Constraining low-frequency variability in climate projections to predict climate on decadal to multi-decadal timescales – a poor man's initialized prediction system
Near-term projections of climate change are subject to substantial uncertainty from internal climate variability. Here we present an approach to reduce this uncertainty by sub-selecting those ensemble members that more closely resemble observed patterns of ocean temperature variability immediately p...
Uložené v:
| Vydané v: | Earth system dynamics Ročník 13; číslo 4; s. 1437 - 1450 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Gottingen
Copernicus GmbH
19.10.2022
Copernicus Publications |
| Predmet: | |
| ISSN: | 2190-4987, 2190-4979, 2190-4987 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Near-term projections of climate change are subject to substantial uncertainty from internal climate variability. Here we present an approach to reduce this uncertainty by sub-selecting those ensemble members that more closely resemble observed patterns of ocean temperature variability immediately prior to a certain start date. This constraint aligns the observed and simulated variability phases and is conceptually similar to initialization in seasonal to decadal climate predictions. We apply this variability constraint to large multi-model projection ensembles from the Coupled Model Intercomparison Project phase 6 (CMIP6), consisting of more than 200 ensemble members, and evaluate the skill of the constrained ensemble in predicting the observed near-surface temperature, sea-level pressure, and precipitation on decadal to multi-decadal timescales. We find that the constrained projections show significant skill in predicting the climate of the following 10 to 20 years, and added value over the ensemble of unconstrained projections. For the first decade after applying the constraint, the global patterns of skill are very similar and can even outperform those of the multi-model ensemble mean of initialized decadal hindcasts from the CMIP6 Decadal Climate Prediction Project (DCPP). In particular for temperature, larger areas show added skill in the constrained projections compared to DCPP, mainly in the Pacific and some neighboring land regions. Temperature and sea-level pressure in several regions are predictable multiple decades ahead, and show significant added value over the unconstrained projections for forecasting the first 2 decades and the 20-year averages. We further demonstrate the suitability of regional constraints to attribute predictability to certain ocean regions. On the example of global average temperature changes, we confirm the role of Pacific variability in modulating the reduced rate of global warming in the early 2000s, and demonstrate the predictability of reduced global warming rates over the following 15 years based on the climate conditions leading up to 1998. Our results illustrate that constraining internal variability can significantly improve the accuracy of near-term climate change estimates for the next few decades. |
|---|---|
