Constraining low-frequency variability in climate projections to predict climate on decadal to multi-decadal timescales – a poor man's initialized prediction system

Near-term projections of climate change are subject to substantial uncertainty from internal climate variability. Here we present an approach to reduce this uncertainty by sub-selecting those ensemble members that more closely resemble observed patterns of ocean temperature variability immediately p...

Full description

Saved in:
Bibliographic Details
Published in:Earth system dynamics Vol. 13; no. 4; pp. 1437 - 1450
Main Authors: Mahmood, Rashed, Donat, Markus G., Ortega, Pablo, Doblas-Reyes, Francisco J., Delgado-Torres, Carlos, Samsó, Margarida, Bretonnière, Pierre-Antoine
Format: Journal Article
Language:English
Published: Gottingen Copernicus GmbH 19.10.2022
Copernicus Publications
Subjects:
ISSN:2190-4987, 2190-4979, 2190-4987
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Near-term projections of climate change are subject to substantial uncertainty from internal climate variability. Here we present an approach to reduce this uncertainty by sub-selecting those ensemble members that more closely resemble observed patterns of ocean temperature variability immediately prior to a certain start date. This constraint aligns the observed and simulated variability phases and is conceptually similar to initialization in seasonal to decadal climate predictions. We apply this variability constraint to large multi-model projection ensembles from the Coupled Model Intercomparison Project phase 6 (CMIP6), consisting of more than 200 ensemble members, and evaluate the skill of the constrained ensemble in predicting the observed near-surface temperature, sea-level pressure, and precipitation on decadal to multi-decadal timescales. We find that the constrained projections show significant skill in predicting the climate of the following 10 to 20 years, and added value over the ensemble of unconstrained projections. For the first decade after applying the constraint, the global patterns of skill are very similar and can even outperform those of the multi-model ensemble mean of initialized decadal hindcasts from the CMIP6 Decadal Climate Prediction Project (DCPP). In particular for temperature, larger areas show added skill in the constrained projections compared to DCPP, mainly in the Pacific and some neighboring land regions. Temperature and sea-level pressure in several regions are predictable multiple decades ahead, and show significant added value over the unconstrained projections for forecasting the first 2 decades and the 20-year averages. We further demonstrate the suitability of regional constraints to attribute predictability to certain ocean regions. On the example of global average temperature changes, we confirm the role of Pacific variability in modulating the reduced rate of global warming in the early 2000s, and demonstrate the predictability of reduced global warming rates over the following 15 years based on the climate conditions leading up to 1998. Our results illustrate that constraining internal variability can significantly improve the accuracy of near-term climate change estimates for the next few decades.
AbstractList Near-term projections of climate change are subject to substantial uncertainty from internal climate variability. Here we present an approach to reduce this uncertainty by sub-selecting those ensemble members that more closely resemble observed patterns of ocean temperature variability immediately prior to a certain start date. This constraint aligns the observed and simulated variability phases and is conceptually similar to initialization in seasonal to decadal climate predictions. We apply this variability constraint to large multi-model projection ensembles from the Coupled Model Intercomparison Project phase 6 (CMIP6), consisting of more than 200 ensemble members, and evaluate the skill of the constrained ensemble in predicting the observed near-surface temperature, sea-level pressure, and precipitation on decadal to multi-decadal timescales.
Near-term projections of climate change are subject to substantial uncertainty from internal climate variability. Here we present an approach to reduce this uncertainty by sub-selecting those ensemble members that more closely resemble observed patterns of ocean temperature variability immediately prior to a certain start date. This constraint aligns the observed and simulated variability phases and is conceptually similar to initialization in seasonal to decadal climate predictions. We apply this variability constraint to large multi-model projection ensembles from the Coupled Model Intercomparison Project phase 6 (CMIP6), consisting of more than 200 ensemble members, and evaluate the skill of the constrained ensemble in predicting the observed near-surface temperature, sea-level pressure, and precipitation on decadal to multi-decadal timescales.We find that the constrained projections show significant skill in predicting the climate of the following 10 to 20 years, and added value over the ensemble of unconstrained projections. For the first decade after applying the constraint, the global patterns of skill are very similar and can even outperform those of the multi-model ensemble mean of initialized decadal hindcasts from the CMIP6 Decadal Climate Prediction Project (DCPP). In particular for temperature, larger areas show added skill in the constrained projections compared to DCPP, mainly in the Pacific and some neighboring land regions. Temperature and sea-level pressure in several regions are predictable multiple decades ahead, and show significant added value over the unconstrained projections for forecasting the first 2 decades and the 20-year averages. We further demonstrate the suitability of regional constraints to attribute predictability to certain ocean regions. On the example of global average temperature changes, we confirm the role of Pacific variability in modulating the reduced rate of global warming in the early 2000s, and demonstrate the predictability of reduced global warming rates over the following 15 years based on the climate conditions leading up to 1998. Our results illustrate that constraining internal variability can significantly improve the accuracy of near-term climate change estimates for the next few decades.
