Extended ant colony optimization for non-convex mixed integer nonlinear programming
Two novel extensions for the well known ant colony optimization (ACO) framework are introduced here, which allow the solution of mixed integer nonlinear programs (MINLPs). Furthermore, a hybrid implementation ( ACOmi) based on this extended ACO framework, specially developed for complex non-convex M...
Uloženo v:
| Vydáno v: | Computers & operations research Ročník 36; číslo 7; s. 2217 - 2229 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Kidlington
Elsevier Ltd
01.07.2009
Elsevier Pergamon Press Inc |
| Témata: | |
| ISSN: | 0305-0548, 1873-765X, 0305-0548 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Two novel extensions for the well known ant colony optimization (ACO) framework are introduced here, which allow the solution of mixed integer nonlinear programs (MINLPs). Furthermore, a hybrid implementation (
ACOmi) based on this extended ACO framework, specially developed for complex non-convex MINLPs, is presented together with numerical results.
These extensions on the ACO framework have been developed to serve the needs of practitioners who face highly non-convex and computationally costly MINLPs. The performance of this new method is evaluated considering several non-convex MINLP benchmark problems and one real-world application. The results obtained by our implementation substantiate the success of this new approach. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0305-0548 1873-765X 0305-0548 |
| DOI: | 10.1016/j.cor.2008.08.015 |