Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line

Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblasto...

Full description

Saved in:
Bibliographic Details
Published in:Journal of visualized experiments no. 108; p. 53193
Main Authors: Shipley, Mackenzie M., Mangold, Colleen A., Szpara, Moriah L.
Format: Journal Article
Language:English
Published: United States MyJove Corporation 17.02.2016
Subjects:
ISSN:1940-087X, 1940-087X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease. The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods(1-4) and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease.
AbstractList Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease. The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods(1-4) and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease.
Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease. The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods1-4 and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease.
Author Mangold, Colleen A.
Szpara, Moriah L.
Shipley, Mackenzie M.
AuthorAffiliation 1 Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University
AuthorAffiliation_xml – name: 1 Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University
Author_xml – sequence: 1
  givenname: Mackenzie M.
  surname: Shipley
  fullname: Shipley, Mackenzie M.
– sequence: 2
  givenname: Colleen A.
  surname: Mangold
  fullname: Mangold, Colleen A.
– sequence: 3
  givenname: Moriah L.
  surname: Szpara
  fullname: Szpara, Moriah L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26967710$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1LwzAUhoNMnJv7C9IbQZBqPpomARFkfkwYejEFdxXSNHWRttGmFfz3xm2O6Y1X58B5eM97zjsAvdrVBoARgqeECXRGCRJkB-wjkcAYcvbc2-r7YOD9K4QphpTvgT5ORcoYgvvg_MoWhWlM3VrVWldHrojahYlmk3g2p_No0lWqju5N17isVL51lYrGpiyjqa3NAdgtVOnNaF2H4Onm-nE8iacPt3fjy2msE47aOEeQiZxlmiLCNTbUaKo4R2maqDxFXGWYK5IKQXOsKRUFFYoyw6FRGcmRIkNwsdJ967LK5Dq4bVQp3xpbqeZTOmXl70ltF_LFfciE47CGB4HjtUDj3jvjW1lZr8MZqjau8xJjSjCnkOF_UcQYSbAgCQvo4batjZ-f7wbgaAXoxnnfmGKDICi_U5PL1AJ38ofTtl3GEa6x5R_6C4hblaE
CitedBy_id crossref_primary_10_1038_s42003_019_0644_7
crossref_primary_10_3389_fnins_2024_1428736
crossref_primary_10_1002_jcp_31477
crossref_primary_10_3389_fnmol_2020_528396
crossref_primary_10_1007_s11064_017_2448_9
crossref_primary_10_1016_j_toxlet_2021_12_021
crossref_primary_10_1208_s12248_024_00967_x
crossref_primary_10_1111_tra_12859
crossref_primary_10_1083_jcb_202401136
crossref_primary_10_1007_s10544_023_00660_4
crossref_primary_10_1186_s13072_021_00387_7
crossref_primary_10_3389_fnmol_2025_1583908
crossref_primary_10_1088_1361_6528_ab6bf1
crossref_primary_10_1016_j_jinorgbio_2025_112984
crossref_primary_10_3390_life11060585
crossref_primary_10_3390_biomedicines13081857
crossref_primary_10_1111_cbdd_14374
crossref_primary_10_1016_j_devcel_2025_05_007
crossref_primary_10_3390_molecules25040892
crossref_primary_10_1016_j_pep_2022_106212
crossref_primary_10_1016_j_pep_2023_106312
crossref_primary_10_12688_f1000research_26749_1
crossref_primary_10_1292_jvms_24_0276
crossref_primary_10_12688_f1000research_26749_2
crossref_primary_10_1016_j_jbc_2023_104802
crossref_primary_10_1038_s41598_020_57516_7
crossref_primary_10_1016_j_trci_2018_12_003
