Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells
Replication fork reversal protects forks from breakage after poisoning of Topoisomerase 1. We here investigated fork progression and chromosomal breakage in human cells in response to a panel of sublethal genotoxic treatments, using other topoisomerase poisons, DNA synthesis inhibitors, interstrand...
Uloženo v:
| Vydáno v: | The Journal of cell biology Ročník 208; číslo 5; s. 563 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
02.03.2015
|
| Témata: | |
| ISSN: | 1540-8140, 1540-8140 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Replication fork reversal protects forks from breakage after poisoning of Topoisomerase 1. We here investigated fork progression and chromosomal breakage in human cells in response to a panel of sublethal genotoxic treatments, using other topoisomerase poisons, DNA synthesis inhibitors, interstrand cross-linking inducers, and base-damaging agents. We used electron microscopy to visualize fork architecture under these conditions and analyzed the association of specific molecular features with checkpoint activation. Our data identify replication fork uncoupling and reversal as global responses to genotoxic treatments. Both events are frequent even after mild treatments that do not affect fork integrity, nor activate checkpoints. Fork reversal was found to be dependent on the central homologous recombination factor RAD51, which is consistently present at replication forks independently of their breakage, and to be antagonized by poly (ADP-ribose) polymerase/RECQ1-regulated restart. Our work establishes remodeling of uncoupled forks as a pivotal RAD51-regulated response to genotoxic stress in human cells and as a promising target to potentiate cancer chemotherapy. |
|---|---|
| AbstractList | Replication fork reversal protects forks from breakage after poisoning of Topoisomerase 1. We here investigated fork progression and chromosomal breakage in human cells in response to a panel of sublethal genotoxic treatments, using other topoisomerase poisons, DNA synthesis inhibitors, interstrand cross-linking inducers, and base-damaging agents. We used electron microscopy to visualize fork architecture under these conditions and analyzed the association of specific molecular features with checkpoint activation. Our data identify replication fork uncoupling and reversal as global responses to genotoxic treatments. Both events are frequent even after mild treatments that do not affect fork integrity, nor activate checkpoints. Fork reversal was found to be dependent on the central homologous recombination factor RAD51, which is consistently present at replication forks independently of their breakage, and to be antagonized by poly (ADP-ribose) polymerase/RECQ1-regulated restart. Our work establishes remodeling of uncoupled forks as a pivotal RAD51-regulated response to genotoxic stress in human cells and as a promising target to potentiate cancer chemotherapy.Replication fork reversal protects forks from breakage after poisoning of Topoisomerase 1. We here investigated fork progression and chromosomal breakage in human cells in response to a panel of sublethal genotoxic treatments, using other topoisomerase poisons, DNA synthesis inhibitors, interstrand cross-linking inducers, and base-damaging agents. We used electron microscopy to visualize fork architecture under these conditions and analyzed the association of specific molecular features with checkpoint activation. Our data identify replication fork uncoupling and reversal as global responses to genotoxic treatments. Both events are frequent even after mild treatments that do not affect fork integrity, nor activate checkpoints. Fork reversal was found to be dependent on the central homologous recombination factor RAD51, which is consistently present at replication forks independently of their breakage, and to be antagonized by poly (ADP-ribose) polymerase/RECQ1-regulated restart. Our work establishes remodeling of uncoupled forks as a pivotal RAD51-regulated response to genotoxic stress in human cells and as a promising target to potentiate cancer chemotherapy. Replication fork reversal protects forks from breakage after poisoning of Topoisomerase 1. We here investigated fork progression and chromosomal breakage in human cells in response to a panel of sublethal genotoxic treatments, using other topoisomerase poisons, DNA synthesis inhibitors, interstrand cross-linking inducers, and base-damaging agents. We used electron microscopy to visualize fork architecture under these conditions and analyzed the association of specific molecular features with checkpoint activation. Our data identify replication fork uncoupling and reversal as global responses to genotoxic treatments. Both events are frequent even after mild treatments that do not affect fork integrity, nor activate checkpoints. Fork reversal was found to be dependent on the central homologous recombination factor RAD51, which is consistently present at replication forks independently of their breakage, and to be antagonized by poly (ADP-ribose) polymerase/RECQ1-regulated restart. Our work establishes remodeling of uncoupled forks as a pivotal RAD51-regulated response to genotoxic stress in human cells and as a promising target to potentiate cancer chemotherapy. |