Near-term projections of climate change are subject to substantial uncertainty from internal climate variability. Here we present an approach to reduce this uncertainty by sub-selecting those ensemble members that more closely resemble observed patterns of ocean temperature variability immediately prior to a certain start date. This constraint aligns the observed and simulated variability phases and is conceptually similar to initialization in seasonal to decadal climate predictions. We apply this variability constraint to large multi-model projection ensembles from the Coupled Model Intercomparison Project phase 6 (CMIP6), consisting of more than 200 ensemble members, and evaluate the skill of the constrained ensemble in predicting the observed near-surface temperature, sea-level pressure, and precipitation on decadal to multi-decadal timescales. We find that the constrained projections show significant skill in predicting the climate of the following 10 to 20 years, and added value over the ensemble of unconstrained projections. For the first decade after applying the constraint, the global patterns of skill are very similar and can even outperform those of the multi-model ensemble mean of initialized decadal hindcasts from the CMIP6 Decadal Climate Prediction Project (DCPP). In particular for temperature, larger areas show added skill in the constrained projections compared to DCPP, mainly in the Pacific and some neighboring land regions. Temperature and sea-level pressure in several regions are predictable multiple decades ahead, and show significant added value over the unconstrained projections for forecasting the first 2 decades and the 20-year averages. We further demonstrate the suitability of regional constraints to attribute predictability to certain ocean regions. On the example of global average temperature changes, we confirm the role of Pacific variability in modulating the reduced rate of global warming in the early 2000s, and demonstrate the predictability of reduced global warming rates over the following 15 years based on the climate conditions leading up to 1998. Our results illustrate that constraining internal variability can significantly improve the accuracy of near-term climate change estimates for the next few decades.
Audience Academic
Author Ortega, Pablo
Bretonnière, Pierre-Antoine
Delgado-Torres, Carlos
Mahmood, Rashed
Samsó, Margarida
Donat, Markus G.
Doblas-Reyes, Francisco J.
Author_xml – sequence: 1
  givenname: Rashed
  orcidid: 0000-0002-3583-2232
  surname: Mahmood
  fullname: Mahmood, Rashed
– sequence: 2
  givenname: Markus G.
  orcidid: 0000-0002-0608-7288
  surname: Donat
  fullname: Donat, Markus G.
– sequence: 3
  givenname: Pablo
  orcidid: 0000-0002-4135-9621
  surname: Ortega
  fullname: Ortega, Pablo
– sequence: 4
  givenname: Francisco J.
  orcidid: 0000-0002-6622-4280
  surname: Doblas-Reyes
  fullname: Doblas-Reyes, Francisco J.