crossref_primary_10_12688_f1000research_26749_3
crossref_primary_10_12688_f1000research_26749_4
crossref_primary_10_1002_slct_202501728
crossref_primary_10_3390_biom12121808
crossref_primary_10_33549_physiolres_935313
crossref_primary_10_3389_fendo_2024_1463964
crossref_primary_10_69601_meandrosmdj_1623741
crossref_primary_10_1007_s11033_024_09964_x
crossref_primary_10_3390_antiox10060940
crossref_primary_10_3390_molecules24061167
crossref_primary_10_1088_1748_3190_ac7afe
crossref_primary_10_1039_D2NR03800E
crossref_primary_10_3390_biomedicines11123129
crossref_primary_10_1177_17448069231218353
crossref_primary_10_7555_JBR_36_20220074
crossref_primary_10_3390_ijms21176249
crossref_primary_10_3389_fnmol_2020_594319
crossref_primary_10_1007_s12035_025_05047_5
crossref_primary_10_1063_5_0200459
crossref_primary_10_1088_1741_2552_ad17f3
crossref_primary_10_3389_fcell_2022_943924
crossref_primary_10_1292_jvms_24_0405
crossref_primary_10_1515_revneuro_2020_0152
crossref_primary_10_3389_fncel_2019_00129
crossref_primary_10_1080_10942912_2023_2243050
crossref_primary_10_1155_2020_2139192
crossref_primary_10_3389_fphar_2018_00708
crossref_primary_10_1111_bpa_70006
crossref_primary_10_1016_j_jbc_2023_104709
crossref_primary_10_1038_s41598_021_03442_1
crossref_primary_10_1080_15376516_2024_2385968
crossref_primary_10_1088_1748_605X_ac759f
crossref_primary_10_3389_fncel_2024_1516093
crossref_primary_10_1007_s12264_022_00995_7
crossref_primary_10_1007_s12011_023_03893_9
crossref_primary_10_3390_pathogens6030028
crossref_primary_10_1007_s12035_025_05082_2
crossref_primary_10_1007_s00044_024_03290_4
crossref_primary_10_3390_ijms22073701
crossref_primary_10_1007_s11064_025_04478_9
crossref_primary_10_1007_s12035_018_1112_y
crossref_primary_10_3389_fchem_2019_00638
crossref_primary_10_1155_2020_8841026
crossref_primary_10_1177_09731296231200509
crossref_primary_10_3233_JAD_200425
crossref_primary_10_1007_s12035_021_02667_5
crossref_primary_10_1109_TUFFC_2022_3152427
crossref_primary_10_3389_fimmu_2019_01928
crossref_primary_10_1101_gad_351104_123
crossref_primary_10_1063_5_0168953
crossref_primary_10_1128_JVI_00080_17
crossref_primary_10_1186_s43088_024_00547_0
crossref_primary_10_3390_ijms21176343
crossref_primary_10_1007_s12031_019_01291_2
crossref_primary_10_1016_j_envres_2023_116267
crossref_primary_10_1038_s41434_023_00428_8
crossref_primary_10_1007_s11033_024_09725_w
crossref_primary_10_3390_cells8091096
crossref_primary_10_1007_s11033_020_05925_2
crossref_primary_10_3390_molecules27103337
crossref_primary_10_1128_JVI_00796_20
crossref_primary_10_3389_fnsys_2025_1484769
crossref_primary_10_3390_cells7120250
crossref_primary_10_3390_cells14050336
crossref_primary_10_1039_D5MA00374A
crossref_primary_10_3390_antiox13111419
crossref_primary_10_3389_fimmu_2025_1532318
crossref_primary_10_3389_fnmol_2022_1016559
crossref_primary_10_1093_biomethods_bpaf036
crossref_primary_10_3389_fnmol_2023_1280556
crossref_primary_10_1128_JVI_02210_18
crossref_primary_10_17826_cumj_1439488
crossref_primary_10_1007_s10815_025_03557_8
crossref_primary_10_1007_s12035_020_02018_w
crossref_primary_10_1007_s11095_017_2276_2
crossref_primary_10_1007_s12031_018_1162_7
crossref_primary_10_54537_tusebdergisi_1213712
crossref_primary_10_1007_s00204_022_03237_x
crossref_primary_10_1111_acel_13617