| Author | Mutreja, Karun Schmid, Jonas A Zellweger, Ralph Lopes, Massimo Berti, Matteo Dalcher, Damian Herrador, Raquel Vindigni, Alessandro |
| Author_xml | – sequence: 1 givenname: Ralph surname: Zellweger fullname: Zellweger, Ralph organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland – sequence: 2 givenname: Damian surname: Dalcher fullname: Dalcher, Damian organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland – sequence: 3 givenname: Karun surname: Mutreja fullname: Mutreja, Karun organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland – sequence: 4 givenname: Matteo surname: Berti fullname: Berti, Matteo organization: Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104 – sequence: 5 givenname: Jonas A surname: Schmid fullname: Schmid, Jonas A organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland – sequence: 6 givenname: Raquel surname: Herrador fullname: Herrador, Raquel organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland – sequence: 7 givenname: Alessandro surname: Vindigni fullname: Vindigni, Alessandro organization: Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104 – sequence: 8 givenname: Massimo surname: Lopes fullname: Lopes, Massimo email: lopes@imcr.uzh.ch organization: Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland lopes@imcr.uzh.ch |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25733714$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLxDAUhYOMOA9dupUs3XRM2iRtlzL4ggFBdF3yuB0ztklNUtF_b8URXN1zLx-Xc84SzZx3gNA5JWtKquJqr9U6J5QRQer6CC0oZySrpn32T8_RMsY9IYSVrDhB85yXRVFStkDmSRpOsx6MlQkMDjB0VstkvcOtD2_T4QNClB22EUu867yadIA4eBcBJ4934Hzyn1bjFECmHlyK2Dr8OvbSYQ1dF0_RcSu7CGeHuUIvtzfPm_ts-3j3sLneZppVNGW6pdyIwjBJay5MbqqyFnmtyzpvFaVKyJqBqI1Uikg6cYQrw7motKhAGJ6v0OXv3yH49xFianobfxxIB36MDRWCCM6E-EEvDuiopvDNEGwvw1fz10z-DeW7Z6k |
| CitedBy_id | crossref_primary_10_1016_j_bbagen_2025_130797 crossref_primary_10_26508_lsa_202000668 crossref_primary_10_1073_pnas_1620208114 crossref_primary_10_1016_j_jmb_2025_169401 crossref_primary_10_1038_s41598_019_47600_y crossref_primary_10_3390_cancers13081957 crossref_primary_10_1016_j_molcel_2021_09_008 crossref_primary_10_1016_j_molcel_2022_04_023 crossref_primary_10_1016_j_molcel_2021_09_005 crossref_primary_10_1101_gad_299172_117 crossref_primary_10_1002_1873_3468_12556 crossref_primary_10_1016_j_dnarep_2016_05_022 crossref_primary_10_1038_s41586_018_0261_5 crossref_primary_10_1016_j_bpc_2016_11_007 crossref_primary_10_1016_j_bpc_2016_11_008 crossref_primary_10_1038_nrm3935 crossref_primary_10_1158_2159_8290_CD_17_1461 crossref_primary_10_2147_OTT_S278092 crossref_primary_10_1016_j_bbcan_2019_08_002 crossref_primary_10_1016_j_molcel_2017_08_010 crossref_primary_10_1016_j_pbiomolbio_2020_11_005 crossref_primary_10_1128_MMBR_00013_18 crossref_primary_10_1007_s00412_016_0573_x crossref_primary_10_1371_journal_pgen_1007942 crossref_primary_10_1016_j_celrep_2024_114178 crossref_primary_10_1016_j_bpc_2016_11_005 crossref_primary_10_3390_ijms19102909 crossref_primary_10_1016_j_dnarep_2018_08_017 crossref_primary_10_3390_ijms22116144 crossref_primary_10_1042_EBC20200012 crossref_primary_10_3390_cells12222607 crossref_primary_10_1038_s41467_020_16096_w crossref_primary_10_1016_j_dnarep_2023_103548 crossref_primary_10_1016_j_bbrc_2025_152393 crossref_primary_10_15252_emmm_201404824 crossref_primary_10_1371_journal_pbio_3000464 crossref_primary_10_1146_annurev_genet_021920_092410 crossref_primary_10_1016_j_molcel_2019_05_026 crossref_primary_10_1073_pnas_2316491121 crossref_primary_10_3389_fcell_2023_1118716 crossref_primary_10_3389_fgene_2021_780293 crossref_primary_10_3390_genes12060920 crossref_primary_10_1002_1873_3468_14406 crossref_primary_10_1016_j_molcel_2022_11_008 crossref_primary_10_1016_j_dnarep_2022_103356 crossref_primary_10_1093_nar_gkab964 crossref_primary_10_1016_j_canlet_2020_12_023 crossref_primary_10_1038_s41467_023_43494_7 crossref_primary_10_1038_s41589_024_01611_7 crossref_primary_10_1038_s44318_024_00204_3 crossref_primary_10_1016_j_tig_2019_03_008 crossref_primary_10_1371_journal_pone_0192421 crossref_primary_10_1016_j_tig_2019_03_001 