– sequence: 5
  givenname: Carlos
  orcidid: 0000-0003-1737-4212
  surname: Delgado-Torres
  fullname: Delgado-Torres, Carlos
– sequence: 6
  givenname: Margarida
  surname: Samsó
  fullname: Samsó, Margarida
– sequence: 7
  givenname: Pierre-Antoine
  orcidid: 0000-0002-3066-6685
  surname: Bretonnière
  fullname: Bretonnière, Pierre-Antoine
BookMark eNp1UsuOFCEUrZgxcRxn75LEhXFRI1BF0SwnHR-dTGLiY01uUZcOnSpogdZpV_6D_-CH-SVStra2UVgAl3PO5V7O_erMB49V9ZDRK8FU-xTTULOmZm0ja045v1Odc6Zo3aqFPPtjf6-6TGlDyxAdZ604r74ug085gvPOr8kYPtY24vsderMnHyA66N3o8p44T8zoJshItjFs0GRXiCSHcsTBmXy8Dp4MaGCAcb6ddmN29THgJkwGRkzk2-cvBMg2hEgm8I9TyeCyg9F9wuGXZklB0j5lnB5Udy2MCS9_rhfVu-fP3i5f1jevXqyW1ze1aRc018ikUaJXYHouYSEa6IVQIBFFqbmzDSCFhgIayVvDrITO9H3XKaVsS1XXXFSrg-4QYKO3sZQU9zqA0z8CIa41xOzMiLqnaClwBUW3VRSh6-XCdgtqjURhWdF6dNAqDSsdTVlvwi768nzNJReK07YRv1Hr0hbtvA3lN8zkktHXkjdcNB1XBXX1D1SZA07OFDNYV-InhCcnhILJeJvXsEtJr968PsXSA9bEkFJEeyycUT37Sxd_adbo2V969lehdH9RjMswf9jspfH_xO8MOdmp
CitedBy_id crossref_primary_10_1088_1748_9326_acf389
crossref_primary_10_1088_1748_9326_adde75
crossref_primary_10_1029_2023GL104983
crossref_primary_10_1038_s41558_025_02247_8
crossref_primary_10_1088_1748_9326_adfd73
crossref_primary_10_1016_j_wace_2025_100765
crossref_primary_10_1088_2752_5295_ad5463
crossref_primary_10_1002_wcc_914
crossref_primary_10_1016_j_scitotenv_2025_179259
crossref_primary_10_1038_s41612_023_00417_z
crossref_primary_10_1007_s11069_025_07405_x
crossref_primary_10_1029_2023AV000887
crossref_primary_10_1029_2022GL102466
Cites_doi 10.1038/s43017-021-00155-x
10.5194/esd-12-173-2021
10.1175/JCLI-D-17-0661.1
10.1175/JCLI-D-16-0836.1
10.1126/science.aac9225
10.1175/BAMS-D-11-00094.1
10.1007/s00382-012-1481-2
10.5194/gmd-9-1937-2016
10.1038/s41586-020-2525-0
10.1007/s00382-013-1683-2
10.1029/2009GL037810
10.1007/s00382-010-0810-6
10.5194/essd-6-49-2014
10.1017/9781009157896.001
10.1029/2021GL094915
10.1002/qj.2297
10.3389/fclim.2021.678109
10.1038/nature12534
10.1038/ncomms2704
10.1175/BAMS-D-17-0098.1
10.5194/gmd-9-3751-2016
10.1029/2020GL087900
10.1088/1748-9326/ac06fb
10.1029/2019GL085782
10.1002/asl2.471
10.1088/1748-9326/ac20f5
10.1175/2009BAMS2607.1
10.1038/nclimate2106
10.1038/d41586-022-01192-2
10.1029/2011JD017187
10.1038/nclimate2310
10.1038/ngeo2098
10.1175/JAMC-D-13-064.1
10.1038/nclimate2938
10.1038/s41558-018-0359-7
10.5194/esd-11-491-2020
10.1002/2014GL061541
10.2151/jmsj.2015-001
10.1175/MWR-D-15-0218.1
10.1002/grl.50355
10.1038/s41612-019-0071-y
ContentType Journal Article
Copyright COPYRIGHT 2022 Copernicus GmbH
2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 Copernicus GmbH
– notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7TG
7UA
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H96
HCIFZ
KL.
L.G
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.5194/esd-13-1437-2022
DatabaseName CrossRef
Gale In Context: Science
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2190-4987
EndPage 1450
ExternalDocumentID oai_doaj_org_article_b0ef0a29a06f490ea6b78f680fc7e5f1
A723253629
10_5194_esd_13_1437_2022
GroupedDBID 5VS
8FE
8FH
AAFWJ
AAYXX
ABDBF
ACUHS
ADBBV
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
ESX
GROUPED_DOAJ
H13
HCIFZ
I-F
IAO
IEA
ISR
ITC
KQ8
LK5
M7R
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
RKB
TUS
7TG
7UA
ABUWG
AZQEC
C1K
DWQXO
F1W
H96
KL.