| AbstractList | Near-term projections of climate change are subject to substantial uncertainty from internal climate variability. Here we present an approach to reduce this uncertainty by sub-selecting those ensemble members that more closely resemble observed patterns of ocean temperature variability immediately prior to a certain start date. This constraint aligns the observed and simulated variability phases and is conceptually similar to initialization in seasonal to decadal climate predictions. We apply this variability constraint to large multi-model projection ensembles from the Coupled Model Intercomparison Project phase 6 (CMIP6), consisting of more than 200 ensemble members, and evaluate the skill of the constrained ensemble in predicting the observed near-surface temperature, sea-level pressure, and precipitation on decadal to multi-decadal timescales. Near-term projections of climate change are subject to substantial uncertainty from internal climate variability. Here we present an approach to reduce this uncertainty by sub-selecting those ensemble members that more closely resemble observed patterns of ocean temperature variability immediately prior to a certain start date. This constraint aligns the observed and simulated variability phases and is conceptually similar to initialization in seasonal to decadal climate predictions. We apply this variability constraint to large multi-model projection ensembles from the Coupled Model Intercomparison Project phase 6 (CMIP6), consisting of more than 200 ensemble members, and evaluate the skill of the constrained ensemble in predicting the observed near-surface temperature, sea-level pressure, and precipitation on decadal to multi-decadal timescales.We find that the constrained projections show significant skill in predicting the climate of the following 10 to 20 years, and added value over the ensemble of unconstrained projections. For the first decade after applying the constraint, the global patterns of skill are very similar and can even outperform those of the multi-model ensemble mean of initialized decadal hindcasts from the CMIP6 Decadal Climate Prediction Project (DCPP). In particular for temperature, larger areas show added skill in the constrained projections compared to DCPP, mainly in the Pacific and some neighboring land regions. Temperature and sea-level pressure in several regions are predictable multiple decades ahead, and show significant added value over the unconstrained projections for forecasting the first 2 decades and the 20-year averages. We further demonstrate the suitability of regional constraints to attribute predictability to certain ocean regions. On the example of global average temperature changes, we confirm the role of Pacific variability in modulating the reduced rate of global warming in the early 2000s, and demonstrate the predictability of reduced global warming rates over the following 15 years based on the climate conditions leading up to 1998. Our results illustrate that constraining internal variability can significantly improve the accuracy of near-term climate change estimates for the next few decades. Near-term projections of climate change are subject to substantial uncertainty from internal climate variability. Here we present an approach to reduce this uncertainty by sub-selecting those ensemble members that more closely resemble observed patterns of ocean temperature variability immediately