Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line
Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblasto...
Saved in:
| Published in: | Journal of visualized experiments no. 108; p. 53193 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
MyJove Corporation
17.02.2016
|
| Subjects: | |
| ISSN: | 1940-087X, 1940-087X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease. The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods(1-4) and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease. |
|---|---|
| AbstractList | Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease. The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods1-4 and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease. Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease. The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods(1-4) and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease. |
| Author | Mangold, Colleen A. Szpara, Moriah L. Shipley, Mackenzie M. |
| AuthorAffiliation | 1 Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University |
| AuthorAffiliation_xml | – name: 1 Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University |
| Author_xml | – sequence: 1 givenname: Mackenzie M. surname: Shipley fullname: Shipley, Mackenzie M. – sequence: 2 givenname: Colleen A. surname: Mangold fullname: Mangold, Colleen A. – sequence: 3 givenname: Moriah L. surname: Szpara fullname: Szpara, Moriah L. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26967710$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkV1LwzAUhoNMnJv7C9IbQZBqPpomARFkfkwYejEFdxXSNHWRttGmFfz3xm2O6Y1X58B5eM97zjsAvdrVBoARgqeECXRGCRJkB-wjkcAYcvbc2-r7YOD9K4QphpTvgT5ORcoYgvvg_MoWhWlM3VrVWldHrojahYlmk3g2p_No0lWqju5N17isVL51lYrGpiyjqa3NAdgtVOnNaF2H4Onm-nE8iacPt3fjy2msE47aOEeQiZxlmiLCNTbUaKo4R2maqDxFXGWYK5IKQXOsKRUFFYoyw6FRGcmRIkNwsdJ967LK5Dq4bVQp3xpbqeZTOmXl70ltF_LFfciE47CGB4HjtUDj3jvjW1lZr8MZqjau8xJjSjCnkOF_UcQYSbAgCQvo4batjZ-f7wbgaAXoxnnfmGKDICi_U5PL1AJ38ofTtl3GEa6x5R_6C4hblaE |
| CitedBy_id | crossref_primary_10_1038_s42003_019_0644_7 crossref_primary_10_3389_fnins_2024_1428736 crossref_primary_10_1002_jcp_31477 crossref_primary_10_3389_fnmol_2020_528396 crossref_primary_10_1007_s11064_017_2448_9 crossref_primary_10_1016_j_toxlet_2021_12_021 crossref_primary_10_1208_s12248_024_00967_x crossref_primary_10_1111_tra_12859 crossref_primary_10_1083_jcb_202401136 crossref_primary_10_1007_s10544_023_00660_4 crossref_primary_10_1186_s13072_021_00387_7 crossref_primary_10_3389_fnmol_2025_1583908 crossref_primary_10_1088_1361_6528_ab6bf1 crossref_primary_10_1016_j_jinorgbio_2025_112984 crossref_primary_10_3390_life11060585 crossref_primary_10_3390_biomedicines13081857 crossref_primary_10_1111_cbdd_14374 crossref_primary_10_1016_j_devcel_2025_05_007 crossref_primary_10_3390_molecules25040892 crossref_primary_10_1016_j_pep_2022_106212 crossref_primary_10_1016_j_pep_2023_106312 crossref_primary_10_12688_f1000research_26749_1 crossref_primary_10_1292_jvms_24_0276 crossref_primary_10_12688_f1000research_26749_2 crossref_primary_10_1016_j_jbc_2023_104802 crossref_primary_10_1038_s41598_020_57516_7 crossref_primary_10_1016_j_trci_2018_12_003 crossref_primary_10_12688_f1000research_26749_3 crossref_primary_10_12688_f1000research_26749_4 crossref_primary_10_1002_slct_202501728 