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c480t-e17c95b9acb27a853ab559a7ee50006f3ae0a30aec724c1f7a6cbb66999f40963
IEDL.DBID PIMPY
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000869700700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2190-4987
2190-4979
IngestDate Fri Oct 03 12:49:59 EDT 2025
Sun Nov 09 08:55:11 EST 2025
Tue Nov 11 10:27:26 EST 2025
Tue Nov 04 17:44:13 EST 2025
Thu Nov 13 15:41:59 EST 2025
Tue Nov 18 21:19:35 EST 2025
Sat Nov 29 02:36:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-e17c95b9acb27a853ab559a7ee50006f3ae0a30aec724c1f7a6cbb66999f40963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1737-4212
0000-0002-6622-4280
0000-0002-3066-6685
0000-0002-3583-2232
0000-0002-0608-7288
0000-0002-4135-9621
OpenAccessLink https://www.proquest.com/publiccontent/docview/2725920435?pq-origsite=%requestingapplication%
PQID 2725920435
PQPubID 2037685
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_b0ef0a29a06f490ea6b78f680fc7e5f1
proquest_journals_2725920435
gale_infotracmisc_A723253629
gale_infotracacademiconefile_A723253629
gale_incontextgauss_ISR_A723253629
crossref_primary_10_5194_esd_13_1437_2022
crossref_citationtrail_10_5194_esd_13_1437_2022
PublicationCentury 2000
PublicationDate 2022-10-19
PublicationDateYYYYMMDD 2022-10-19
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-19
  day: 19
PublicationDecade 2020
PublicationPlace Gottingen
PublicationPlace_xml – name: Gottingen
PublicationTitle Earth system dynamics
PublicationYear 2022
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref37
– ident: ref33
  doi: 10.1038/s43017-021-00155-x
– ident: ref5
– ident: ref2
  doi: 10.5194/esd-12-173-2021
– ident: ref9
  doi: 10.1175/JCLI-D-17-0661.1
– ident: ref25
  doi: 10.1175/JCLI-D-16-0836.1
– ident: ref46
  doi: 10.1126/science.aac9225
– ident: ref45
  doi: 10.1175/BAMS-D-11-00094.1
– ident: ref17
  doi: 10.1007/s00382-012-1481-2
– ident: ref27
– ident: ref15
  doi: 10.5194/gmd-9-1937-2016
– ident: ref44
  doi: 10.1038/s41586-020-2525-0
– ident: ref42
  doi: 10.1007/s00382-013-1683-2
– ident: ref12
  doi: 10.1029/2009GL037810
– ident: ref11
– ident: ref13
– ident: ref21
  doi: 10.1007/s00382-010-0810-6
– ident: ref41
  doi: 10.5194/essd-6-49-2014
– ident: ref36
– ident: ref26
  doi: 10.1017/9781009157896.001
– ident: ref32
  doi: 10.1029/2021GL094915
– ident: ref6
– ident: ref7
  doi: 10.1002/qj.2297
– ident: ref24
  doi: 10.3389/fclim.2021.678109
– ident: ref47
– ident: ref29
  doi: 10.1038/nature12534
– ident: ref10
  doi: 10.1038/ncomms2704
– ident: ref49
  doi: 10.1175/BAMS-D-17-0098.1
– ident: ref3