crossref_primary_10_1083_jcb_202505040
crossref_primary_10_3389_fcell_2023_1286280
crossref_primary_10_1186_s12864_021_08261_2
crossref_primary_10_3390_biom10010160
crossref_primary_10_1016_j_neuroscience_2021_01_041
crossref_primary_10_3390_cells11152354
crossref_primary_10_1155_2020_8908901
crossref_primary_10_1007_s11626_024_00948_6
crossref_primary_10_3389_fnmol_2017_00227
crossref_primary_10_3389_fphar_2025_1604017
crossref_primary_10_1080_17435889_2025_2460228
crossref_primary_10_1093_toxsci_kfaf072
crossref_primary_10_3389_fphar_2022_943627
crossref_primary_10_1038_s41419_024_06742_2
crossref_primary_10_3390_cells10102697
crossref_primary_10_3389_fcell_2024_1342741
crossref_primary_10_1007_s12035_020_02192_x
crossref_primary_10_1007_s12035_019_1571_9
crossref_primary_10_1007_s11064_021_03454_3
crossref_primary_10_1007_s11064_022_03716_8
crossref_primary_10_1007_s11033_024_09754_5
crossref_primary_10_1007_s12640_021_00399_x
crossref_primary_10_3389_fcell_2023_1236553
crossref_primary_10_3389_fphar_2025_1573882
crossref_primary_10_1111_jnc_15521
ContentType Journal Article
Copyright Copyright © 2016, Journal of Visualized Experiments 2016
Copyright_xml – notice: Copyright © 2016, Journal of Visualized Experiments 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.3791/53193
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1940-087X
EndPage 53193
ExternalDocumentID PMC4828168
26967710
10_3791_53193
Genre Video-Audio Media
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: K22 AI095384
GroupedDBID ---
223
29L
53G
5GY
AAHBH
AAHTB
AAYXX
ABPEJ
ACGFO
ADBBV
AKRSQ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CITATION
CS3
DIK
E3Z
GX1
HYE
OK1
RPM
SJN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c481t-d1079d7bc5138c2e5ec5a881664ad618ab28a36995d2c559f59a57e80eab3d1a3
IEDL.DBID 223
ISICitedReferencesCount 163
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000372504100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1940-087X
IngestDate Tue Sep 30 16:48:56 EDT 2025
Fri Jul 11 00:06:20 EDT 2025
Fri Jul 11 15:36:38 EDT 2025
Thu Jan 02 23:12:01 EST 2025
Sat Nov 29 08:09:59 EST 2025
Tue Nov 18 20:59:31 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 108
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-d1079d7bc5138c2e5ec5a881664ad618ab28a36995d2c559f59a57e80eab3d1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Undefined-2
ObjectType-Feature-2
Correspondence to: Moriah L. Szpara at moriah@psu.edu
OpenAccessLink http://doi.org/10.3791/53193
PMID 26967710
PQID 1773429347
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4828168
proquest_miscellaneous_2253285072
proquest_miscellaneous_1773429347
pubmed_primary_26967710
crossref_primary_10_3791_53193
crossref_citationtrail_10_3791_53193
PublicationCentury 2000
PublicationDate 2016-02-17
PublicationDateYYYYMMDD 2016-02-17
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of visualized experiments
PublicationTitleAlternate J Vis Exp
PublicationYear 2016
Publisher MyJove Corporation
Publisher_xml – name: MyJove Corporation
References 25409825 - Nature. 2014 Nov 20;515(7527):365-70
25413365 - Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17224-9
21632750 - J Virol. 2011 Aug;85(16):8436-42
24347277 - J Mol Neurosci. 2014 May;53(1):78-86