crossref_primary_10_3390_biom12121808 crossref_primary_10_33549_physiolres_935313 crossref_primary_10_3389_fendo_2024_1463964 crossref_primary_10_69601_meandrosmdj_1623741 crossref_primary_10_1007_s11033_024_09964_x crossref_primary_10_3390_antiox10060940 crossref_primary_10_3390_molecules24061167 crossref_primary_10_1088_1748_3190_ac7afe crossref_primary_10_1039_D2NR03800E crossref_primary_10_3390_biomedicines11123129 crossref_primary_10_1177_17448069231218353 crossref_primary_10_7555_JBR_36_20220074 crossref_primary_10_3390_ijms21176249 crossref_primary_10_3389_fnmol_2020_594319 crossref_primary_10_1007_s12035_025_05047_5 crossref_primary_10_1063_5_0200459 crossref_primary_10_1088_1741_2552_ad17f3 crossref_primary_10_3389_fcell_2022_943924 crossref_primary_10_1292_jvms_24_0405 crossref_primary_10_1515_revneuro_2020_0152 crossref_primary_10_3389_fncel_2019_00129 crossref_primary_10_1080_10942912_2023_2243050 crossref_primary_10_1155_2020_2139192 crossref_primary_10_3389_fphar_2018_00708 crossref_primary_10_1111_bpa_70006 crossref_primary_10_1016_j_jbc_2023_104709 crossref_primary_10_1038_s41598_021_03442_1 crossref_primary_10_1080_15376516_2024_2385968 crossref_primary_10_1088_1748_605X_ac759f crossref_primary_10_3389_fncel_2024_1516093 crossref_primary_10_1007_s12264_022_00995_7 crossref_primary_10_1007_s12011_023_03893_9 crossref_primary_10_3390_pathogens6030028 crossref_primary_10_1007_s12035_025_05082_2 crossref_primary_10_1007_s00044_024_03290_4 crossref_primary_10_3390_ijms22073701 crossref_primary_10_1007_s11064_025_04478_9 crossref_primary_10_1007_s12035_018_1112_y crossref_primary_10_3389_fchem_2019_00638 crossref_primary_10_1155_2020_8841026 crossref_primary_10_1177_09731296231200509 crossref_primary_10_3233_JAD_200425 crossref_primary_10_1007_s12035_021_02667_5 crossref_primary_10_1109_TUFFC_2022_3152427 crossref_primary_10_3389_fimmu_2019_01928 crossref_primary_10_1101_gad_351104_123 crossref_primary_10_1063_5_0168953 crossref_primary_10_1128_JVI_00080_17 crossref_primary_10_1186_s43088_024_00547_0 crossref_primary_10_3390_ijms21176343 crossref_primary_10_1007_s12031_019_01291_2 crossref_primary_10_1016_j_envres_2023_116267 crossref_primary_10_1038_s41434_023_00428_8 crossref_primary_10_1007_s11033_024_09725_w crossref_primary_10_3390_cells8091096 crossref_primary_10_1007_s11033_020_05925_2 crossref_primary_10_3390_molecules27103337 crossref_primary_10_1128_JVI_00796_20 crossref_primary_10_3389_fnsys_2025_1484769 crossref_primary_10_3390_cells7120250 crossref_primary_10_3390_cells14050336 crossref_primary_10_1039_D5MA00374A crossref_primary_10_3390_antiox13111419 crossref_primary_10_3389_fimmu_2025_1532318 crossref_primary_10_3389_fnmol_2022_1016559 crossref_primary_10_1093_biomethods_bpaf036 crossref_primary_10_3389_fnmol_2023_1280556 crossref_primary_10_1128_JVI_02210_18 crossref_primary_10_17826_cumj_1439488 crossref_primary_10_1007_s10815_025_03557_8 crossref_primary_10_1007_s12035_020_02018_w crossref_primary_10_1007_s11095_017_2276_2 crossref_primary_10_1007_s12031_018_1162_7 crossref_primary_10_54537_tusebdergisi_1213712 crossref_primary_10_1007_s00204_022_03237_x crossref_primary_10_1111_acel_13617 crossref_primary_10_1083_jcb_202505040 crossref_primary_10_3389_fcell_2023_1286280 crossref_primary_10_1186_s12864_021_08261_2 