crossref_primary_10_1016_j_dnarep_2020_102869 crossref_primary_10_1371_journal_pbio_3001543 crossref_primary_10_1128_MCB_00576_18 crossref_primary_10_1007_s00294_019_00945_3 crossref_primary_10_1016_j_molcel_2015_05_013 crossref_primary_10_1371_journal_pgen_1011181 crossref_primary_10_1016_j_molcel_2017_09_036 crossref_primary_10_15252_embj_2022110632 crossref_primary_10_1016_j_dnarep_2020_102994 crossref_primary_10_1093_nar_gkac746 crossref_primary_10_1016_j_dnarep_2020_102875 crossref_primary_10_1016_j_mrfmmm_2017_09_006 crossref_primary_10_1038_s41467_021_27443_w crossref_primary_10_1016_j_semcdb_2020_10_001 crossref_primary_10_1016_j_semcancer_2016_01_001 crossref_primary_10_1038_s41589_024_01833_9 crossref_primary_10_1371_journal_pgen_1005699 crossref_primary_10_1038_ncb3378 crossref_primary_10_1080_15384101_2015_1066539 crossref_primary_10_1093_nar_gkae811 crossref_primary_10_1016_j_dnarep_2019_02_003 crossref_primary_10_1038_s41568_022_00518_6 crossref_primary_10_1101_gad_256404_114 crossref_primary_10_3390_cells14060442 crossref_primary_10_1002_path_5097 crossref_primary_10_1016_j_molcel_2015_12_026 crossref_primary_10_1016_j_semcdb_2020_07_004 crossref_primary_10_1093_nar_gkz026 crossref_primary_10_1016_j_celrep_2024_115066 crossref_primary_10_1093_nar_gkx088 crossref_primary_10_1007_s00018_019_03206_1 crossref_primary_10_1016_j_dnarep_2021_103163 crossref_primary_10_1146_annurev_genet_071719_020312 crossref_primary_10_1158_1078_0432_CCR_21_1367 crossref_primary_10_1158_0008_5472_CAN_18_2705 crossref_primary_10_1016_j_semcdb_2020_08_010 crossref_primary_10_1073_pnas_2201738119 crossref_primary_10_3390_genes12101550 crossref_primary_10_1038_s41467_022_34310_9 crossref_primary_10_3389_fmolb_2021_712971 crossref_primary_10_1093_nar_gkab511 crossref_primary_10_1016_j_molcel_2019_04_027 crossref_primary_10_1093_hmg_ddaa087 crossref_primary_10_1016_j_cub_2015_09_026 crossref_primary_10_15252_embr_201948920 crossref_primary_10_1016_j_jbc_2021_101301 crossref_primary_10_1371_journal_pgen_1005792 crossref_primary_10_1016_j_dnarep_2016_05_008 crossref_primary_10_3390_cells12081169 crossref_primary_10_1016_j_bpc_2016_11_014 crossref_primary_10_1038_s41467_017_01074_6 crossref_primary_10_3389_fcell_2021_702584 crossref_primary_10_1093_nar_gkab526 crossref_primary_10_1093_nar_gkaa559 crossref_primary_10_1016_j_biopsych_2023_08_023 crossref_primary_10_1038_s41467_024_52250_4 crossref_primary_10_1093_nar_gkac734 crossref_primary_10_1016_j_dnarep_2015_04_026 crossref_primary_10_1038_s41598_019_45244_6 crossref_primary_10_3390_ijms231810212 crossref_primary_10_3390_ijms241512419 crossref_primary_10_1093_nar_gky275 crossref_primary_10_1093_hmg_ddac281 crossref_primary_10_1093_nar_gkab771 crossref_primary_10_3390_ijms25020952 crossref_primary_10_1080_19491034_2016_1267092 crossref_primary_10_1016_j_coph_2022_102313 crossref_primary_10_1093_nar_gkad999 crossref_primary_10_1146_annurev_biochem_062917_011921 crossref_primary_10_1038_s41467_020_17324_z crossref_primary_10_1083_jcb_201506071 crossref_primary_10_1016_j_ceb_2019_05_005 crossref_primary_10_1038_s41580_020_0257_5 crossref_primary_10_1093_nar_gkab344 crossref_primary_10_1074_jbc_RA119_011099 crossref_primary_10_1093_nar_gkab101 crossref_primary_10_1016_j_arr_2016_03_002 crossref_primary_10_1038_s41467_017_00634_0 crossref_primary_10_1038_s41580_019_0152_0 crossref_primary_10_3390_genes8020057 crossref_primary_10_1093_nar_gkaf707 crossref_primary_10_1038_s41594_022_00747_1 crossref_primary_10_1083_jcb_202002175 crossref_primary_10_1016_j_molcel_2017_06_023 crossref_primary_10_1016_j_molcel_2023_07_008 crossref_primary_10_3389_fgene_2021_753535 crossref_primary_10_1016_j_dnarep_2022_103418 crossref_primary_10_1021_jacs_7b10284 crossref_primary_10_1146_annurev_micro_090817_062514 crossref_primary_10_1038_s41389_022_00410_w crossref_primary_10_3233_JHD_200448 crossref_primary_10_1016_j_molcel_2022_05_004 crossref_primary_10_1016_j_tig_2024_04_013 crossref_primary_10_1093_nar_gkae828 crossref_primary_10_1016_j_molcel_2024_09_021 crossref_primary_10_3390_genes12040552 crossref_primary_10_1016_j_dnarep_2021_103104 crossref_primary_10_1093_nar_gkad856 crossref_primary_10_3389_fonc_2022_808757 crossref_primary_10_1534_genetics_119_302238 crossref_primary_10_1042_BST20180308 crossref_primary_10_3390_v14050948 crossref_primary_10_1038_s41467_018_03159_2 crossref_primary_10_1126_science_aad5634 crossref_primary_10_3390_genes12081229 crossref_primary_10_1016_j_tcb_2025_01_006 crossref_primary_10_1038_s41467_023_37498_6 crossref_primary_10_15252_embj_201593265 crossref_primary_10_3390_cancers13246215 crossref_primary_10_3390_biology10100977 crossref_primary_10_1016_j_mrrev_2020_108346 