prior to a certain start date. This constraint aligns the observed and simulated variability phases and is conceptually similar to initialization in seasonal to decadal climate predictions. We apply this variability constraint to large multi-model projection ensembles from the Coupled Model Intercomparison Project phase 6 (CMIP6), consisting of more than 200 ensemble members, and evaluate the skill of the constrained ensemble in predicting the observed near-surface temperature, sea-level pressure, and precipitation on decadal to multi-decadal timescales. We find that the constrained projections show significant skill in predicting the climate of the following 10 to 20 years, and added value over the ensemble of unconstrained projections. For the first decade after applying the constraint, the global patterns of skill are very similar and can even outperform those of the multi-model ensemble mean of initialized decadal hindcasts from the CMIP6 Decadal Climate Prediction Project (DCPP). In particular for temperature, larger areas show added skill in the constrained projections compared to DCPP, mainly in the Pacific and some neighboring land regions. Temperature and sea-level pressure in several regions are predictable multiple decades ahead, and show significant added value over the unconstrained projections for forecasting the first 2 decades and the 20-year averages. We further demonstrate the suitability of regional constraints to attribute predictability to certain ocean regions. On the example of global average temperature changes, we confirm the role of Pacific variability in modulating the reduced rate of global warming in the early 2000s, and demonstrate the predictability of reduced global warming rates over the following 15 years based on the climate conditions leading up to 1998. Our results illustrate that constraining internal variability can significantly improve the accuracy of near-term climate change estimates for the next few decades. |
| Audience | Academic |
| Author | Ortega, Pablo Bretonnière, Pierre-Antoine Delgado-Torres, Carlos Mahmood, Rashed Samsó, Margarida Donat, Markus G. Doblas-Reyes, Francisco J. |
| Author_xml | – sequence: 1 givenname: Rashed orcidid: 0000-0002-3583-2232 surname: Mahmood fullname: Mahmood, Rashed – sequence: 2 givenname: Markus G. orcidid: 0000-0002-0608-7288 surname: Donat fullname: Donat, Markus G. – sequence: 3 givenname: Pablo orcidid: 0000-0002-4135-9621 surname: Ortega fullname: Ortega, Pablo – sequence: 4 givenname: Francisco J. orcidid: 0000-0002-6622-4280 surname: Doblas-Reyes fullname: Doblas-Reyes, Francisco J. – sequence: 5 givenname: Carlos orcidid: 0000-0003-1737-4212 surname: Delgado-Torres fullname: Delgado-Torres, Carlos – sequence: 6 givenname: Margarida surname: Samsó fullname: Samsó, Margarida – sequence: 7 givenname: Pierre-Antoine orcidid: 0000-0002-3066-6685 surname: Bretonnière fullname: Bretonnière, Pierre-Antoine |
| BookMark | eNp1UsuOFCEUrZgxcRxn75LEhXFRI1BF0SwnHR-dTGLiY01uUZcOnSpogdZpV_6D_-CH-SVStra2UVgAl3PO5V7O_erMB49V9ZDRK8FU-xTTULOmZm0ja045v1Odc6Zo3aqFPPtjf6-6TGlDyxAdZ604r74ug085gvPOr8kYPtY24vsderMnHyA66N3o8p44T8zoJshItjFs0GRXiCSHcsTBmXy8Dp4MaGCAcb6ddmN29THgJkwGRkzk2-cvBMg2hEgm8I9TyeCyg9F9wuGXZklB0j5lnB5Udy2MCS9_rhfVu-fP3i5f1jevXqyW1ze1aRc018ikUaJXYHouYSEa6IVQIBFFqbmzDSCFhgIayVvDrITO9H3XKaVsS1XXXFSrg-4QYKO3sZQU9zqA0z8CIa41xOzMiLqnaClwBUW3VRSh6-XCdgtqjURhWdF6dNAqDSsdTVlvwi768nzNJReK07YRv1Hr0hbtvA3lN8zkktHXkjdcNB1XBXX1D1SZA07OFDNYV-InhCcnhILJeJvXsEtJr968PsXSA9bEkFJEeyycUT37Sxd_adbo2V969lehdH9RjMswf9jspfH_xO8MOdmp |
