Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing

Neuromorphic computers could overcome efficiency bottlenecks inherent to conventional computing through parallel programming and readout of artificial neural network weights in a crossbar memory array. However, selective and linear weight updates and <10-nanoampere read currents are required for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) Jg. 364; H. 6440; S. 570
Hauptverfasser: Fuller, Elliot J, Keene, Scott T, Melianas, Armantas, Wang, Zhongrui, Agarwal, Sapan, Li, Yiyang, Tuchman, Yaakov, James, Conrad D, Marinella, Matthew J, Yang, J Joshua, Salleo, Alberto, Talin, A Alec
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 10.05.2019
ISSN:1095-9203, 1095-9203
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neuromorphic computers could overcome efficiency bottlenecks inherent to conventional computing through parallel programming and readout of artificial neural network weights in a crossbar memory array. However, selective and linear weight updates and <10-nanoampere read currents are required for learning that surpasses conventional computing efficiency. We introduce an ionic floating-gate memory array based on a polymer redox transistor connected to a conductive-bridge memory (CBM). Selective and linear programming of a redox transistor array is executed in parallel by overcoming the bridging threshold voltage of the CBMs. Synaptic weight readout with currents <10 nanoamperes is achieved by diluting the conductive polymer with an insulator to decrease the conductance. The redox transistors endure >1 billion write-read operations and support >1-megahertz write-read frequencies.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1095-9203
1095-9203
DOI:10.1126/science.aaw5581