Kernelizations for the hybridization number problem on multiple nonbinary trees
Given a finite set X, a collection T of rooted phylogenetic trees on X and an integer k, the Hybridization Number problem asks if there exists a phylogenetic network on X that displays all trees from T and has reticulation number at most k. We show two kernelization algorithms for Hybridization Numb...
Gespeichert in:
| Veröffentlicht in: | Journal of computer and system sciences Jg. 82; H. 6; S. 1075 - 1089 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.09.2016
Elsevier |
| Schlagworte: | |
| ISSN: | 0022-0000, 1090-2724 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Given a finite set X, a collection T of rooted phylogenetic trees on X and an integer k, the Hybridization Number problem asks if there exists a phylogenetic network on X that displays all trees from T and has reticulation number at most k. We show two kernelization algorithms for Hybridization Number, with kernel sizes 4k(5k)t and 20k2(Δ+−1) respectively, with t the number of input trees and Δ+ their maximum outdegree. Experiments on simulated data demonstrate the practical relevance of our kernelization algorithms. In addition, we present an nf(k)t-time algorithm, with n=|X| and f some computable function of k.
•We study constructing a network displaying a given collection of phylogenetic trees.•Our kernelization techniques work for inputs consisting of multiple binary trees.•Previous results were restricted to two trees and/or binary trees.•A unified and simplified approach for dealing with common chains of nonbinary trees.•Polynomial-time solvability with fixed number of reticulations. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0022-0000 1090-2724 |
| DOI: | 10.1016/j.jcss.2016.03.006 |