| CitedBy_id | crossref_primary_10_1088_1748_9326_acf389 crossref_primary_10_1088_1748_9326_adde75 crossref_primary_10_1029_2023GL104983 crossref_primary_10_1038_s41558_025_02247_8 crossref_primary_10_1088_1748_9326_adfd73 crossref_primary_10_1016_j_wace_2025_100765 crossref_primary_10_1088_2752_5295_ad5463 crossref_primary_10_1002_wcc_914 crossref_primary_10_1016_j_scitotenv_2025_179259 crossref_primary_10_1038_s41612_023_00417_z crossref_primary_10_1007_s11069_025_07405_x crossref_primary_10_1029_2023AV000887 crossref_primary_10_1029_2022GL102466 |
| Cites_doi | 10.1038/s43017-021-00155-x 10.5194/esd-12-173-2021 10.1175/JCLI-D-17-0661.1 10.1175/JCLI-D-16-0836.1 10.1126/science.aac9225 10.1175/BAMS-D-11-00094.1 10.1007/s00382-012-1481-2 10.5194/gmd-9-1937-2016 10.1038/s41586-020-2525-0 10.1007/s00382-013-1683-2 10.1029/2009GL037810 10.1007/s00382-010-0810-6 10.5194/essd-6-49-2014 10.1017/9781009157896.001 10.1029/2021GL094915 10.1002/qj.2297 10.3389/fclim.2021.678109 10.1038/nature12534 10.1038/ncomms2704 10.1175/BAMS-D-17-0098.1 10.5194/gmd-9-3751-2016 10.1029/2020GL087900 10.1088/1748-9326/ac06fb 10.1029/2019GL085782 10.1002/asl2.471 10.1088/1748-9326/ac20f5 10.1175/2009BAMS2607.1 10.1038/nclimate2106 10.1038/d41586-022-01192-2 10.1029/2011JD017187 10.1038/nclimate2310 10.1038/ngeo2098 10.1175/JAMC-D-13-064.1 10.1038/nclimate2938 10.1038/s41558-018-0359-7 10.5194/esd-11-491-2020 10.1002/2014GL061541 10.2151/jmsj.2015-001 10.1175/MWR-D-15-0218.1 10.1002/grl.50355 10.1038/s41612-019-0071-y |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 Copernicus GmbH 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 Copernicus GmbH – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 7TG 7UA ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W H96 HCIFZ KL. L.G PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.5194/esd-13-1437-2022 |
| DatabaseName | CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2190-4987 |
| EndPage | 1450 |
| ExternalDocumentID | oai_doaj_org_article_b0ef0a29a06f490ea6b78f680fc7e5f1 A723253629 10_5194_esd_13_1437_2022 |
| GroupedDBID | 5VS 8FE 8FH AAFWJ AAYXX ABDBF ACUHS ADBBV AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BHPHI BKSAR CCPQU CITATION ESX GROUPED_DOAJ H13 HCIFZ I-F IAO IEA ISR ITC KQ8 LK5 M7R OK1 PCBAR PHGZM PHGZT PIMPY PROAC RKB TUS 7TG 7UA ABUWG AZQEC C1K DWQXO F1W H96 KL. L.G PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c480t-e17c95b9acb27a853ab559a7ee50006f3ae0a30aec724c1f7a6cbb66999f40963 |
| IEDL.DBID | RKB |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000869700700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2190-4987 2190-4979 |
| IngestDate | Fri Oct 03 12:49:59 EDT 2025 Sun Nov 09 08:55:11 EST 2025 Tue Nov 11 10:27:26 EST 2025 Tue Nov 04 17:44:13 EST 2025 Thu Nov 13 15:41:59 EST 2025 Tue Nov 18 21:19:35 EST 2025 Sat Nov 29 02:36:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c480t-e17c95b9acb27a853ab559a7ee50006f3ae0a30aec724c1f7a6cbb66999f40963 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1737-4212 0000-0002-6622-4280 0000-0002-3066-6685 0000-0002-3583-2232 0000-0002-0608-7288 0000-0002-4135-9621 |