crossref_primary_10_1038_s41467_023_42011_0 crossref_primary_10_1093_nar_gkad624 crossref_primary_10_1146_annurev_genet_120116_024745 crossref_primary_10_1101_gad_264192_115 crossref_primary_10_1038_s44319_025_00497_3 crossref_primary_10_1016_j_devcel_2020_01_024 crossref_primary_10_1038_s41467_023_36149_0 crossref_primary_10_1093_nar_gkae721 crossref_primary_10_1016_j_mrfmmm_2017_09_004 crossref_primary_10_15252_embj_201593132 crossref_primary_10_4103_jcrt_jcrt_1723_22 crossref_primary_10_1038_s41467_019_12064_1 crossref_primary_10_1158_2159_8290_CD_24_1326 crossref_primary_10_1093_nar_gkv859 crossref_primary_10_1002_pmic_201800406 crossref_primary_10_1158_0008_5472_CAN_18_3631 crossref_primary_10_1038_s41467_021_26624_x crossref_primary_10_3389_fcell_2021_670392 crossref_primary_10_1016_j_dnarep_2021_103209 crossref_primary_10_1089_zeb_2015_1151 crossref_primary_10_3389_fmolb_2022_875102 crossref_primary_10_1158_0008_5472_CAN_20_1602 crossref_primary_10_1016_j_semcancer_2018_08_003 crossref_primary_10_1093_nar_gkad441 crossref_primary_10_1093_nar_gkae770 crossref_primary_10_1016_j_celrep_2024_113845 crossref_primary_10_1016_j_molcel_2021_05_014 crossref_primary_10_1038_s41419_022_04644_9 crossref_primary_10_3389_fcell_2020_00416 crossref_primary_10_1093_nar_gkw1026 crossref_primary_10_15252_embr_201745535 crossref_primary_10_1038_s41467_020_19162_5 crossref_primary_10_1093_nar_gkac1116 crossref_primary_10_1038_s41467_023_37341_y crossref_primary_10_1172_JCI147301 crossref_primary_10_3390_cancers13122930 crossref_primary_10_1126_sciadv_adv0381 crossref_primary_10_1126_science_add7328 crossref_primary_10_3389_fonc_2020_00670 crossref_primary_10_1038_s41467_017_01180_5 crossref_primary_10_1093_nar_gkaf512 crossref_primary_10_1038_s41467_020_20520_6 crossref_primary_10_1093_nar_gkae663 crossref_primary_10_3390_cancers14235722 crossref_primary_10_1016_j_jbc_2022_101672 crossref_primary_10_1242_bio_057729 crossref_primary_10_1093_nar_gkab151 crossref_primary_10_1093_nar_gkv836 crossref_primary_10_15252_embr_201846263 crossref_primary_10_1093_nar_gkac447 crossref_primary_10_3389_fgene_2021_748033 crossref_primary_10_26508_lsa_202201584 crossref_primary_10_1038_s41467_021_26811_w crossref_primary_10_1016_j_dnarep_2019_04_005 crossref_primary_10_1038_s41467_019_09196_9 crossref_primary_10_1146_annurev_genet_121415_121658 crossref_primary_10_1080_15384101_2016_1259038 crossref_primary_10_1093_nar_gkad1237 crossref_primary_10_1038_s41467_024_51961_y crossref_primary_10_1038_s41388_020_1265_9 crossref_primary_10_1242_bio_018028 crossref_primary_10_15252_embr_202357585 crossref_primary_10_1016_j_molcel_2018_09_014 crossref_primary_10_1038_s41467_024_50429_3 crossref_primary_10_3390_genes8020074 crossref_primary_10_1016_j_mrgentox_2018_02_004 crossref_primary_10_1016_j_ccell_2018_05_008 crossref_primary_10_1016_j_molcel_2017_07_001 crossref_primary_10_1128_JB_00237_15 crossref_primary_10_1093_nar_gkac583 crossref_primary_10_3390_ijms18071562 crossref_primary_10_1016_j_molcel_2017_04_002 crossref_primary_10_1038_s41467_023_41801_w crossref_primary_10_1038_s41467_023_42830_1 crossref_primary_10_3390_cancers13143604 crossref_primary_10_1093_nar_gkz1162 crossref_primary_10_1093_nar_gkad481 crossref_primary_10_1016_j_molcel_2020_12_010 crossref_primary_10_3390_biomedicines11051450 crossref_primary_10_1016_j_arr_2016_05_010 crossref_primary_10_1016_j_pbiomolbio_2021_01_004 crossref_primary_10_1093_nar_gkaf544 crossref_primary_10_1007_s00294_020_01106_7 crossref_primary_10_1038_s41467_017_02144_5 crossref_primary_10_1042_BCJ20200318 crossref_primary_10_3390_genes9120603 crossref_primary_10_1093_nar_gkae211 crossref_primary_10_3390_genes11020232 crossref_primary_10_1038_s41467_024_55005_3 crossref_primary_10_1083_jcb_2085if crossref_primary_10_1038_nrm_2017_53 crossref_primary_10_1093_femsre_fuaf041 crossref_primary_10_3390_cancers17020257 crossref_primary_10_1016_j_molcel_2022_08_028 crossref_primary_10_1038_srep31973 crossref_primary_10_1093_nar_gkad369 crossref_primary_10_1158_0008_5472_CAN_23_4130 crossref_primary_10_1016_j_dnarep_2025_103877 crossref_primary_10_1038_s44318_024_00038_z crossref_primary_10_1093_nar_gkw515 crossref_primary_10_1093_nar_gkz1052 crossref_primary_10_1016_j_cels_2023_06_005 crossref_primary_10_15252_embj_2019103654 crossref_primary_10_1016_j_molcel_2020_04_035 crossref_primary_10_1083_jcb_201809012 crossref_primary_10_1016_j_molcel_2020_04_031 crossref_primary_10_1016_j_bbcan_2017_01_004 crossref_primary_10_1158_1078_0432_CCR_18_2523 crossref_primary_10_1038_s41467_018_06435_3 crossref_primary_10_1093_nar_gkab195 crossref_primary_10_1093_nar_gkac009 crossref_primary_10_7554_eLife_14709 crossref_primary_10_1016_j_molcel_2022_07_010 