Quantifying the Displacement of Data Matrix Code Modules: A Comparative Study of Different Approximation Approaches for Predictive Maintenance of Drop-on-Demand Printing Systems

Drop-on-demand printing using colloidal or pigmented inks is prone to the clogging of printing nozzles, which can lead to positional deviations and inconsistently printed patterns (e.g., data matrix codes, DMCs). However, if such deviations are detected early, they can be useful for determining the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of imaging Ročník 9; číslo 7; s. 125
Hlavní autori: Bischoff, Peter, Carreiro, André V., Schuster, Christiane, Härtling, Thomas
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 21.06.2023
MDPI
Predmet:
ISSN:2313-433X, 2313-433X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Drop-on-demand printing using colloidal or pigmented inks is prone to the clogging of printing nozzles, which can lead to positional deviations and inconsistently printed patterns (e.g., data matrix codes, DMCs). However, if such deviations are detected early, they can be useful for determining the state of the print head and planning maintenance operations prior to reaching a printing state where the printed DMCs are unreadable. To realize this predictive maintenance approach, it is necessary to accurately quantify the positional deviation of individually printed dots from the actual target position. Here, we present a comparison of different methods based on affinity transformations and clustering algorithms for calculating the target position from the printed positions and, subsequently, the deviation of both for complete DMCs. Hence, our method focuses on the evaluation of the print quality, not on the decoding of DMCs. We compare our results to a state-of-the-art decoding algorithm, adopted to return the target grid positions, and find that we can determine the occurring deviations with significantly higher accuracy, especially when the printed DMCs are of low quality. The results enable the development of decision systems for predictive maintenance and subsequently the optimization of printing systems.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2313-433X
2313-433X
DOI:10.3390/jimaging9070125