| OpenAccessLink | https://doaj.org/article/b0ef0a29a06f490ea6b78f680fc7e5f1 |
| PQID | 2725920435 |
| PQPubID | 2037685 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b0ef0a29a06f490ea6b78f680fc7e5f1 proquest_journals_2725920435 gale_infotracmisc_A723253629 gale_infotracacademiconefile_A723253629 gale_incontextgauss_ISR_A723253629 crossref_primary_10_5194_esd_13_1437_2022 crossref_citationtrail_10_5194_esd_13_1437_2022 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-19 |
| PublicationDateYYYYMMDD | 2022-10-19 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Gottingen |
| PublicationPlace_xml | – name: Gottingen |
| PublicationTitle | Earth system dynamics |
| PublicationYear | 2022 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref37 – ident: ref33 doi: 10.1038/s43017-021-00155-x – ident: ref5 – ident: ref2 doi: 10.5194/esd-12-173-2021 – ident: ref9 doi: 10.1175/JCLI-D-17-0661.1 – ident: ref25 doi: 10.1175/JCLI-D-16-0836.1 – ident: ref46 doi: 10.1126/science.aac9225 – ident: ref45 doi: 10.1175/BAMS-D-11-00094.1 – ident: ref17 doi: 10.1007/s00382-012-1481-2 – ident: ref27 – ident: ref15 doi: 10.5194/gmd-9-1937-2016 – ident: ref44 doi: 10.1038/s41586-020-2525-0 – ident: ref42 doi: 10.1007/s00382-013-1683-2 – ident: ref12 doi: 10.1029/2009GL037810 – ident: ref11 – ident: ref13 – ident: ref21 doi: 10.1007/s00382-010-0810-6 – ident: ref41 doi: 10.5194/essd-6-49-2014 – ident: ref36 – ident: ref26 doi: 10.1017/9781009157896.001 – ident: ref32 doi: 10.1029/2021GL094915 – ident: ref6 – ident: ref7 doi: 10.1002/qj.2297 – ident: ref24 doi: 10.3389/fclim.2021.678109 – ident: ref47 – ident: ref29 doi: 10.1038/nature12534 – ident: ref10 doi: 10.1038/ncomms2704 – ident: ref49 doi: 10.1175/BAMS-D-17-0098.1 – ident: ref3 doi: 10.5194/gmd-9-3751-2016 – ident: ref1 doi: 10.1029/2020GL087900 – ident: ref34 doi: 10.1088/1748-9326/ac06fb – ident: ref50 doi: 10.1029/2019GL085782 – ident: ref22 doi: 10.1002/asl2.471 – ident: ref4 doi: 10.1088/1748-9326/ac20f5 – ident: ref20 doi: 10.1175/2009BAMS2607.1 – ident: ref14 doi: 10.1038/nclimate2106 – ident: ref48 – ident: ref19 doi: 10.1038/d41586-022-01192-2 – ident: ref35 doi: 10.1029/2011JD017187 – ident: ref39 doi: 10.1038/nclimate2310 – ident: ref40 doi: 10.1038/ngeo2098 – ident: ref18 doi: 10.1175/JAMC-D-13-064.1 – ident: ref16 doi: 10.1038/nclimate2938 – ident: ref30 doi: 10.1038/s41558-018-0359-7 – ident: ref31 doi: 10.5194/esd-11-491-2020 – ident: ref38 doi: 10.1002/2014GL061541 – ident: ref28 doi: 10.2151/jmsj.2015-001 – ident: ref8 doi: 10.1175/MWR-D-15-0218.1 – ident: ref23 doi: 10.1002/grl.50355 – ident: ref43 doi: 10.1038/s41612-019-0071-y |
| SSID | ssj0000562145 |
| Score | 2.3733342 |
| Snippet | Near-term projections of climate change are subject to substantial uncertainty from internal climate variability. Here we present an approach to reduce this... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1437 |