15919913 - J Virol. 2005 Jun;79(12):7609-16
15111235 - Neurotox Res. 2004;5(8):579-98
8709231 - J Virol. 1996 Sep;70(9):6076-82
16116646 - Muscle Nerve. 2005 Dec;32(6):734-44
18076965 - Virology. 2008 Mar 30;373(1):98-111
20344947 - Wei Sheng Wu Xue Bao. 2010 Jan;50(1):98-106
23975817 - Methods Mol Biol. 2013;1078:9-21
4748425 - Cancer Res. 1973 Nov;33(11):2643-52
18160436 - J Virol. 2008 Apr;82(7):3530-7
20413890 - J Alzheimers Dis. 2010;20(4):1069-82
21283767 - PLoS One. 2011 Jan 20;6(1):e16174
7576944 - Eur J Cancer. 1995;31A(4):453-8
23055570 - J Virol. 2013 Jan;87(1):148-62
2539524 - J Virol. 1989 May;63(5):2357-60
25077483 - PLoS Pathog. 2014 Jul 31;10(7):e1004290
16802347 - J Neurosci Res. 2006 Sep;84(4):755-67
17652378 - J Virol. 2007 Oct;81(19):10424-36
29704 - Cancer Res. 1978 Nov;38(11 Pt 1):3751-7
6467378 - Cell Differ. 1984 Jun;14(2):135-44
25409826 - Nature. 2014 Nov 20;515(7527):371-5
19056420 - Neurotoxicology. 2009 Jan;30(1):127-35
1720882 - Neurotoxicology. 1991 Fall;12(3):473-92
20497720 - Chin Med J (Engl). 2010 Apr 20;123(8):1086-92
22766505 - Biochem Biophys Res Commun. 2012 Aug 3;424(3):421-6
16307526 - Crit Rev Neurobiol. 2005;17(1):27-50
11752144 - J Virol. 2002 Jan;76(2):532-40
19667186 - Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14040-5
25409824 - Nature. 2014 Nov 20;515(7527):355-64
12884695 - Methods Cell Biol. 2003;71:287-304
23861741 - PLoS One. 2013 Jul 05;8(7):e65948
10936180 - J Neurochem. 2000 Sep;75(3):991-1003
8625271 - Cancer Genet Cytogenet. 1996 Apr;87(2):95-102
22910880 - PLoS Pathog. 2012;8(7):e1002826
20160098 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4335-40
23724009 - PLoS One. 2013 May 28;8(5):e63862
References_xml – reference: 20160098 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4335-40
– reference: 8625271 - Cancer Genet Cytogenet. 1996 Apr;87(2):95-102
– reference: 8709231 - J Virol. 1996 Sep;70(9):6076-82
– reference: 10936180 - J Neurochem. 2000 Sep;75(3):991-1003
– reference: 23861741 - PLoS One. 2013 Jul 05;8(7):e65948
– reference: 20344947 - Wei Sheng Wu Xue Bao. 2010 Jan;50(1):98-106
– reference: 23055570 - J Virol. 2013 Jan;87(1):148-62
– reference: 22910880 - PLoS Pathog. 2012;8(7):e1002826
– reference: 17652378 - J Virol. 2007 Oct;81(19):10424-36
– reference: 18076965 - Virology. 2008 Mar 30;373(1):98-111
– reference: 4748425 - Cancer Res. 1973 Nov;33(11):2643-52
– reference: 16116646 - Muscle Nerve. 2005 Dec;32(6):734-44
– reference: 25409826 - Nature. 2014 Nov 20;515(7527):371-5
– reference: 16802347 - J Neurosci Res. 2006 Sep;84(4):755-67
– reference: 7576944 - Eur J Cancer. 1995;31A(4):453-8
– reference: 22766505 - Biochem Biophys Res Commun. 2012 Aug 3;424(3):421-6
– reference: 23724009 - PLoS One. 2013 May 28;8(5):e63862
– reference: 29704 - Cancer Res. 1978 Nov;38(11 Pt 1):3751-7
– reference: 2539524 - J Virol. 1989 May;63(5):2357-60
– reference: 25077483 - PLoS Pathog. 2014 Jul 31;10(7):e1004290
– reference: 24347277 - J Mol Neurosci. 2014 May;53(1):78-86
– reference: 19056420 - Neurotoxicology. 2009 Jan;30(1):127-35
– reference: 16307526 - Crit Rev Neurobiol. 2005;17(1):27-50
– reference: 6467378 - Cell Differ. 1984 Jun;14(2):135-44
– reference: 20413890 - J Alzheimers Dis. 2010;20(4):1069-82
