| Published in: | The Journal of experimental medicine Vol. 213; no. 7; p. 1133 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
27.06.2016
|
| Subjects: | |
| ISSN: | 1540-9538, 1540-9538 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Adoptive transfer of peripheral blood-derived, melanoma-reactive CD8(+) cytotoxic T lymphocytes (CTLs) alone is generally insufficient to eliminate bulky tumors. Similarly, monotherapy with anti-CTLA4 infrequently yields sustained remissions in patients with metastatic melanoma. We postulated that a bolus of enhanced IL-21-primed polyclonal antigen-specific CTL combined with CTLA4 blockade might boost antitumor efficacy. In this first-in-human case study, the combination successfully led to a durable complete remission (CR) in a patient whose disease was refractory to both monoclonal CTL and anti-CTLA4. Long-term persistence and sustained anti-tumor activity of transferred CTL, as well as responses to nontargeted antigens, confirmed mutually beneficial effects of the combined treatment. In this first-in-human study, Chapuis et al. demonstrate that the combination of adoptive cellular therapy with CTLA4 blockade induces long-term remission in a melanoma patient resistant to both modalities administered serially and individually. |
|---|---|
| Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1540-9538 1540-9538 |
| DOI: | 10.1084/jem.20152021 |