crossref_primary_10_3390_biom10010160 crossref_primary_10_1016_j_neuroscience_2021_01_041 crossref_primary_10_3390_cells11152354 crossref_primary_10_1155_2020_8908901 crossref_primary_10_1007_s11626_024_00948_6 crossref_primary_10_3389_fnmol_2017_00227 crossref_primary_10_3389_fphar_2025_1604017 crossref_primary_10_1080_17435889_2025_2460228 crossref_primary_10_1093_toxsci_kfaf072 crossref_primary_10_3389_fphar_2022_943627 crossref_primary_10_1038_s41419_024_06742_2 crossref_primary_10_3390_cells10102697 crossref_primary_10_3389_fcell_2024_1342741 crossref_primary_10_1007_s12035_020_02192_x crossref_primary_10_1007_s12035_019_1571_9 crossref_primary_10_1007_s11064_021_03454_3 crossref_primary_10_1007_s11064_022_03716_8 crossref_primary_10_1007_s11033_024_09754_5 crossref_primary_10_1007_s12640_021_00399_x crossref_primary_10_3389_fcell_2023_1236553 crossref_primary_10_3389_fphar_2025_1573882 crossref_primary_10_1111_jnc_15521 |
| ContentType | Journal Article |
| Copyright | Copyright © 2016, Journal of Visualized Experiments 2016 |
| Copyright_xml | – notice: Copyright © 2016, Journal of Visualized Experiments 2016 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
| DOI | 10.3791/53193 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1940-087X |
| EndPage | 53193 |
| ExternalDocumentID | PMC4828168 26967710 10_3791_53193 |
| Genre | Video-Audio Media Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: K22 AI095384 |
| GroupedDBID | --- 223 29L 53G 5GY AAHBH AAHTB AAYXX ABPEJ ACGFO ADBBV AKRSQ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CITATION CS3 DIK E3Z GX1 HYE OK1 RPM SJN CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c481t-d1079d7bc5138c2e5ec5a881664ad618ab28a36995d2c559f59a57e80eab3d1a3 |
| IEDL.DBID | 223 |
| ISICitedReferencesCount | 163 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000372504100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1940-087X |
| IngestDate | Tue Sep 30 16:48:56 EDT 2025 Fri Jul 11 00:06:20 EDT 2025 Fri Jul 11 15:36:38 EDT 2025 Thu Jan 02 23:12:01 EST 2025 Sat Nov 29 08:09:59 EST 2025 Tue Nov 18 20:59:31 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 108 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c481t-d1079d7bc5138c2e5ec5a881664ad618ab28a36995d2c559f59a57e80eab3d1a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Undefined-2 ObjectType-Feature-2 Correspondence to: Moriah L. Szpara at moriah@psu.edu |
| OpenAccessLink | http://doi.org/10.3791/53193 |
| PMID | 26967710 |
| PQID | 1773429347 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4828168 proquest_miscellaneous_2253285072 proquest_miscellaneous_1773429347 pubmed_primary_26967710 crossref_primary_10_3791_53193 crossref_citationtrail_10_3791_53193 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-02-17 |
| PublicationDateYYYYMMDD | 2016-02-17 |
| PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-17 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of visualized experiments |
| PublicationTitleAlternate | J Vis Exp |
| PublicationYear | 2016 |
| Publisher | MyJove Corporation |
| Publisher_xml | – name: MyJove Corporation |