  doi: 10.5194/gmd-9-3751-2016
– ident: ref1
  doi: 10.1029/2020GL087900
– ident: ref34
  doi: 10.1088/1748-9326/ac06fb
– ident: ref50
  doi: 10.1029/2019GL085782
– ident: ref22
  doi: 10.1002/asl2.471
– ident: ref4
  doi: 10.1088/1748-9326/ac20f5
– ident: ref20
  doi: 10.1175/2009BAMS2607.1
– ident: ref14
  doi: 10.1038/nclimate2106
– ident: ref48
– ident: ref19
  doi: 10.1038/d41586-022-01192-2
– ident: ref35
  doi: 10.1029/2011JD017187
– ident: ref39
  doi: 10.1038/nclimate2310
– ident: ref40
  doi: 10.1038/ngeo2098
– ident: ref18
  doi: 10.1175/JAMC-D-13-064.1
– ident: ref16
  doi: 10.1038/nclimate2938
– ident: ref30
  doi: 10.1038/s41558-018-0359-7
– ident: ref31
  doi: 10.5194/esd-11-491-2020
– ident: ref38
  doi: 10.1002/2014GL061541
– ident: ref28
  doi: 10.2151/jmsj.2015-001
– ident: ref8
  doi: 10.1175/MWR-D-15-0218.1
– ident: ref23
  doi: 10.1002/grl.50355
– ident: ref43
  doi: 10.1038/s41612-019-0071-y
SSID ssj0000562145
Score 2.3733342
Snippet Near-term projections of climate change are subject to substantial uncertainty from internal climate variability. Here we present an approach to reduce this...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1437
SubjectTerms Agreements
Analysis
Climate change
Climate prediction
Climate variability
Climatic conditions
Constraining
Constraint modelling
Datasets
Global temperatures
Global warming
Intercomparison
Ocean temperature
Ocean temperature variability
Oceans
Precipitation
Sea level
Sea level pressure
Simulation
Surface temperature
Temperature
Temperature changes
Temperature variability
Uncertainty
Variability
SummonAdditionalLinks – databaseName: Copernicus Publications - Open Access
  dbid: RKB
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQBRIXyq9YWpCFkCoO1iZOYsfHgihwqRA_Um_WxLFRpCWpNmmr7Yl34B36YH0SZuLsij0ABzhu7MTZmYn9TeL5PsZeJJCmSjonAuRaIALPRRWcFpBlUvu6JLHyUWxCHx-XJyfmwy9SX7QnLNIDR8PNq8SHBKSBRIXcJB5UpcugygSv6Isw1q3jU015-qThFlm9FVFwk7Ic1UrnRpv4jRIBSz73fS3STCBU0BglUm6tSSN1_-8m6HHVOdr9h_u9y-5MUJMfxlPusRu-vc9uvR2lfFcP2BVpda4VIviiuxBhGfdVr_g5ZtCRwHvFm5a7RYPA1vPptQ1FKh86_ElfeYZNc9fy2juocVBsHbcqis0BKjXBePA9v_7-gwM_7bol_wbtQY8jNDjPLJpLX6-viUPwSDL9kH05evP59TsxqTYIl5fJIHyqnSkqA66SGhANQIVZC2jvSXtBhQx8AlkC3mmZuzRoUK6qlEKkGjDZVNkjttN2rX_MeCC8KvMAaL-8xHzXaOKzVzqroTKFnLH52m_WTZTmZLeFxdSGPG3R0zbNLHnakqdn7OXmjNNI5_GHvq_Iu5t-RMQ9HkB328nd9m_unrHnFEiWqDZa2svzFc763r7_9NEeakSzBQIIM2MHU6fQ4f07mEoj0ArEzrXVc3-rJ84Fbrt5Ha92mot6KzWmuFQCXTz5H_9oj90m69D6nZp9tjMsz_xTdtOdD02_fDY-hj8BcUQ2qA
  priority: 102
  providerName: Copernicus Gesellschaft