crossref_primary_10_1074_jbc_M116_745646 crossref_primary_10_1016_j_jbiotec_2023_12_001 crossref_primary_10_5812_gct_81645 crossref_primary_10_1080_10409238_2018_1488803 crossref_primary_10_1038_s41467_022_32861_5 crossref_primary_10_1093_nar_gkae546 crossref_primary_10_1158_0008_5472_CAN_15_2908 crossref_primary_10_3892_or_2023_8657 crossref_primary_10_1016_j_dnarep_2025_103865 crossref_primary_10_15252_embr_201744877 crossref_primary_10_1038_nsmb_3163 crossref_primary_10_1016_j_molcel_2021_06_011 crossref_primary_10_1016_j_tcb_2023_03_015 crossref_primary_10_1371_journal_pgen_1010545 crossref_primary_10_1016_j_celrep_2023_112484 crossref_primary_10_1371_journal_pone_0266645 crossref_primary_10_1074_jbc_RA118_002905 crossref_primary_10_1038_s41467_023_43183_5 crossref_primary_10_3390_cells11040643 crossref_primary_10_3390_biom5031652 crossref_primary_10_1093_nar_gkae317 crossref_primary_10_1016_j_molcel_2015_07_009 crossref_primary_10_1038_s41467_019_13667_4 crossref_primary_10_1038_s41467_022_33028_y crossref_primary_10_1083_jcb_201808134 crossref_primary_10_1093_nar_gkv880 crossref_primary_10_1371_journal_pgen_1007486 crossref_primary_10_1158_2159_8290_CD_23_0641 crossref_primary_10_1038_ncomms13905 crossref_primary_10_1038_s41467_023_40071_w crossref_primary_10_1093_nar_gkad596 crossref_primary_10_1093_nar_gkae563 crossref_primary_10_1038_nrm_2017_67 crossref_primary_10_1186_s13046_022_02334_0 crossref_primary_10_1093_nar_gkaa1232 crossref_primary_10_1016_j_molcel_2016_10_037 crossref_primary_10_1371_journal_pgen_1009256 crossref_primary_10_1093_nar_gkad281 crossref_primary_10_1093_nar_gkad1054 crossref_primary_10_1016_j_molcel_2018_07_011 crossref_primary_10_1016_j_molcel_2017_05_001 crossref_primary_10_3389_fcell_2020_574466 crossref_primary_10_3390_genes7070032 crossref_primary_10_1016_j_molcel_2019_10_026 crossref_primary_10_1016_j_celrep_2019_04_032 crossref_primary_10_1101_gad_336446_120 crossref_primary_10_1002_gcc_23243 crossref_primary_10_1007_s00412_017_0658_1 crossref_primary_10_1080_10409238_2017_1304355 crossref_primary_10_1093_nar_gkw433 crossref_primary_10_1111_febs_14663 crossref_primary_10_1038_s12276_020_00533_3 crossref_primary_10_15252_embr_201949367 crossref_primary_10_1016_j_molcel_2025_05_010 crossref_primary_10_1007_s00432_024_05757_8 crossref_primary_10_1016_j_cell_2022_06_028 crossref_primary_10_1038_s41467_020_19570_7 crossref_primary_10_3390_cancers13061442 crossref_primary_10_1016_j_molcel_2019_10_010 crossref_primary_10_1016_j_molcel_2022_08_014 crossref_primary_10_1038_s41467_019_11246_1 crossref_primary_10_1074_jbc_RA119_008420 crossref_primary_10_3390_genes6020267 crossref_primary_10_1038_s41467_019_11760_2 crossref_primary_10_1016_j_molcel_2020_12_036 crossref_primary_10_15252_embr_202153639 crossref_primary_10_1038_ncomms10660 crossref_primary_10_1038_ncomms11752 crossref_primary_10_1007_s00018_017_2474_4 crossref_primary_10_1016_j_semcancer_2019_02_005 crossref_primary_10_1016_j_molcel_2019_10_008 crossref_primary_10_1016_j_molcel_2016_04_032 crossref_primary_10_1091_mbc_E18_10_0668 crossref_primary_10_1007_s42764_024_00129_5 crossref_primary_10_1038_s41416_020_01158_z crossref_primary_10_26508_lsa_201800096 crossref_primary_10_1038_s41467_019_12297_0 crossref_primary_10_1016_j_molcel_2020_11_007 crossref_primary_10_1016_j_pharmthera_2024_108642 crossref_primary_10_1083_jcb_201406100 crossref_primary_10_1038_s41586_018_0050_1 crossref_primary_10_1093_nar_gkz738 crossref_primary_10_1016_j_molcel_2023_12_025 crossref_primary_10_1002_cmdc_201900075 crossref_primary_10_1016_j_molcel_2022_09_009 crossref_primary_10_3390_genes7120134 crossref_primary_10_3390_ijms242316903 crossref_primary_10_2147_OTT_S322297 crossref_primary_10_1016_j_molcel_2017_11_035 crossref_primary_10_1038_s41467_024_45139_9 crossref_primary_10_1016_j_pbiomolbio_2021_03_007 crossref_primary_10_1016_j_dnarep_2016_11_002 crossref_primary_10_3390_genes10030232 crossref_primary_10_1007_s00412_020_00743_8 crossref_primary_10_1083_jcb_201709121 crossref_primary_10_1186_s13578_020_00391_6 crossref_primary_10_1083_jcb_202106022 crossref_primary_10_1038_celldisc_2016_16 crossref_primary_10_1016_j_dnarep_2019_102654 crossref_primary_10_1038_s41467_024_46283_y crossref_primary_10_1371_journal_pgen_1007541 crossref_primary_10_1016_j_dnarep_2019_102657 crossref_primary_10_1016_j_molcel_2017_11_022 crossref_primary_10_1002_sstr_202200361 crossref_primary_10_3390_jof8060621 crossref_primary_10_1016_j_semcdb_2016_09_011 crossref_primary_10_1016_j_molcel_2018_04_022 crossref_primary_10_1038_ng_3692 crossref_primary_10_1038_s41388_022_02527_z crossref_primary_10_1093_nar_gkz1101 crossref_primary_10_1146_annurev_cancerbio_030617_050502 crossref_primary_10_1074_jbc_M115_642884 