Spectral properties of some regular boundary value problems for fourth order differential operators
In this paper we consider the problem where λ is a spectral parameter; p j ( x ) ∈ L 1 (0, 1), j = 0, 1, 2, are complex-valued functions; α s;l , s = 1, 2, 3, , are arbitrary complex constants; and σ = 0, 1. The boundary conditions of this problem are regular, but not strongly regular. Asymptotic fo...
Uložené v:
| Vydané v: | Central European journal of mathematics Ročník 11; číslo 1; s. 94 - 111 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Heidelberg
SP Versita
01.01.2013
Versita De Gruyter Brill Sp. z o.o., Paradigm Publishing Services De Gruyter |
| Predmet: | |
| ISSN: | 1895-1074, 1644-3616, 2391-5455 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper we consider the problem
where
λ
is a spectral parameter;
p
j
(
x
) ∈
L
1
(0, 1),
j
= 0, 1, 2, are complex-valued functions;
α
s;l
,
s
= 1, 2, 3,
, are arbitrary complex constants; and
σ
= 0, 1. The boundary conditions of this problem are regular, but not strongly regular. Asymptotic formulae for eigenvalues and eigenfunctions of the considered boundary value problem are established in the case
α
3,2
+
α
1,0
≠
α
2,1
. It is proved that the system of root functions of this spectral problem forms a basis in the space
L
p
(0, 1), 1 <
p
< ∞, when
α
3,2
+
α
1,0
≠
α
2,1
,
p
j
(
x
) ∈
W
1
j
(0, 1),
j
= 1, 2, and
p
0
(
x
) ∈
L
1
(0, 1); moreover, this basis is unconditional for
p
= 2. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1895-1074 1644-3616 2391-5455 |
| DOI: | 10.2478/s11533-012-0059-x |