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQBRIXRPkRW1pkIaSKg7WJk9jxsaAWuFSIH6k3a-LYKNKSVJu01fbEO_AOPFifhJk4u-oegAvHxJM4OzOxv9nY38fYqwTSVEnnRIBcC0TguaiC0wKyTGpflyRWPopN6NPT8uzMfLwl9UVrwiI9cHTcvEp8SEAaSFTITeJBVboMqkzwjr4IY-GDqOdWMRVZvRVRcJOyHO2Vzo028RslApZ87vtapJlAqKAxS6TcmpNG6v4_DdDjrHPykD2Y4CI_io-5y-749hG7926U4109Zr9Ib3Ot8sAX3ZUIy7g2esUvsQqOJNwr3rTcLRoEp55Pf71QtvGhw0P6UjNsmruW195BjZ1i67jcUGxO0HYRjKnv-c2Pnxz4edct-XdoD3vsocGxYtFc-3p9T-yCR6LoJ-zryfGXt-_FpLwgXF4mg_CpdqaoDLhKasAZHSqsPEB7T_oJKmTgE8gS8E7L3KVBg3JVpRSizYAFo8qesp22a_0zxgNhTpkHwJjlJdasRhMnvdJZDZUp5IzN1763bqIlJ78tLJYnFC2L0bJpZilalqI1Y683V5xHSo6_2L6hcG7siEx7PIEpZqcUs_9KsRl7SclgiS6jpfU43-Ci7-2Hz5_skUZEWiAIMDN2OBmFDp_fwbS9Ab1ADFtblvtblvg-u-3mdc7ZaTzprdRYptI25mLvf_yi5-w-eYfm4NTss51heeEP2F13OTT98sX4Kv0Gq2AkBw
  priority: 102
  providerName: Directory of Open Access Journals
Title Constraining low-frequency variability in climate projections to predict climate on decadal to multi-decadal timescales – a poor man's initialized prediction system
URI https://www.proquest.com/docview/2725920435
https://doaj.org/article/b0ef0a29a06f490ea6b78f680fc7e5f1
Volume 13
WOSCitedRecordID wos000869700700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications - Open Access
  customDbUrl:
  eissn: 2190-4987
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000562145
  issn: 2190-4987
  databaseCode: RKB
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2190-4987
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000562145
  issn: 2190-4987
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2190-4987
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000562145
  issn: 2190-4987
  databaseCode: PCBAR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 2190-4987
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000562145
  issn: 2190-4987
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2190-4987
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000562145
  issn: 2190-4987
  databaseCode: PIMPY
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELagBYkL_4jCUlkIacXBauL8OD6hLdqFFaKqCkjLyXIcexWpJKXpLion3oF34MF4EmYSp6gH9sQx8bSOM5PxN7bnG0JeBDoMU24MczoWDBB4zHJnBNNRxIUtMixW3habELNZdnYm5z49uvHHKnuf2Drqju0Zz22DE54UtcEV8wkXANsxrTN5tfrKsIYU7rX6ghrXyRCJt7IBGc5P388_79ZccLIP27rFHDOoYylkt3MJMCae2KZgYcQAQAiwHc73ZqqW0P9fbrudi07u_N9R3CW3PSalR50R3SPXbHWf3HzT1vzdPiC_sKhnX0qCLutvzK27A9hbegmhdsf0vaVlRc2yBARsqV_fQZOmmxoucTtos2uuK1pYowvoFFrbM41sdwNzUsBwbEN___hJNV3V9Zp-0dVhAz2U4JCW5Xdb9P8JXdCOjfoh-XRy_PH1W-bLOzATZ8GG2VAYmeRSm5wLDbBB5xDeaGEtFmlIXaRtoKNAWyN4bEIndGryPE0B0jqIStPoERlUdWUfE-oQ2PLYaZdmcQaBsRRIfJ-KqNC5TPiITHpVKuO5z_G9LRXEQKh8BcpXYaRQ-QqVPyIvd79YdbwfV8hO0Tp2csjY3d6o1-fKOwCVB9YFmksNI4tlYHWaiwweN4AvwyYuHJHnaFsKOTkqPPRzri-aRp1-WKgjAbA3AaQhR-TQC7kant9on0MBbwFpvPYkD_YkwWmY_ebePpV3Wo36a45Prm5-Sm7huHEKD-UBGWzWF_YZuWEuN2WzHpPh9Hg2X4zb5Y2x_wbhavFu-gcmb0G7