– reference: 25409825 - Nature. 2014 Nov 20;515(7527):365-70
– reference: 25413365 - Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17224-9
– reference: 12884695 - Methods Cell Biol. 2003;71:287-304
– reference: 25409824 - Nature. 2014 Nov 20;515(7527):355-64
– reference: 23975817 - Methods Mol Biol. 2013;1078:9-21
– reference: 21632750 - J Virol. 2011 Aug;85(16):8436-42
– reference: 1720882 - Neurotoxicology. 1991 Fall;12(3):473-92
– reference: 11752144 - J Virol. 2002 Jan;76(2):532-40
– reference: 18160436 - J Virol. 2008 Apr;82(7):3530-7
– reference: 21283767 - PLoS One. 2011 Jan 20;6(1):e16174
– reference: 15919913 - J Virol. 2005 Jun;79(12):7609-16
– reference: 15111235 - Neurotox Res. 2004;5(8):579-98
– reference: 20497720 - Chin Med J (Engl). 2010 Apr 20;123(8):1086-92
– reference: 19667186 - Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14040-5
SSID ssj0062058
Score 2.5648408
Snippet Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 53193
SubjectTerms blood serum
Cell Count
Cell Culture Techniques - methods
Cell Differentiation - physiology
Cell Line, Tumor
Developmental Biology
epithelial cells
extracellular matrix proteins
human cell lines
human diseases
Humans
karyotyping
mice
nervous system diseases
Neurobiology - methods
Neuroblastoma - metabolism
Neuroblastoma - pathology
neurons
Neurons - cytology
Neurons - physiology
neurophysiology
neurotrophins
phenotype
rats
Title Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line
URI https://www.ncbi.nlm.nih.gov/pubmed/26967710
https://www.proquest.com/docview/1773429347
https://www.proquest.com/docview/2253285072
https://pubmed.ncbi.nlm.nih.gov/PMC4828168
WOSCitedRecordID wos000372504100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVDIW
  databaseName: Journal of Visualized Experiments : JoVE
  customDbUrl:
  eissn: 1940-087X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062058
  issn: 1940-087X
  databaseCode: 223
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://www.jove.com/journal
  providerName: Journal of Visualized Experiments
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEB5KURHE96M-6gq9BrvZ7CPgRaqlBylCVdpT2CRbLNRE2lTw3zubtNVWpZdcMkmWmWH3-zLDNwA1l2qMc4jcRDDheBIJq0ZLhxsu-wgnlM6r5y8Pst1W3a7_WILLPyv4TPr02iaJVfO0yuhWufl7pxVuPZ-_iTzc9mTJ7gZsLTy1eNb8ApDLfZA_Dpbmzsol7cL2FDOS2yLIe1AyyT6sF1MkPw_g5m465CQr3EzSPkFYRzotp9PjPZL_pye5CkeIWDlL3zRpmOGQIA81h_DcvH9qtJzpUAQn8hTNnBj5mh_LMOKUqcg13ERcK1v983QsqNKhqzQTvs9jN0K60Oe-5tKoutEhi6lmR1BO0sScAFG2BqrwhYhZPeH5Kqr3pRA6pIaGivIK1GbuC6KpYrgdXDEMkDlYRwS5IypQnZu9FxIZywZXM98HmLy2IqETk07GAZWS4YHIPPm_DW44zFUIW90KHBfxmn_GFb6QiJEqIBciOTew4tmLd5LBay6i7SHVpEKdrlr8GWwiRsobtak8h3I2mpgLWIs-ssF4VM3zEa-yq74AY3nXSQ
linkProvider Journal of Visualized Experiments
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differentiation+of+the+SH-SY5Y+Human+Neuroblastoma+Cell+Line&rft.jtitle=Journal+of+visualized+experiments&rft.au=Shipley%2C+Mackenzie+M&rft.au=Mangold%2C+Colleen+A&rft.au=Szpara%2C+Moriah+L&rft.date=2016-02-17&rft.eissn=1940-087X&rft.issue=108&rft.spage=53193&rft.epage=53193&rft_id=info:doi/10.3791%2F53193&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1940-087X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1940-087X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1940-087X&client=summon