crossref_primary_10_1016_j_dnarep_2024_103786 crossref_primary_10_1038_s41467_023_40096_1 crossref_primary_10_3390_genes12071096 crossref_primary_10_1038_s41594_022_00871_y crossref_primary_10_1016_j_bcp_2023_115675 crossref_primary_10_1016_j_ceb_2016_03_015 crossref_primary_10_1093_nar_gkab1184 crossref_primary_10_1128_MCB_00472_17 crossref_primary_10_3389_fonc_2021_646256 crossref_primary_10_1158_0008_5472_CAN_18_0618 crossref_primary_10_1016_j_devcel_2022_02_013 crossref_primary_10_1016_j_molcel_2024_11_034 crossref_primary_10_1038_s41467_022_32756_5 crossref_primary_10_1016_j_cell_2017_11_047 crossref_primary_10_1371_journal_ppat_1010275 crossref_primary_10_1093_nar_gky519 crossref_primary_10_1038_s41594_018_0075_z crossref_primary_10_3390_biomedicines10112775 crossref_primary_10_1038_s41467_021_25830_x crossref_primary_10_1016_j_molcel_2021_01_012 crossref_primary_10_1016_j_molcel_2025_08_017 crossref_primary_10_1093_nar_gkab1173 crossref_primary_10_1038_onc_2017_40 crossref_primary_10_1158_1541_7786_MCR_20_0651 crossref_primary_10_3389_fmolb_2020_00169 crossref_primary_10_1083_jcb_201908192 crossref_primary_10_1073_pnas_1508543112 crossref_primary_10_3390_ijms26020667 crossref_primary_10_1038_s41594_023_00928_6 crossref_primary_10_1098_rsos_201932 crossref_primary_10_1080_10409238_2017_1380597 crossref_primary_10_1083_jcb_201802083 crossref_primary_10_1016_j_jmb_2023_168236 crossref_primary_10_1016_j_tibs_2025_07_004 crossref_primary_10_1038_nature25748 crossref_primary_10_7554_eLife_41426 crossref_primary_10_1038_srep36022 crossref_primary_10_1016_j_arr_2023_101887 crossref_primary_10_1016_j_dnarep_2023_103450 crossref_primary_10_1038_s41467_024_45684_3 crossref_primary_10_1074_jbc_M115_708594 crossref_primary_10_1007_s00412_023_00813_7 crossref_primary_10_1101_gad_288142_116 crossref_primary_10_1093_femsre_fuad065 crossref_primary_10_1016_j_molcel_2018_05_018 crossref_primary_10_1016_j_dnarep_2024_103731 crossref_primary_10_1534_genetics_118_301439 crossref_primary_10_1016_j_dnarep_2024_103738 crossref_primary_10_1093_biomethods_bpaa012 crossref_primary_10_1038_s41389_020_00289_5 crossref_primary_10_1038_s41467_022_34519_8 crossref_primary_10_1080_09168451_2016_1141039 crossref_primary_10_1038_s41418_020_00733_4 crossref_primary_10_1101_gad_348517_121 crossref_primary_10_1038_aps_2017_53 crossref_primary_10_3390_biom7010019 crossref_primary_10_3390_cancers12020402 crossref_primary_10_7554_eLife_31723 crossref_primary_10_1038_s41467_017_01164_5 crossref_primary_10_1038_s41467_023_42831_0 crossref_primary_10_3389_fcell_2022_866601 crossref_primary_10_1155_2021_5524076 crossref_primary_10_1093_nar_gkae078 crossref_primary_10_1016_j_tcb_2019_06_005 crossref_primary_10_1101_gad_297663_117 crossref_primary_10_1016_j_molcel_2024_11_006 crossref_primary_10_1038_s41467_025_60817_y crossref_primary_10_1016_j_dnarep_2020_102947 crossref_primary_10_1016_j_dnarep_2024_103753 crossref_primary_10_1038_s41467_023_43685_2 crossref_primary_10_1016_j_dnarep_2020_102943 crossref_primary_10_1016_j_dnarep_2024_103758 crossref_primary_10_1371_journal_pgen_1005384 crossref_primary_10_3389_fcell_2021_657305 crossref_primary_10_1158_0008_5472_CAN_24_1404 crossref_primary_10_1016_j_molcel_2021_09_013 crossref_primary_10_1016_j_gene_2022_146208 crossref_primary_10_1038_s41388_019_0810_x crossref_primary_10_1016_j_celrep_2024_114594 |
| ContentType | Journal Article |
| Copyright | 2015 Zellweger et al. |
| Copyright_xml | – notice: 2015 Zellweger et al. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1083/jcb.201406099 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1540-8140 |
| ExternalDocumentID | 25733714 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01GM108648 – fundername: NIGMS NIH HHS grantid: R01 GM108648 |
| GroupedDBID | --- -DZ -~X .55 123 18M 29K 2WC 34G 36B 39C 4.4 53G 85S ABDNZ ABOCM ABPPZ ABRJW ABZEH ACGFO ACGOD ACIWK ACKOT ACNCT ACPRK ADBBV AEILP AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C45 CGR CS3 CUY CVF D-I D0L DIK DU5 E3Z EBS ECM EIF EJD EMB F5P F9R FRP GX1 H13 HF~ HYE IH2 JZ9 KQ8 N9A NHB NPM O5R O5S OK1 P2P PQQKQ R.V RHI RNS RXW SJN TAE TN5 TR2 TRP TWZ UBX UHB UKR UPT W8F WH7 WOQ X7M YKV YNH YOC YQT YSK YWH YZZ ZCA ~KM 7X8 |
| ID | FETCH-LOGICAL-c481t-cf15d63d4a1956d2d879629c792fb11b6a94e69dabb0a13d405bd5568c68e6d52 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 530 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000350530600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1540-8140 |
| IngestDate | Thu Sep 04 16:29:17 EDT 2025 Thu Apr 03 06:55:34 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | 2015 Zellweger et al. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c481t-cf15d63d4a1956d2d879629c792fb11b6a94e69dabb0a13d405bd5568c68e6d52 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://rupress.org/jcb/article-pdf/208/5/563/1366785/jcb_201406099.pdf |