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VFAQX_hGBAisEVBxWsdeO1z5wSAulUUtUlSL1tozXu1WkYIfYbRVOvAPvwJGH4kmYceygHOitB47xTrz2emb2292Z-Rh74YHvR9IY4SBUAhF4KFJnlIAgkMpmMZGV12QTajSKj4-TgzX2q82FobDK1ifWjjorDO2R96RCoE6JnG0E5Z6dn-P6rHwzfIsf86WUO--OtndFQyEgTBh7lbC-Mkk_TcCkUgFOTZAihAZlLREBRC4A60HggTVKhsZ3CiKTplGEsMnhyicK8L6vpl8FsVTRaW5D2XGFrccRvleHrR9sbw0Ol7s6BCf8mhlZUo52mKhkcTaKQCns2TITfiAQoijUTilX5sKaMuBfE0M92-3c-t_G6Ta72eBqPlgYwh22ZvO77Nr7mrd4fo_9JGLSlg6DT4pz4WaLIPI5PwM0wjpGeM7HOTeTMaJ4y5s9KjJLXhX4k460qmVzkfPMGsiwU2yt4zLF8gLl1aDy25L__v6DA58WxYx_gXyzxB7G6FQn4282a--JXfBFRe377NOljNsD1smL3D5k3BE4l6EDF8VhjIv7RFHx_kgFGaRJX3ZZr1UWbZr67TRuE43rOFIvjeql_UCTemlSry57vfzHdFG75ALZLdK_pRxVHa8vFLMT3TgxnXrWeSATwDcLE89ClKoYH9dD67Z953fZc9JeTXVFcgpcOoHTstTDj4d6oBC69xEtJV222Qi5Ap_fQJMHgqNApchWJDdWJNHxmdXm1gJ043hL_Vf9H13c_Ixd3z36sK_3h6O9x-wGjQFBEj_ZYJ1qdmqfsKvmrBqXs6eNjXP2-bIt6A-3jpAv
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwELaWLiAu_CMKC1gItOJgNXHcOD4gtLAUqoWq4kdaTsZx7FWlkpSmu6ty2nfYd-AheByehJn8FPXA3vbAMbETp9OZ8Wd7Zj5CngQmDGNuLfNGSAYIXLDUW8lMFHHpsgTJyiuyCTkaJfv7arxBfrW5MBhW2frEylFnhcU98h6XANQxkbPf801YxHh38GL2nSGDFJ60tnQatYrsueUxLN_K58Nd-K-fcj54_enVW9YwDDArkmDBXCit6qfK2JRLAzOXSQFhG-kc8gTEPjIuMFFgnJVc2NBLE9s0jWNAVR4WRnEE771ANgGSC9Ehm-Ph-_GX1Q4PQouwYknmmK8tlFT1OSmAJtFzZcbCiAFckaCpnK_NixV9wL8miWrmG1z7n2V2nVxt8DbdqQ3kBtlw-U1y6U3FZ7y8RX4iYWlLk0GnxTHz8zq4fEmPDBhnFTu8pJOc2ukE0L2jzd4VmitdFHCJR12LVXOR08xZk8Gg0FrFa7LVDcy3AaNwJf19ckoNnRXFnH4z-XYJI0zA2U4nP1zWvhOGoHWl7dvk87kI6Q7p5EXu7hLqEbRz4Y2PE5HAol9JLOofyygzqerzLum1iqNtU9cd5TbVsL5DVdOgajqMNKqaRlXrkmerJ2Z1TZMz-r5EXVz1w2rk1Y1ifqAb56bTwPnAcGXglwkVOBOnMoHPDcDqXd-HXfIYNVljvZEctfDAHJalHn78oHckQPo-oCjVJdtNJ1_A91vT5IeAFLBE2VrPrbWe4BDtenNrDbpxyKX-awr3zm5-RC6Djeh3w9HefXIFRYBIJVRbpLOYH7oH5KI9WkzK-cPG3Cn5et7W8gcnnpk1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraining+low-frequency+variability+in+climate+projections+to+predict+climate+on+decadal+to+multi-decadal+timescales+-+a+poor+man%27s+initialized+prediction+system&rft.jtitle=Earth+system+dynamics&rft.au=Mahmood%2C+Rashed&rft.au=Donat%2C+Markus+G&rft.au=Ortega%2C+Pablo&rft.au=Doblas-Reyes%2C+Francisco+J&rft.date=2022-10-19&rft.pub=Copernicus+GmbH&rft.issn=2190-4979&rft.volume=13&rft.issue=4&rft.spage=1437&rft_id=info:doi/10.5194%2Fesd-13-1437-2022&rft.externalDocID=A723253629
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-4987&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-4987&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-4987&client=summon