| References | 25409825 - Nature. 2014 Nov 20;515(7527):365-70 25413365 - Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17224-9 21632750 - J Virol. 2011 Aug;85(16):8436-42 24347277 - J Mol Neurosci. 2014 May;53(1):78-86 15919913 - J Virol. 2005 Jun;79(12):7609-16 15111235 - Neurotox Res. 2004;5(8):579-98 8709231 - J Virol. 1996 Sep;70(9):6076-82 16116646 - Muscle Nerve. 2005 Dec;32(6):734-44 18076965 - Virology. 2008 Mar 30;373(1):98-111 20344947 - Wei Sheng Wu Xue Bao. 2010 Jan;50(1):98-106 23975817 - Methods Mol Biol. 2013;1078:9-21 4748425 - Cancer Res. 1973 Nov;33(11):2643-52 18160436 - J Virol. 2008 Apr;82(7):3530-7 20413890 - J Alzheimers Dis. 2010;20(4):1069-82 21283767 - PLoS One. 2011 Jan 20;6(1):e16174 7576944 - Eur J Cancer. 1995;31A(4):453-8 23055570 - J Virol. 2013 Jan;87(1):148-62 2539524 - J Virol. 1989 May;63(5):2357-60 25077483 - PLoS Pathog. 2014 Jul 31;10(7):e1004290 16802347 - J Neurosci Res. 2006 Sep;84(4):755-67 17652378 - J Virol. 2007 Oct;81(19):10424-36 29704 - Cancer Res. 1978 Nov;38(11 Pt 1):3751-7 6467378 - Cell Differ. 1984 Jun;14(2):135-44 25409826 - Nature. 2014 Nov 20;515(7527):371-5 19056420 - Neurotoxicology. 2009 Jan;30(1):127-35 1720882 - Neurotoxicology. 1991 Fall;12(3):473-92 20497720 - Chin Med J (Engl). 2010 Apr 20;123(8):1086-92 22766505 - Biochem Biophys Res Commun. 2012 Aug 3;424(3):421-6 16307526 - Crit Rev Neurobiol. 2005;17(1):27-50 11752144 - J Virol. 2002 Jan;76(2):532-40 19667186 - Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14040-5 25409824 - Nature. 2014 Nov 20;515(7527):355-64 12884695 - Methods Cell Biol. 2003;71:287-304 23861741 - PLoS One. 2013 Jul 05;8(7):e65948 10936180 - J Neurochem. 2000 Sep;75(3):991-1003 8625271 - Cancer Genet Cytogenet. 1996 Apr;87(2):95-102 22910880 - PLoS Pathog. 2012;8(7):e1002826 20160098 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4335-40 23724009 - PLoS One. 2013 May 28;8(5):e63862 |
| References_xml | – reference: 20160098 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4335-40 – reference: 8625271 - Cancer Genet Cytogenet. 1996 Apr;87(2):95-102 – reference: 8709231 - J Virol. 1996 Sep;70(9):6076-82 – reference: 10936180 - J Neurochem. 2000 Sep;75(3):991-1003 – reference: 23861741 - PLoS One. 2013 Jul 05;8(7):e65948 – reference: 20344947 - Wei Sheng Wu Xue Bao. 2010 Jan;50(1):98-106 – reference: 23055570 - J Virol. 2013 Jan;87(1):148-62 – reference: 22910880 - PLoS Pathog. 2012;8(7):e1002826 – reference: 17652378 - J Virol. 2007 Oct;81(19):10424-36 – reference: 18076965 - Virology. 2008 Mar 30;373(1):98-111 – reference: 4748425 - Cancer Res. 1973 Nov;33(11):2643-52 – reference: 16116646 - Muscle Nerve. 2005 Dec;32(6):734-44 – reference: 25409826 - Nature. 2014 Nov 20;515(7527):371-5 – reference: 16802347 - J Neurosci Res. 2006 Sep;84(4):755-67 – reference: 7576944 - Eur J Cancer. 1995;31A(4):453-8 – reference: 22766505 - Biochem Biophys Res Commun. 2012 Aug 3;424(3):421-6 – reference: 23724009 - PLoS One. 2013 May 28;8(5):e63862 – reference: 29704 - Cancer Res. 1978 Nov;38(11 Pt 1):3751-7 – reference: 2539524 - J Virol. 1989 May;63(5):2357-60 – reference: 25077483 - PLoS Pathog. 2014 Jul 31;10(7):e1004290 – reference: 24347277 - J Mol Neurosci. 2014 May;53(1):78-86 – reference: 19056420 - Neurotoxicology. 2009 Jan;30(1):127-35 – reference: 16307526 - Crit Rev Neurobiol. 2005;17(1):27-50 – reference: 6467378 - Cell Differ. 1984 Jun;14(2):135-44 – reference: 20413890 - J Alzheimers Dis. 2010;20(4):1069-82 – reference: 25409825 - Nature. 