| PMID | 25733714 |
| PQID | 1660654665 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1660654665 pubmed_primary_25733714 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-03-02 |
| PublicationDateYYYYMMDD | 2015-03-02 |
| PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The Journal of cell biology |
| PublicationTitleAlternate | J Cell Biol |
| PublicationYear | 2015 |
| References | 16387650 - Mol Cell. 2006 Jan 6;21(1):15-27 23259582 - ACS Chem Biol. 2013 Jan 18;8(1):82-95 23684611 - Cell Rep. 2013 May 30;3(5):1651-62 24561620 - Nat Cell Biol. 2014 Mar;16(3):281-93 25083873 - Cell. 2014 Jul 31;158(3):633-46 20188668 - Mol Cell. 2010 Feb 26;37(4):492-502 24298053 - Genes Dev. 2013 Dec 1;27(23):2537-42 22279047 - Genes Dev. 2012 Jan 15;26(2):151-62 19812404 - N Engl J Med. 2009 Oct 8;361(15):1475-85 11395575 - Anticancer Drugs. 2001 Jun;12(5):467-73 15737996 - J Biol Chem. 2005 Apr 29;280(17):17076-83 3041238 - NCI Monogr. 1987;(4):117-21 22383038 - Nat Protoc. 2012 Mar;7(3):594-605 12142537 - Science. 2002 Jul 26;297(5581):599-602 21784245 - Cell. 2011 Jul 22;146(2):233-46 17003056 - Nucleic Acids Res. 2006;34(18):5217-31 15743907 - Mol Biol Cell. 2005 May;16(5):2372-81 6895473 - Biochemistry. 1981 Nov 10;20(23):6553-63 24198246 - Nucleic Acids Res. 2014 Feb;42(3):1711-20 20935632 - Nat Struct Mol Biol. 2010 Nov;17(11):1305-11 23993743 - Mol Cell. 2013 Sep 12;51(5):678-90 19103807 - J Cell Biol. 2008 Dec 29;183(7):1203-12 24366029 - Nat Cell Biol. 2014 Jan;16(1):2-9 9508763 - J Cell Biol. 1998 Mar 23;140(6):1285-95 15829967 - Nature. 2005 Apr 14;434(7035):917-21 1255724 - J Mol Biol. 1976 Mar 5;101(3):417-25 24162989 - Methods Mol Biol. 2014;1094:177-208 21685366 - Genes Dev. 2011 Jun 15;25(12):1320-7 22789542 - Cancer Cell. 2012 Jul 10;22(1):106-16 24005329 - Nature. 2013 Oct 17;502(7471):381-4 22918414 - Nat Rev Cancer. 2012 Sep;12(9):587-98 12791985 - Science. 2003 Jun 6;300(5625):1542-8 16766518 - J Biol Chem. 2006 Aug 11;281(32):22839-46 22149429 - Expert Rev Anticancer Ther. 2012 Jan;12(1):19-29 20842177 - Nat Rev Mol Cell Biol. 2010 Oct;11(10):683-7 21821141 - Semin Cell Dev Biol. 2011 Oct;22(8):898-905 11484058 - Nature. 2001 Aug 2;412(6846):557-61 18206976 - Mol Cell. 2008 Jan 18;29(1):141-8 22388737 - Nat Struct Mol Biol. 2012 Apr;19(4):417-23 21173116 - J Cell Biol. 2010 Dec 27;191(7):1285-97 20200537 - Nat Rev Cancer. 2010 Apr;10(4):293-301 23479741 - J Cell Biol. 2013 Mar 18;200(6):699-708 20515732 - Front Biosci (Landmark Ed). 2010;15:883-900 24794434 - Cell Rep. 2014 May 22;7(4):1030-8 24776801 - Nature. 2014 Jun 26;510(7506):556-9 22187152 - Nucleic Acids Res. 2012 Apr;40(8):3431-42 23562323 - Trends Biochem Sci. 2013 Jun;38(6):321-30 17115688 - Biochemistry. 2006 Nov 28;45(47):13939-46 24815912 - DNA Repair (Amst). 2014 Jul;19:152-62 19948885 - Mol Cell Biol. 2010 Feb;30(3):684-93 21701511 - Nat Rev Cancer. 2011 Jul;11(7):467-80 23396353 - Nat Struct Mol Biol. 2013 Mar;20(3):347-54 22365495 - Curr Opin Genet Dev. 2012 Jun;22(3):204-10 22704558 - Mol Cell. 2012 Aug 10;47(3):396-409 21565612 - Cell. 2011 May 13;145(4):529-42 21097884 - Nucleic Acids Res. 2011 Mar;39(6):2153-64 21615334 - Biochem J. 2011 Jun 15;436(3):527-36 25733713 - J Cell Biol. 2015 Mar 2;208(5):545-62 25714681 - Nat Rev Mol Cell Biol. 2015 Apr;16(4):207-20 23746452 - Cell Rep. 2013 Jun 27;3(6):1958-69 24556218 - Hum Mol Genet. 2014 Jul 15;23(14):3695-705 21910633 - Annu Rev Genet. 2011;45:247-71 |
| References_xml | – reference: 21097884 - Nucleic Acids Res. 2011 Mar;39(6):2153-64 – reference: 21565612 - Cell. 2011 May 13;145(4):529-42 – reference: 22187152 - Nucleic Acids Res. 2012 Apr;40(8):3431-42 – reference: 24794434 - Cell Rep. 2014 May 22;7(4):1030-8 – reference: 16387650 - Mol Cell. 2006 Jan 6;21(1):15-27 – reference: 25083873 - Cell. 2014 Jul 31;158(3):633-46 – reference: 20515732 - Front Biosci (Landmark Ed). 2010;15:883-900 – reference: 15829967 - Nature. 2005 Apr 14;434(7035):917-21 – reference: 12791985 - Science. 2003 Jun 6;300(5625):1542-8 – reference: 22279047 - Genes Dev. 2012 Jan 15;26(2):151-62 – reference: 15737996 - J Biol Chem. 2005 Apr 29;280(17):17076-83 – reference: 25733713 - J Cell Biol. 2015 Mar 2;208(5):545-62 – reference: 22918414 - Nat Rev Cancer. 2012 Sep;12(9):587-98 – reference: 21701511 - Nat Rev Cancer. 2011 Jul;11(7):467-80 – reference: 22383038 - Nat Protoc. 2012 Mar;7(3):594-605 – reference: 11395575 - Anticancer Drugs. 