| SubjectTerms | Agreements Analysis Climate change Climate prediction Climate variability Climatic conditions Constraining Constraint modelling Datasets Global temperatures Global warming Intercomparison Ocean temperature Ocean temperature variability Oceans Precipitation Sea level Sea level pressure Simulation Surface temperature Temperature Temperature changes Temperature variability Uncertainty Variability |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELbQCiQuiF9RWJCFkFYcrMZJasfHBbGAhFaIH2lvlu2MUaSSrJrsrron3oF34MF4EmbitNoegAvHxtM6nZl45os93zD2XHqli6L0QoayFGVAgIIwyAkFGE4wgIOUY6Hwe318XJ2cmA9XWn3RmbBED5wUN_cZxMzlxmUqliYDp7yuoqqyGDQs4gh8MOu5AqYSq7ciCm7qLEe10qXRJu1RYsJSzqGvhSwEpgoavSTPd2LSSN3_pwV6jDpHt9mtKV3kh-k277Br0N5lN96M7XjX99hP6re56fLAl92FiKt0NnrNzxEFJxLuNW9aHpYNJqfAp1cv5G186PAj7dQM2-Gu5TUEV-OkODoeNxTbC1QugjaFnv_6_oM7ftp1K_7NtQc9ztDgWrFsLqHe_CZOwRNR9H325ej151dvxdR5QYSyygYBUgez8MYFn2uHEd15RB5OA1D_BBULB5krMgdB52WQUTsVvFcKs82IgFEVD9he27XwkHH0BVPnwUQlHe2yVkH6qIwsQOtYKZix-Ub3Nky05KS3pUV4QtayaC0rC0vWsmStGXux_cZpouT4i-xLMudWjsi0xwvoYnZyMfsvF5uxZ-QMlugyWjqP89Wd9b199-mjPdSYkS4wCTAzdjAJxQ7vP7ipvAG1QAxbO5L7O5L4PIfd4Y3P2Wk96W2uEaZSGfPi0f_4R4_ZTdIOxWBp9tnesDqDJ-x6OB-afvV0fJR-A6LPJCo priority: 102 providerName: Directory of Open Access Journals – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZgCxIX_hFbCrIQUsXB2jjJ2vEJFUShElQrfqRyshzHriItyXaTFi0n3oF34MF4EmYSJ2gP9MRx48k6zkzmx575hpBnPBcySdKccZumLLUQoEAYZJhwYE7AgDvOu0Lhd_L4ODs5UYtQHt2EtMpBJ3aKukd7xrxtUMKzora4Yz6LJbjtWNY5f7E6Y9hDCs9aQ0ONq2QHgbeyCdlZHL1ffBn3XNDY865vcYwV1KmSqj-5BDcmnbmmYDxh4EBIkJ043rJUHaD_v9R2Z4sOb_3fVdwmN4NPSg96IbpDrrjqLrn-puv5u7lHfmFTz6GVBF3W35hf9wnYG3oBoXaP9L2hZUXtsgQP2NGwv4MiTdsafuJxUDsO1xUtnDUFTAqjXU4jGy9gTQoIjmvo7x8_qaGrul7Tr6bab2CGEhTSsvzuiuE_YQrao1HfJ58PX3969ZaF9g7MplnUMselVfNcGZvH0oDbYHIIb4x0Dps0CJ8YF5kkMs7KOLXcSyNsngsBLq2HqFQkD8ikqiv3kFAQOFXEVnnBDR7lZpbnXiieOCl9JtyUzAZWahuwz_G9LTXEQMh8DczXPNHIfI3Mn5Ln4x2rHvfjEtqXKB0jHSJ2dxfq9akOCkDnkfORiZWBlaUqckbkMvMii7yVbu75lDxF2dKIyVFh0s-pOW8affTxgz6Q4PbOwdNQU7IfiHwNz29NqKGAt4AwXluUe1uUoDTs9vAgnzoorUb_Fcfdy4cfkRu4bjThXO2RSbs-d4_JNXvRls36Sfjq_gDfqT5P priority: 102 providerName: ProQuest |
| Title | Constraining low-frequency variability in climate projections to predict climate on decadal to multi-decadal timescales – a poor man's initialized prediction system |
| URI | https://www.proquest.com/docview/2725920435 https://doaj.org/article/b0ef0a29a06f490ea6b78f680fc7e5f1 |
| Volume | 13 |
| WOSCitedRecordID | wos000869700700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 2190-4987 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000562145 issn: 2190-4987 databaseCode: RKB dateStart: 20100101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2190-4987 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000562145 issn: 2190-4987 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2190-4987 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000562145 issn: 2190-4987 databaseCode: PCBAR dateStart: 20140101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 2190-4987 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000562145 issn: 2190-4987 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2190-4987 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000562145 issn: 2190-4987 databaseCode: PIMPY dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQAYkL_4gtZWUhpIpDtHGSteNji1qoBKtVAamcLNsZo0hLUm3SVsuJd-AdeDCehJkku2IPwAGOiSdx4m_imYk93zD2XDip0jRzkfBZFmUeAxQMg2wkAc0JGnAQoksUfqNms_zsTM9_KfVFe8J6euB-4CYuhhDbRNtYhkzHYKVTeZB5HLyCaejy1vGrpjh9qOHWs3pLouCmynKUK51ppfs1SnRYsgk0RSTSCF0FhVqSJFs2qaPu_90E3Vmd4zv_8Lx32e3B1eQH_SX32DWo7rObr7pSvqsH7DvV6lxXiOCL-ioKy35f9YpfYgTdE3iveFlxvyjRsQU-_LYhTeVtjYe0ytNumuuKF-BtgZ1ia7dVMdqcoFQT1Ado-I-v37jl53W95J9ttd9gDyXOM4vyCxTre2IXvCeZfsg-HB-9f_k6Gqo2RD7L4zYCobyeOm29S5RFb8A6jFqsAqDaCzKkFmKbxha8SjIvgrLSOycleqoBg02ZPmI7VV3BY8ZRj3SReB2ksLRCm3vhgtQiBaVCLmHEJmvcjB8ozWncFgZDG0LaINJGpIaQNoT0iL3YXHHe03n8QfaQ0N3IERF3dwLhNgPc5m9wj9gzUiRDVBsV7eX5ZC-axpy8OzUHCr3ZKToQesT2B6FQ4_N7O6RG4CgQO9eW5N6WJM4Ffrt5ra9mmIsakygMcSkFerr7P97oCbtFo0P2W-g9ttMuL-Apu-Ev27JZjtn1w6PZ_HTc_dvAo_nJ2_nHcfdx_gQozzsM |
| linkProvider | Copernicus Gesellschaft |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFLdGBxoX_qMVBlgImDhYjZPUjg8cusFYtVJNY0i7Gcexp0olKU23qZz4DnwHjnwoPgnvpUlRD-y2A8fEL3Hqvj-_Z78_hLzgqZBRFKeM2zhmsQUHBdwgw4QDcwIG3HFeJQoP5HCYnJyowzXyq8mFwbDKRidWijorLO6Rd0IJQB0TOZsIygM3vwD_rHzTfwt_5ssw3Ht3vLvP6hYCzMZJMGOOS6u6qTI2DaUB02RSgNBGOoeNAISPjAtMFBhnZRhb7qURNk2FANjkwfMREbz31eQrwy5VeJpbt-y4RtYTobpxi6wf7u70jpa7OggneNUZOcQc7VhJtTgbBaAUd1yZMR4xgCgSuDMMV2xh1TLgX4ahsnZ7t_-3dbpDbtW4mvYWgnCXrLn8HrnxvupbPL9PfmJj0qYdBh0XF8xPF0Hkc3puQAirGOE5HeXUjkeA4h2t96hQLOmsgEs80poth4ucZs6aDCaF0Souky1vYF4NML8r6e_vP6ihk6KY0i8m3y5hhhEo1fHom8uad8IUdFFR-wH5dCXr9pC08iJ3m4SC0KgstMoLbvA4OrE89ULxyEnpE-HapNMwi7Z1_XZct7EGPw7ZSwN7aR5pZC-N7NUmr5dPTBa1Sy6h3UH-W9Jh1fHqRjE91bUS02ngfGBCZeCXxSpwRqQy8SIJvJWu63mbPEfu1VhXJMfApVNzVpa6__FI9yRA9y6gJdUm2zWRL-D7ranzQGAVsBTZCuXWCiUoPrs63EiArhVvqf-y_6PLh5-Rjf3jDwM96A8PHpObuAYISbjaIq3Z9Mw9Idft-WxUTp_WMk7J56uWoD8EQpBS |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwELaWLiAu_CMKC1gItOJgNU5SOz4gtLAUql2qih9p92Qcx15VKklpursqJ96Bd-AheByehJn8FPXA3vbAMfEkTqfz843tmSHkCU-FjKI4ZdzGMYstBCgQBhkmHLgTcOCO8ypReF-ORsnBgRpvkF9tLgweq2xtYmWos8LiGnkvlADUMZGz3_PNsYjx7uDF7CvDDlK409q206hFZM8tTyF8K58Pd-G_fhqGg9cfX71lTYcBZuMkWDDHpVX9VBmbhtKA5zIpIGwjncM-AcJHxgUmCoyzMowt99IIm6ZCAKryEBiJCN57gWwCJI_jDtkcD9-ND1crPAgteNUlOcR87VhJVe-TAmiKe67MGI8YwBUJkhqGa36xah_wLydReb7Btf-ZZ9fJ1QZv051aQW6QDZffJJfeVP2Ml7fIT2xY2rbJoNPilPl5fbh8SU8MKGd1dnhJJzm10wmge0ebtStUV7oo4BK3uhar4SKnmbMmg0lhtDqvyVY3MN8GlMKV9Pf3H9TQWVHM6ReTb5cwwwSM7XTyzWXtO2EKWlfavk0-nQuT7pBOXuTuLqGgTCoLrfKCG9ymTixPvVA8clL6RLgu6bWCo21T1x35NtUQ36GoaRA1zSONoqZR1Lrk2eqJWV3T5AzalyiLKzqsRl7dKOZHujFuOg2cD0yoDPyyWAXOiFQmXiSBt9L1Pe-SxyjJGuuN5CiFR-a4LPXww3u9IwHS9wFFqS7Zboh8Ad9vTZMfAlzAEmVrlFtrlGAQ7fpwqw26Mcil_qsK984efkQug47o_eFo7z65gixApMLVFuks5sfuAbloTxaTcv6wUXdKPp-3tvwBZYCZWA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraining+low-frequency+variability+in+climate+projections+to+predict+climate+on+decadal+to+multi-decadal+timescales+%E2%80%93+a+poor+man%27s+initialized+prediction+system&rft.jtitle=Earth+system+dynamics&rft.au=R.+Mahmood&rft.au=R.+Mahmood&rft.au=M.+G.+Donat&rft.au=M.+G.+Donat&rft.date=2022-10-19&rft.pub=Copernicus+Publications&rft.issn=2190-4979&rft.eissn=2190-4987&rft.volume=13&rft.spage=1437&rft.epage=1450&rft_id=info:doi/10.5194%2Fesd-13-1437-2022&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b0ef0a29a06f490ea6b78f680fc7e5f1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-4987&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-4987&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-4987&client=summon |