2014 Nov 20;515(7527):365-70 – reference: 25413365 - Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17224-9 – reference: 12884695 - Methods Cell Biol. 2003;71:287-304 – reference: 25409824 - Nature. 2014 Nov 20;515(7527):355-64 – reference: 23975817 - Methods Mol Biol. 2013;1078:9-21 – reference: 21632750 - J Virol. 2011 Aug;85(16):8436-42 – reference: 1720882 - Neurotoxicology. 1991 Fall;12(3):473-92 – reference: 11752144 - J Virol. 2002 Jan;76(2):532-40 – reference: 18160436 - J Virol. 2008 Apr;82(7):3530-7 – reference: 21283767 - PLoS One. 2011 Jan 20;6(1):e16174 – reference: 15919913 - J Virol. 2005 Jun;79(12):7609-16 – reference: 15111235 - Neurotox Res. 2004;5(8):579-98 – reference: 20497720 - Chin Med J (Engl). 2010 Apr 20;123(8):1086-92 – reference: 19667186 - Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14040-5 |
| SSID | ssj0062058 |
| Score | 2.564903 |
| Snippet | Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 53193 |
| SubjectTerms | blood serum Cell Count Cell Culture Techniques - methods Cell Differentiation - physiology Cell Line, Tumor Developmental Biology epithelial cells extracellular matrix proteins human cell lines human diseases Humans karyotyping mice nervous system diseases Neurobiology - methods Neuroblastoma - metabolism Neuroblastoma - pathology neurons Neurons - cytology Neurons - physiology neurophysiology neurotrophins phenotype rats |
| Title | Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26967710 https://www.proquest.com/docview/1773429347 https://www.proquest.com/docview/2253285072 https://pubmed.ncbi.nlm.nih.gov/PMC4828168 |
| WOSCitedRecordID | wos000372504100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVDIW databaseName: Journal of Visualized Experiments : JoVE customDbUrl: eissn: 1940-087X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062058 issn: 1940-087X databaseCode: 223 dateStart: 0 isFulltext: true titleUrlDefault: https://www.jove.com/journal providerName: Journal of Visualized Experiments |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fSxwxEB5EVASx_mo9W22Ee126STY7CfgituKTCFdhfVqSbI4eXPeKroL_vZPd89q9tviyLzthh5nJzjeZ8A3A0Lg8s164hId4WoWpT3SVYYLa5NwKK53uhk3g9bUuCnOzAp__2cGXaPiXGCSRzTMyo0fm5t9_2lyk7fxNqsPjnSwsNmCrt6qfa_4CkMv3IP9ILJfv3lRpB7bnmJGdd07ehZVQ78F6N0XyeR_Ovs6HnDSdmdlszAjWsdFVMrpTd6w9p2ctC4cjrNzMflp2EaZTRnVoOIDby2_fL66S-VCExGeaN0lF9Zqp0HnFpfYiqOCV1bH7l9kq59o6oa3MjVGV8FQujJWxCoNOg3Wy4la-h9V6VodDYGOnTCDpTAXaxy61QqSyQlnRHlc45gMYvpqv9HPG8Di4YlpS5RANUbaGGMDJQuxXR5GxLHD6avuSgjd2JGwdZo8PJUeUlBBlhv-XIWWk0ARbxQA-dP5afEbkJkfCSAPAnicXApE8u_-mnvxoSbQzKjV5ro_eUv4jbBJGai9qc_wEq839YziGNf_UTB7uT9p4pCcW-gWLu9fS |
| linkProvider | Journal of Visualized Experiments |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differentiation+of+the+sh-sy5y+human+neuroblastoma+cell+line&rft.jtitle=Journal+of+visualized+experiments&rft.au=Shipley%2C+Mackenzie+M&rft.au=Mangold%2C+Colleen+A&rft.au=Szpara%2C+Moriah+L&rft.date=2016-02-17&rft.issn=1940-087X&rft.eissn=1940-087X&rft.issue=108+p.e53193-e53193&rft_id=info:doi/10.3791%2F53193&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1940-087X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1940-087X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1940-087X&client=summon |