2001 Jun;12(5):467-73 – reference: 19948885 - Mol Cell Biol. 2010 Feb;30(3):684-93 – reference: 21821141 - Semin Cell Dev Biol. 2011 Oct;22(8):898-905 – reference: 9508763 - J Cell Biol. 1998 Mar 23;140(6):1285-95 – reference: 22149429 - Expert Rev Anticancer Ther. 2012 Jan;12(1):19-29 – reference: 19103807 - J Cell Biol. 2008 Dec 29;183(7):1203-12 – reference: 24366029 - Nat Cell Biol. 2014 Jan;16(1):2-9 – reference: 24776801 - Nature. 2014 Jun 26;510(7506):556-9 – reference: 22388737 - Nat Struct Mol Biol. 2012 Apr;19(4):417-23 – reference: 12142537 - Science. 2002 Jul 26;297(5581):599-602 – reference: 21173116 - J Cell Biol. 2010 Dec 27;191(7):1285-97 – reference: 22789542 - Cancer Cell. 2012 Jul 10;22(1):106-16 – reference: 25714681 - Nat Rev Mol Cell Biol. 2015 Apr;16(4):207-20 – reference: 20842177 - Nat Rev Mol Cell Biol. 2010 Oct;11(10):683-7 – reference: 24162989 - Methods Mol Biol. 2014;1094:177-208 – reference: 21615334 - Biochem J. 2011 Jun 15;436(3):527-36 – reference: 24198246 - Nucleic Acids Res. 2014 Feb;42(3):1711-20 – reference: 1255724 - J Mol Biol. 1976 Mar 5;101(3):417-25 – reference: 23746452 - Cell Rep. 2013 Jun 27;3(6):1958-69 – reference: 23562323 - Trends Biochem Sci. 2013 Jun;38(6):321-30 – reference: 23684611 - Cell Rep. 2013 May 30;3(5):1651-62 – reference: 19812404 - N Engl J Med. 2009 Oct 8;361(15):1475-85 – reference: 24005329 - Nature. 2013 Oct 17;502(7471):381-4 – reference: 11484058 - Nature. 2001 Aug 2;412(6846):557-61 – reference: 20188668 - Mol Cell. 2010 Feb 26;37(4):492-502 – reference: 24556218 - Hum Mol Genet. 2014 Jul 15;23(14):3695-705 – reference: 16766518 - J Biol Chem. 2006 Aug 11;281(32):22839-46 – reference: 18206976 - Mol Cell. 2008 Jan 18;29(1):141-8 – reference: 23396353 - Nat Struct Mol Biol. 2013 Mar;20(3):347-54 – reference: 22365495 - Curr Opin Genet Dev. 2012 Jun;22(3):204-10 – reference: 24815912 - DNA Repair (Amst). 2014 Jul;19:152-62 – reference: 6895473 - Biochemistry. 1981 Nov 10;20(23):6553-63 – reference: 22704558 - Mol Cell. 2012 Aug 10;47(3):396-409 – reference: 21685366 - Genes Dev. 2011 Jun 15;25(12):1320-7 – reference: 20200537 - Nat Rev Cancer. 2010 Apr;10(4):293-301 – reference: 17115688 - Biochemistry. 2006 Nov 28;45(47):13939-46 – reference: 3041238 - NCI Monogr. 1987;(4):117-21 – reference: 20935632 - Nat Struct Mol Biol. 2010 Nov;17(11):1305-11 – reference: 23993743 - Mol Cell. 2013 Sep 12;51(5):678-90 – reference: 21910633 - Annu Rev Genet. 2011;45:247-71 – reference: 23259582 - ACS Chem Biol. 2013 Jan 18;8(1):82-95 – reference: 24298053 - Genes Dev. 2013 Dec 1;27(23):2537-42 – reference: 17003056 - Nucleic Acids Res. 2006;34(18):5217-31 – reference: 21784245 - Cell. 2011 Jul 22;146(2):233-46 – reference: 24561620 - Nat Cell Biol. 2014 Mar;16(3):281-93 – reference: 23479741 - J Cell Biol. 2013 Mar 18;200(6):699-708 – reference: 15743907 - Mol Biol Cell. 2005 May;16(5):2372-81 |
| SSID | ssj0004743 |
| Score | 2.636416 |
| Snippet | Replication fork reversal protects forks from breakage after poisoning of Topoisomerase 1. We here investigated fork progression and chromosomal breakage in... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 563 |
| SubjectTerms | Cell Line, Tumor DNA Damage DNA Replication HEK293 Cells Humans Poly(ADP-ribose) Polymerases - genetics Poly(ADP-ribose) Polymerases - metabolism Rad51 Recombinase - metabolism RecQ Helicases - genetics RecQ Helicases - metabolism Topoisomerase Inhibitors - toxicity |
| Title | Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25733714 https://www.proquest.com/docview/1660654665 |
| Volume | 208 |
| WOSCitedRecordID | wos000350530600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qKnjx_VhfRPBatknbpDmJiIsHXRZR2FvJq1CFdt1W0X9vJu2unkTw0kNpSshMkknmm-9D6EJzKWId6oBFeeQOKLFycy5JA840kbFmNGe-UPiOj0bpZCLG3YVb3cEq52uiX6hNpeGOfEAY88rdLLmcvgagGgXZ1U5CYxn1IhfKgFfzyQ-28A5gD8l_YHbqODZd1DF41gpwXW47C8Uv0aXfZYab_-3fFtro4kt81TrENlqy5Q5aaxUnP3eReZAmIYGvF3GxJp7ZRf4au_D1BQOj06x2fyhqLHFLF-JeeiCtxU2FgdS1qT4KjRcY9RoXJfZifxjyAPUeehrePF7fBp3QQqDjlDSBzkliWGRiCdWDhpqUC0aF5oLmihDFnD0tE0YqFUrivgsTZYC6TLPUMpPQfbRSVqU9RFjInJM8jSNF3dkLDnSGRAxIzIy0hNI-Op8PX-YcGXolS1u91dn3APbRQWuDbNoybmQUWBs5iY_-0PoYrTvDJh4nRk9QL3fT2J6iVf3eFPXszHuIe47G918AjcWa |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rad51-mediated+replication+fork+reversal+is+a+global+response+to+genotoxic+treatments+in+human+cells&rft.jtitle=The+Journal+of+cell+biology&rft.au=Zellweger%2C+Ralph&rft.au=Dalcher%2C+Damian&rft.au=Mutreja%2C+Karun&rft.au=Berti%2C+Matteo&rft.date=2015-03-02&rft.issn=1540-8140&rft.eissn=1540-8140&rft.volume=208&rft.issue=5&rft.spage=563&rft_id=info:doi/10.1083%2Fjcb.201406099&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-8140&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-8140&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-8140&client=summon |